Exemple #1
0
/*
 * We visit terms breadth-first to check for cycles.
 * The index of all visited terms are stored in subst->cache.
 * The terms to process are stored in subst->queue.
 */
static void bfs_visit_index(intern_tbl_t *tbl, int32_t i) {
  if (kind_for_idx(tbl->terms, i) == UNINTERPRETED_TERM) {
    // replace i by its root
    i = index_of(intern_tbl_get_root(tbl, pos_term(i)));
  }

  if (int_hset_add(tbl->cache, i)) {
    // i has not been seen before
    int_queue_push(tbl->queue, i);
  }
}
Exemple #2
0
/*
 * Print what's mapped to t in the context's internalization table.
 * - if t is mapped to a Boolean, the corresponding DIMACS literal is printed
 * - if t is mapped to a bitvector then the corresponding literal array is printed
 * - otherwise we print "non boolean"
 */
void dimacs_print_internalized_term(FILE *f, context_t *ctx, term_t t) {
  intern_tbl_t *intern;
  type_table_t *types;
  term_t r;
  type_t tau;
  int32_t code;
  uint32_t polarity;

  intern = &ctx->intern;
  types = ctx->types;

  r = intern_tbl_get_root(intern, t);
  if (t != r) {
    // substitution: t --> r (can't deal with this)
    fputs("eliminated", f);
  } else if (intern_tbl_root_is_mapped(intern, r)) {
    // t = r is mapped to something
    polarity = polarity_of(r);
    r = unsigned_term(r);

    tau = intern_tbl_type_of_root(intern, r);
    if (is_boolean_type(tau)) {
      // Boolean term
      code = intern_tbl_map_of_root(intern, r);
      assert(code_is_valid(code));
      dimacs_print_bool_code(f, code, polarity);
    } else if (is_bv_type(types, tau)) {
      // Bitvector term
      code = intern_tbl_map_of_root(intern, r);
      assert(code_is_valid(code));
      assert(polarity == 0);
      dimacs_print_bv_code(f, ctx, code);
    } else {
      // Can't be converted to DIMACS
      fputs("non boolean", f);
    }
  } else {
    // r not mapped to anything
    fputs("not internalized", f);
  }
}
Exemple #3
0
/*
 * Check whether f is a range constraint
 * - if so return a term t and fill in vector v with the formula's constants
 * - otherwise, return NULL_TERM
 *
 * Side effect: use queue and cache.
 * v may be modified even if the function returns NULL_TERM.
 */
static term_t formula_is_range_constraint(sym_breaker_t *breaker, term_t f, ivector_t *v) {
  int_queue_t *queue;
  int_hset_t *cache;
  term_table_t *terms;
  intern_tbl_t *intern;
  term_t r, t;
  term_t x, a, y, b;
  uint32_t neqs;

  queue = &breaker->queue;
  cache = &breaker->cache;
  terms = breaker->terms;
  intern = &breaker->ctx->intern;

  assert(int_queue_is_empty(queue) && int_hset_is_empty(cache));
  push_term(queue, cache, f);

  neqs = 0;
  t = NULL_TERM;

  y = NULL_TERM; // prevent GCC warning
  b = NULL_TERM; // prevent GCC warning

  /*
   * Invariants:
   * - neqs = number of equality atoms seen so far
   * - if neq == 1, then the first equality is stored as (y == b) where b is a constant
   * - if neq >= 2, then all equalities seen so far were of the form (x == constant)
   */
  do {
    // r := root of the first term in the queue
    r = intern_tbl_get_root(intern, int_queue_pop(queue));

    switch (match_term(breaker->ctx, r, &a, &x)) {
    case MATCH_FALSE: // skip false terms
      break;

    case MATCH_OR:
      push_children(queue, cache, or_term_desc(terms, r));
      break;

    case MATCH_EQ:
      assert(term_is_constant(terms, a));
      if (neqs == 0) {
	y = x; b = a;
      } else if (neqs == 1) {
	/*
	 * First equality: (y == b). Second equality: (x == a)
	 */
	if (y == x) {
	  // y is the common term, a and b are constant
	  ivector_push(v, b);
	  ivector_push(v, a);
	} else if (y == a && term_is_uconst(terms, x)) {
	  // y is the common term, b and x are constant
	  ivector_push(v, b);
	  ivector_push(v, a);
	} else if (x == b && term_is_uconst(terms, y)) {
	  // b is the common term, y and a are constant
	  ivector_push(v, y);
	  ivector_push(v, a);
	  y = b;
	} else if (a == b && term_is_uconst(terms, y) && term_is_uconst(terms, x)) {
	  // b is the common term, y and x are constant
	  ivector_push(v, y);
	  ivector_push(v, x);
	  y = b;
	} else {
	  // abort
	  goto done;
	}

      } else {
	/*
	 * All equalities so far have the form (y == constant)
	 * - the current equality is (x == a)
	 */
	if (y == x) {
	  ivector_push(v, a); // match
	} else if (y == a && term_is_constant(terms, x)) {
	  ivector_push(v, x); // swap a and x
	} else {
	  // no match
	  goto done;
	}
      }
      neqs ++;
      break;

    case MATCH_IFF:
      /*
       * the returned term x is equivalent to t
       */
      push_term(queue, cache, x);
      break;

    default:
      // abort
      goto done;
    }
  } while (! int_queue_is_empty(queue));

  assert(y != NULL_TERM && t == NULL_TERM);

  if (neqs >= 2) {
    assert(v->size == neqs);
    t = y;
  }

 done:
  int_queue_reset(queue);
  int_hset_reset(cache);

  return t;
}
Exemple #4
0
static match_code_t match_term(context_t *ctx, term_t t, term_t *a, term_t *x) {
  composite_term_t *eq;
  term_table_t *terms;
  match_code_t code;
  term_t t1, t2;

  if (term_is_false(ctx, t)) {
    code = MATCH_FALSE;
  } else {
    code = MATCH_OTHER;
    terms = ctx->terms;

    switch (term_kind(terms, t)) {
    case OR_TERM:
      if (is_pos_term(t)) {
	code = MATCH_OR;
      }
      break;

    case EQ_TERM:
      eq = eq_term_desc(terms, t);
      t1 = intern_tbl_get_root(&ctx->intern, eq->arg[0]);
      t2 = intern_tbl_get_root(&ctx->intern, eq->arg[1]);
      if (is_boolean_term(terms, t1)) {
	assert(is_boolean_term(terms, t2));
	/*
	 * t is either (iff t1 t2) or (not (iff t1 t2))
	 * we rewrite (not (iff t1 t2)) to (iff t1 (not t2))
	 */
	if (is_neg_term(t)) {
	  t2 = opposite_term(t2);
	}
	/*
	 * Check whether t1 or t2 is true or false
	 */
	if (term_is_true(ctx, t1)) {
	  code = MATCH_IFF;
	  *x = t2;
	} else if (term_is_false(ctx, t1)) {
	  code = MATCH_IFF;
	  *x = opposite_term(t2);
	} else if (term_is_true(ctx, t2)) {
	  code = MATCH_IFF;
	  *x = t1;
	} else if (term_is_false(ctx, t2)) {
	  code = MATCH_IFF;
	  *x = opposite_term(t1);
	}

      } else if (t1 != t2) {
	/*
	 * t1 and t2 are not Boolean
	 * if t1 and t2 are equal, we return MATCH_OTHER, since (eq t1 t2) is true
	 */
	assert(is_pos_term(t1) && is_pos_term(t2));
	if (false_eq(terms, t1, t2)) {
	  code = MATCH_FALSE;
	} else if (term_is_constant(terms, t1)) {
	  *a = t1;
	  *x = t2;
	  code = MATCH_EQ;
	} else if (term_is_constant(terms, t2)) {
	  *a = t2;
	  *x = t1;
	  code = MATCH_EQ;
	}
      }
      break;

    default:
      break;
    }
  }

  return code;
}