void ick_interpreter_run(void) { if (!fungespace_create()) { perror("Couldn't create funge space!?"); exit(EXIT_FAILURE); } #if (CFUNGE_API_VERSION < 2) fungespace_load_string(ick_iffi_befungeString); #else fungespace_load_string(ick_iffi_befungeString, strlen((const char*)ick_iffi_befungeString)); #endif iffiIP = ip_create(); if (iffiIP == NULL) { perror("Couldn't create instruction pointer!?"); exit(EXIT_FAILURE); } { #ifdef HAVE_clock_gettime struct timespec tv; if (clock_gettime(CLOCK_REALTIME, &tv)) { perror("Couldn't get time of day?!"); exit(EXIT_FAILURE); } // Set up randomness srandom(tv.tv_nsec); #else struct timeval tv; if (gettimeofday(&tv, NULL)) { perror("Couldn't get time of day?!"); exit(EXIT_FAILURE); } // Set up randomness srandom(tv.tv_usec); #endif } if(ick_printflow) setting_trace_level=9; ick_interpreter_main_loop(); }
/* Process an incoming IP datagram fragment. */ static char * ip_defrag(struct ip *iph, struct sk_buff *skb) { struct ipfrag *prev, *next, *tmp; struct ipfrag *tfp; struct ipq *qp; char *skb2; unsigned char *ptr; int flags, offset; int i, ihl, end; if (!hostfrag_find(iph) && skb) hostfrag_create(iph); /* Start by cleaning up the memory. */ if (this_host) if (this_host->ip_frag_mem > IPFRAG_HIGH_THRESH) ip_evictor(); /* Find the entry of this IP datagram in the "incomplete datagrams" queue. */ if (this_host) qp = ip_find(iph); else qp = 0; /* Is this a non-fragmented datagram? */ offset = ntohs(iph->ip_off); flags = offset & ~IP_OFFSET; offset &= IP_OFFSET; if (((flags & IP_MF) == 0) && (offset == 0)) { if (qp != NULL) ip_free(qp); /* Fragmented frame replaced by full unfragmented copy */ return 0; } /* ip_evictor() could have removed all queues for the current host */ if (!this_host) hostfrag_create(iph); offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ip_hl * 4; /* If the queue already existed, keep restarting its timer as long as we still are receiving fragments. Otherwise, create a fresh queue entry. */ if (qp != NULL) { /* ANK. If the first fragment is received, we should remember the correct IP header (with options) */ if (offset == 0) { qp->ihlen = ihl; memcpy(qp->iph, iph, ihl + 8); } del_timer(&qp->timer); qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ qp->timer.data = (unsigned long) qp; /* pointer to queue */ qp->timer.function = ip_expire; /* expire function */ add_timer(&qp->timer); } else { /* If we failed to create it, then discard the frame. */ if ((qp = ip_create(iph)) == NULL) { kfree_skb(skb, FREE_READ); return NULL; } } /* Attempt to construct an oversize packet. */ if (ntohs(iph->ip_len) + (int) offset > 65535) { // NETDEBUG(printk("Oversized packet received from %s\n", int_ntoa(iph->ip_src.s_addr))); nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERSIZED, iph, 0); kfree_skb(skb, FREE_READ); return NULL; } /* Determine the position of this fragment. */ end = offset + ntohs(iph->ip_len) - ihl; /* Point into the IP datagram 'data' part. */ ptr = (unsigned char *)(skb->data + ihl); /* Is this the final fragment? */ if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us in the chain of fragments so far. We must know where to put this fragment, right? */ prev = NULL; for (next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /* We found where to put this one. Check for overlap with preceding fragment, and, if needed, align things so that any overlaps are eliminated. */ if (prev != NULL && offset < prev->end) { nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = prev->end - offset; offset += i; /* ptr into datagram */ ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. If we can merge fragments, do it. */ for (tmp = next; tmp != NULL; tmp = tfp) { tfp = tmp->next; if (tmp->offset >= end) break; /* no overlaps at all */ nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = end - next->offset; /* overlap is 'i' bytes */ tmp->len -= i; /* so reduce size of */ tmp->offset += i; /* next fragment */ tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet that it goes with. We never throw the new frag away, so the frag being dumped has always been charged for. */ if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; next = tfp; /* We have killed the original next frame */ frag_kfree_skb(tmp->skb, FREE_READ); frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* Insert this fragment in the chain of fragments. */ tfp = NULL; tfp = ip_frag_create(offset, end, skb, ptr); /* No memory to save the fragment - so throw the lot. If we failed the frag_create we haven't charged the queue. */ if (!tfp) { nids_params.no_mem("ip_defrag"); kfree_skb(skb, FREE_READ); return NULL; } /* From now on our buffer is charged to the queues. */ tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. Check if we now have a full IP datagram which we can bump up to the IP layer... */ if (ip_done(qp)) { skb2 = ip_glue(qp); /* glue together the fragments */ fprintf(stderr,"this is ipfragment.sd"); return (skb2); } return (NULL); }
/* Process an incoming IP datagram fragment. */ struct sk_buff *ip_defrag(struct sk_buff *skb) { struct iphdr *iph = skb->nh.iph; struct ipfrag *prev, *next, *tmp, *tfp; struct ipq *qp; unsigned char *ptr; int flags, offset; int i, ihl, end; ip_statistics.IpReasmReqds++; /* Start by cleaning up the memory. */ if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh) ip_evictor(); /* * Look for the entry for this IP datagram in the * "incomplete datagrams" queue. If found, the * timer is removed. */ qp = ip_find(iph, skb->dst); /* Is this a non-fragmented datagram? */ offset = ntohs(iph->frag_off); flags = offset & ~IP_OFFSET; offset &= IP_OFFSET; offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ihl * 4; /* * Check whether to create a fresh queue entry. If the * queue already exists, its timer will be restarted as * long as we continue to receive fragments. */ if (qp) { /* ANK. If the first fragment is received, * we should remember the correct IP header (with options) */ if (offset == 0) { /* Fragmented frame replaced by unfragmented copy? */ if ((flags & IP_MF) == 0) goto out_freequeue; qp->ihlen = ihl; memcpy(qp->iph, iph, (ihl + 8)); } } else { /* Fragmented frame replaced by unfragmented copy? */ if ((offset == 0) && ((flags & IP_MF) == 0)) goto out_skb; /* If we failed to create it, then discard the frame. */ qp = ip_create(skb, iph); if (!qp) goto out_freeskb; } /* Attempt to construct an oversize packet. */ if((ntohs(iph->tot_len) + ((int) offset)) > 65535) goto out_oversize; /* Determine the position of this fragment. */ end = offset + ntohs(iph->tot_len) - ihl; /* Is this the final fragment? */ if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us * in the chain of fragments so far. We must know where to put * this fragment, right? */ prev = NULL; for(next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /* Point into the IP datagram 'data' part. */ ptr = skb->data + ihl; /* We found where to put this one. Check for overlap with * preceding fragment, and, if needed, align things so that * any overlaps are eliminated. */ if ((prev != NULL) && (offset < prev->end)) { i = prev->end - offset; offset += i; /* ptr into datagram */ ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. * If we can merge fragments, do it. */ for (tmp = next; tmp != NULL; tmp = tfp) { tfp = tmp->next; if (tmp->offset >= end) break; /* no overlaps at all */ i = end - next->offset; /* overlap is 'i' bytes */ tmp->len -= i; /* so reduce size of */ tmp->offset += i; /* next fragment */ tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet * that it goes with. */ if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; /* We have killed the original next frame. */ next = tfp; frag_kfree_skb(tmp->skb); frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* * Create a fragment to hold this skb. * No memory to save the fragment? throw the lot ... */ tfp = ip_frag_create(offset, end, skb, ptr); if (!tfp) goto out_freeskb; /* Insert this fragment in the chain of fragments. */ tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. * Check if we now have a full IP datagram which we can * bump up to the IP layer... */ if (ip_done(qp)) { /* Glue together the fragments. */ skb = ip_glue(qp); /* Free the queue entry. */ out_freequeue: ip_free(qp); out_skb: return skb; } /* * The queue is still active ... reset its timer. */ out_timer: mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time); /* ~ 30 seconds */ out: return NULL; /* * Error exits ... we need to reset the timer if there's a queue. */ out_oversize: if (net_ratelimit()) printk(KERN_INFO "Oversized packet received from %d.%d.%d.%d\n", NIPQUAD(iph->saddr)); /* the skb isn't in a fragment, so fall through to free it */ out_freeskb: kfree_skb(skb); ip_statistics.IpReasmFails++; if (qp) goto out_timer; goto out; }
/** * @brief Parse a network packet * * @param[out] packet The parsed packet * @param data The data to parse * @param trace_cb The function to call for printing traces * @param trace_cb_priv An optional private context, may be NULL * @param trace_entity The entity that emits the traces * @return true if the packet was successfully parsed, * false if a problem occurred (a malformed packet is * not considered as an error) */ bool net_pkt_parse(struct net_pkt *const packet, const struct rohc_buf data, rohc_trace_callback2_t trace_cb, void *const trace_cb_priv, rohc_trace_entity_t trace_entity) { packet->data = rohc_buf_data(data); packet->len = data.len; packet->ip_hdr_nr = 0; packet->key = 0; /* traces */ packet->trace_callback = trace_cb; packet->trace_callback_priv = trace_cb_priv; /* create the outer IP packet from raw data */ if(!ip_create(&packet->outer_ip, rohc_buf_data(data), data.len)) { rohc_warning(packet, trace_entity, ROHC_PROFILE_GENERAL, "cannot create the outer IP header"); goto error; } packet->ip_hdr_nr++; rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "outer IP header: %u bytes", ip_get_totlen(&packet->outer_ip)); rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "outer IP header: version %d", ip_get_version(&packet->outer_ip)); if(packet->outer_ip.nh.data != NULL) { rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "outer IP header: next header is of type %d", packet->outer_ip.nh.proto); if(packet->outer_ip.nl.data != NULL) { rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "outer IP header: next layer is of type %d", packet->outer_ip.nl.proto); } } /* build the hash key for the packet */ if(ip_get_version(&packet->outer_ip) == IPV4) { packet->key ^= ipv4_get_saddr(&packet->outer_ip); packet->key ^= ipv4_get_daddr(&packet->outer_ip); } else if(ip_get_version(&packet->outer_ip) == IPV6) { const struct ipv6_addr *const saddr = ipv6_get_saddr(&packet->outer_ip); const struct ipv6_addr *const daddr = ipv6_get_daddr(&packet->outer_ip); packet->key ^= saddr->addr.u32[0]; packet->key ^= saddr->addr.u32[1]; packet->key ^= saddr->addr.u32[2]; packet->key ^= saddr->addr.u32[3]; packet->key ^= daddr->addr.u32[0]; packet->key ^= daddr->addr.u32[1]; packet->key ^= daddr->addr.u32[2]; packet->key ^= daddr->addr.u32[3]; } /* get the transport protocol */ packet->transport = &packet->outer_ip.nl; /* is there any inner IP header? */ if(rohc_is_tunneling(packet->transport->proto)) { /* create the second IP header */ if(!ip_get_inner_packet(&packet->outer_ip, &packet->inner_ip)) { rohc_warning(packet, trace_entity, ROHC_PROFILE_GENERAL, "cannot create the inner IP header"); goto error; } packet->ip_hdr_nr++; rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "inner IP header: %u bytes", ip_get_totlen(&packet->inner_ip)); rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "inner IP header: version %d", ip_get_version(&packet->inner_ip)); if(packet->inner_ip.nh.data != NULL) { rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "inner IP header: next header is of type %d", packet->inner_ip.nh.proto); if(packet->inner_ip.nl.data != NULL) { rohc_debug(packet, trace_entity, ROHC_PROFILE_GENERAL, "inner IP header: next layer is of type %d", packet->inner_ip.nl.proto); } } /* get the transport protocol */ packet->transport = &packet->inner_ip.nl; } return true; error: return false; }
// 每重组一个ip碎片,就会更新对应ipq的timer // // static char * ip_defrag(struct ip *iph, struct sk_buff *skb) { struct ipfrag *prev, *next, *tmp; // 指向一个碎片 struct ipfrag *tfp; // 指向一个队列 struct ipq *qp; // 用来放返回值 char *skb2; // 用来进行字节操作 unsigned char *ptr; int flags, offset; int i, ihl, end; // 如果成功更新全局变量this_host, 并且skb是有内容的 if (!hostfrag_find(iph) && skb) // 生成一个碎片 hostfrag_create(iph); /* Start by cleaning up the memory. */ // 如果当前host不为空 if (this_host) // 如果大于上限 if (this_host->ip_frag_mem > IPFRAG_HIGH_THRESH) // 裁剪掉一些ip碎片,直到 ip_frag_mem < IPFRAG_LOW_THRESH ip_evictor(); /* Find the entry of this IP datagram in the "incomplete datagrams" queue. */ // 如果host存在 if (this_host) // 找到与这个ip头相关的ip队列 qp = ip_find(iph); else // 否则设置队列为空 qp = 0; /* Is this a non-fragmented datagram? */ // ip_off是一个16位的字段,高3位用来保存标志信息,低12位用来保存当前碎片的偏移 offset = ntohs(iph->ip_off); /* 先把ip_offset这个字段取出来 */ // 把高3位取出来 flags = offset & ~IP_OFFSET; // 把低13位取出来 offset &= IP_OFFSET; // IP_MF==0表示当前收到是碎片后面没有碎片了,并且当前收到碎片是第一个碎片, // 显然当前碎片虽在的ip报文仅仅有一个碎片 // 那么当前碎片(刚刚收到的碎片)并不需要重组,因此可以返回了 if (((flags & IP_MF) == 0) && (offset == 0)) { // 如果队列不为空就释放掉 if (qp != NULL) ip_free(qp); /* Fragmented frame replaced by full unfragmented copy */ return 0; } /* ip_evictor() could have removed all queues for the current host */ // 如果host全部被移出了,那么重新创建一个,针对当前ip头的host // 但是,这个host并不会包括任何东西,它是一个空的,没有ip队列 if (!this_host) hostfrag_create(iph); // 计算offset和头长度 // 这个offset是刚刚收到的这个碎片的offset offset <<= 3; /* offset is in 8-byte chunks */ ihl = iph->ip_hl * 4; /* If the queue already existed, keep restarting its timer as long as we still are receiving fragments. Otherwise, create a fresh queue entry. */ // 如果队列存在 if (qp != NULL) { /* ANK. If the first fragment is received, we should remember the correct IP header (with options) */ // 如果偏移量为0,可能是该pi报文中的第一个碎片,因此要把前8字节保存下来 if (offset == 0) { // 保存头长度 qp->ihlen = ihl; // 拷贝头信息+8字节 memcpy(qp->iph, iph, ihl + 8); } // 停止计时 del_timer(&qp->timer); // 重新计时 qp->timer.expires = jiffies() + IP_FRAG_TIME; /* about 30 seconds */ // 设置关联 qp->timer.data = (unsigned long) qp; /* pointer to queue */ // 注册回调函数 qp->timer.function = ip_expire; /* expire function */ // 添加计数器 add_timer(&qp->timer); } // 否则队列不存在 else { /* If we failed to create it, then discard the frame. */ // 试图创建一个 if ((qp = ip_create(iph)) == NULL) { // 如果创建队列失败,那么释放当前碎片的空间并返回 kfree_skb(skb, FREE_READ); return NULL; } } /* Attempt to construct an oversize packet. */ // 如果头+长度 超长, 释放空间 if (ntohs(iph->ip_len) + (int) offset > 65535) { // NETDEBUG(printk("Oversized packet received from %s\n", int_ntoa(iph->ip_src.s_addr))); nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERSIZED, iph, 0); kfree_skb(skb, FREE_READ); return NULL; } /* Determine the position of this fragment. */ // 刚刚收到的碎片分组 + 刚刚收到的碎片ip包大小 - 刚刚收到的碎片ip包头大小 // = 刚刚收到的分组的结尾 end = offset + ntohs(iph->ip_len) - ihl; /* Point into the IP datagram 'data' part. */ // 将指针,指向刚刚收到的碎片ip包的数据开头部分 // prt 指向肉 ptr = (unsigned char *)(skb->data + ihl); /* Is this the final fragment? */ // 如果这是最后一个碎片,那么,整个队列的长度,就是当前的end // 否则qp->len会在后面更改,因为会有重叠部分 if ((flags & IP_MF) == 0) qp->len = end; /* Find out which fragments are in front and at the back of us in the chain of fragments so far. We must know where to put this fragment, right? */ prev = NULL; // 给定一个offset,在所有的fragments中找到第一个 // 拥有不小于给定offset的offset的碎片,然后终止循环 // 由此可以猜测,这一个函数,其实是将某一个新来的碎片插入到 // 队列合适的位置,保证offset升序排列 // next 指向的是第一个不小于当前offset的碎片 // pre指向的是前一个碎片 for (next = qp->fragments; next != NULL; next = next->next) { if (next->offset >= offset) break; /* bingo! */ prev = next; } /*-------------------------------------------------------------- 注意: next 指向的是第一个排在当前碎片后面的 碎片; pre 指向的是第一个排在当前碎片前面的 碎片。 next 有可能offset与当前碎片的offset一样 ----------------------------------------------------------------*/ /* We found where to put this one. Check for overlap with preceding fragment, and, if needed, align things so that any overlaps are eliminated. */ // 如果有排在当前碎片前面的分组,并且, 该分组的结束比当前分组的offset大 // 说明有重叠,应噶修正当前offset,以先来的为准 if (prev != NULL && offset < prev->end) { nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); i = prev->end - offset; // 将当前收到的碎片的offset增加i offset += i; /* ptr into datagram */ // 将当前收到的碎片的指正向后移动i ptr += i; /* ptr into fragment data */ } /* Look for overlap with succeeding segments. If we can merge fragments, do it. */ // 现在往后查看是否有重叠的 // 从next开始 for (tmp = next; tmp != NULL; tmp = tfp) { // temp总是等于next tfp = tmp->next; // 如果next的 offset >= 当前分组的end,那就没有问题 if (tmp->offset >= end) break; /* no overlaps at all */ // 否则警报 nids_params.syslog(NIDS_WARN_IP, NIDS_WARN_IP_OVERLAP, iph, 0); // 记录当前的结束与下一个碎片的开始重叠多少 i = end - next->offset; /* overlap is 'i' bytes */ // 将next碎片的长度减少i tmp->len -= i; /* so reduce size of */ // 将next碎片的开始增加i tmp->offset += i; /* next fragment */ // 将指针也要向后移动i tmp->ptr += i; /* If we get a frag size of <= 0, remove it and the packet that it goes with. We never throw the new frag away, so the frag being dumped has always been charged for. */ // 如果此时next碎片的长度小于0, 那么摘掉next节点 if (tmp->len <= 0) { if (tmp->prev != NULL) tmp->prev->next = tmp->next; else qp->fragments = tmp->next; if (tmp->next != NULL) tmp->next->prev = tmp->prev; // tfp原来就等于next->next,所以原来的next节点被摘掉了 next = tfp; /* We have killed the original "next" frame */ // 释放掉frag节点对应的内存 frag_kfree_skb(tmp->skb, FREE_READ); // 释放掉frag节点 frag_kfree_s(tmp, sizeof(struct ipfrag)); } } /* Insert this fragment in the chain of fragments. */ tfp = NULL; // offset是刚刚接收到的碎片偏移,按字节 // end 是刚刚接收到的碎片的结束字节 // skb 是传进来的一个内存空间,应该事先分配好 // prt 是指向这个碎片第一个数据的指针 tfp = ip_frag_create(offset, end, skb, ptr); /*--------------------------------------------------- 注意: ip_frag_create函数只是创建一个ip_frag,还没有吧 它挂载到队列中 -----------------------------------------------------*/ /* No memory to save the fragment - so throw the lot. If we failed the frag_create we haven't charged the queue. */ if (!tfp) { nids_params.no_mem("ip_defrag"); kfree_skb(skb, FREE_READ); return NULL; } /* From now on our buffer is charged to the queues. */ // 将刚刚创建的ip_frag挂载到队列中去了 tfp->prev = prev; tfp->next = next; if (prev != NULL) prev->next = tfp; else qp->fragments = tfp; if (next != NULL) next->prev = tfp; /* OK, so we inserted this new fragment into the chain. Check if we now have a full IP datagram which we can bump up to the IP layer... */ // 检查是否完整 if (ip_done(qp)) { skb2 = ip_glue(qp); /* glue together the fragments */ return (skb2); } // 如果没有完整,那么返回空,继续执行 return (NULL); }