Exemple #1
0
//! Testing rendering speeds.
void test_speeds()
{
	irq_init(NULL);
	irq_add(II_VBLANK, NULL);

	gFont= vwf_default;

	int ii;
	const char *str= glados[0];
	int len= strlen(str);

	for(ii=0; ii<countof(gProfs); ii++)
	{
		gProfs[ii].proc(&gProfs[ii], str);
		key_wait_till_hit(KEY_ANY);
	}

	RegisterRamReset(RESET_GFX);
	REG_DISPCNT= DCNT_MODE0 | DCNT_BG2;

	tte_init_se_default(2, BG_CBB(0) | BG_SBB(24));
	tte_init_con();
	pal_bg_bank[14][1]= CLR_ORANGE;

	iprintf("%d\n", len);
	for(ii=0; ii<countof(gProfs); ii++)
	{
		tte_set_special(SE_PALBANK(14+(ii&1)));
		iprintf("%-17s %6d  %d\n", gProfs[ii].str, gProfs[ii].time, 
			gProfs[ii].time/len);
	}

	key_wait_till_hit(KEY_START);
}
Exemple #2
0
int main()
{
	// Init interrupts and VBlank irq.
	irq_init(NULL);
	irq_add(II_VBLANK, NULL);
	
	// Video mode 0, enable bg 0.
	REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;
	
	// Init 4bpp vwf text on bg 0.
	tte_init_chr4c(0, 			// BG 0
		BG_CBB(0)|BG_SBB(31),	// Charblock 0; screenblock 31
		0xF000,					// Screen-entry offset
		bytes2word(1,2,0,0),	// Color attributes.
		CLR_YELLOW, 			// Yellow text
		&verdana9Font,			// Verdana 9 font
		NULL					// Use default chr4 renderer
		);
	
	// Initialize use of stdio.
	tte_init_con();
	
	// Printf something at 96,72
	tte_printf("#{P:96,72}Hello World!");
	
	while(1)
	{
		VBlankIntrWait();
	}
	
	return 0;
}
static int
configure(int type, int value)
{
  static struct irq_handle handle = {NULL, irq, IRQ_ADC_TEMP, ADC_INPUT_RANGE_1};

  switch(type) {
  case SENSORS_HW_INIT:
    _value = 0;
    return 1;
  case SENSORS_ACTIVE:
    if (value) irq_add(&handle);
    else       irq_remove(&handle);
    return 1;
  }

  return 0;
}
Exemple #4
0
int main()
{
	// Init interrupts and VBlank irq.

	irq_init(NULL);
	irq_add(II_VBLANK, mmVBlank);
	mmInitDefault( (mm_addr)soundbank_bin, 8 );
	
	CreditDevkitArmandtonc();

MainMenu();
	
	while(1)
	{
		VBlankIntrWait();
	}
	
	return 0;
}
Exemple #5
0
int playPuzzle(int NUR_ROWS, int NUR_COLS, int puzzle[NUR_ROWS][NUR_COLS], int puzzle_index) {

  int cursor_r = 0;
  int cursor_c = 0;

  // Load palette
  memcpy16(pal_bg_mem, SharedPal, SharedPalLen / 2);

  // Load tiles into CBB 0 (16x16) and 1 (8x8)
  // Each charblock is 0x4000, an 8x8 tile is 0x20 bytes,
  // so there are 512 8x8 tiles or 128 16x16 tiles in each charblock.
  memcpy16(tile_mem[0], tiles16Tiles, tiles16TilesLen / 2);
  memcpy16(tile_mem[1], tiles8Tiles, tiles8TilesLen / 2);

  // Load the 16x16 puzzle map into screenblocks 28-31
  for (int r = 0; r < 32; r++) {
    for (int c = 0; c < 32; c++) {
      set_tile(28, r, c, OUTSIDE);
    }
  }
  for (int c = 0; c < NUR_COLS; c++) set_tile(28, NUR_ROWS, c, BOTTOM_EDGE);
  for (int r = 0; r < NUR_ROWS; r++) set_tile(28, r, NUR_COLS, RIGHT_EDGE);
  set_tile(28, NUR_ROWS, NUR_COLS, BOTTOM_RIGHT_CORNER);
  for (int r = 0; r < NUR_ROWS; r++) {
    for (int c = 0; c < NUR_COLS; c++) {
      set_tile(28, r, c, puzzle[r][c]);
    }
  }

  // Load the 16x16 cursor map into screenblocks 24-27
  for (int r = 0; r < 32; r++) {
    for (int c = 0; c < 32; c++) {
      set_tile(24, r, c, TRANSPARENT);
    }
  }
  set_tile(24, cursor_r, cursor_c, CURSOR);

  // 8x8 tiles:
  // set up BG2 for a 4bpp 32x32t map, using charblock 1 and screenblock 22 (cursor)
  REG_BG2CNT = BG_CBB(1) | BG_SBB(22) | BG_4BPP | BG_REG_32x32;
  // set up BG3 for a 4bpp 32x32t map, using charblock 1 and screenblock 23 (puzzle squares)
  REG_BG3CNT = BG_CBB(1) | BG_SBB(23) | BG_4BPP | BG_REG_32x32;
  // 16x16 tiles:
  // set up BG0 for a 4bpp 64x64t map, using charblock 0 and screenblocks 24-27 (cursor)
  REG_BG0CNT = BG_CBB(0) | BG_SBB(24) | BG_4BPP | BG_REG_64x64;
  // set up BG1 for a 4bpp 64x64t map, using charblock 0 and screenblocks 28-31 (puzzle squares)
  REG_BG1CNT = BG_CBB(0) | BG_SBB(28) | BG_4BPP | BG_REG_64x64;
  if (small_tiles) {
    REG_DISPCNT = DCNT_MODE0 | DCNT_BG2 | DCNT_BG3;
  }
  else {
    REG_DISPCNT = DCNT_MODE0 | DCNT_BG0 | DCNT_BG1;
  }

  int max_horiz_offset_16 = NUR_COLS * 16 - 240;
  if (max_horiz_offset_16 < 0) max_horiz_offset_16 = 0;
  int max_vert_offset_16  = NUR_ROWS * 16 - 160;
  if (max_vert_offset_16 < 0) max_vert_offset_16 = 0;

  int max_horiz_offset_8 = NUR_COLS * 8 - 240;
  if (max_horiz_offset_8 < 0) max_horiz_offset_8 = 0;
  int max_vert_offset_8  = NUR_ROWS * 8 - 160;
  if (max_vert_offset_8 < 0) max_vert_offset_8 = 0;

  REG_BG0HOFS = REG_BG1HOFS = REG_BG2HOFS = REG_BG3HOFS = 0;
  REG_BG0VOFS = REG_BG1VOFS = REG_BG2VOFS = REG_BG3VOFS = 0;

  irq_init(NULL);
  irq_add(II_VBLANK, NULL);

  int key_repeat = 0;
  bool clearing = false;
  while (1) {
    VBlankIntrWait();
    key_poll();
    set_tile(24, cursor_r, cursor_c, TRANSPARENT); // remove the cursor
    if (key_hit(1 << KI_LEFT | 1 << KI_RIGHT | 1 << KI_UP | 1 << KI_DOWN)) {
      key_repeat = 0; // reset the key repeat timer
    }
#define START_REPEAT 20
#define REPEAT_SPEED 2
    if (key_is_down(1 << KI_LEFT | 1 << KI_RIGHT | 1 << KI_UP | 1 << KI_DOWN)) {
      if (key_repeat < START_REPEAT) key_repeat++;
      else key_repeat = START_REPEAT - REPEAT_SPEED;
    }
    bool virtual_left  = key_hit(1 << KI_LEFT ) || (key_is_down(1 << KI_LEFT ) && key_repeat == START_REPEAT);
    bool virtual_right = key_hit(1 << KI_RIGHT) || (key_is_down(1 << KI_RIGHT) && key_repeat == START_REPEAT);
    bool virtual_up    = key_hit(1 << KI_UP   ) || (key_is_down(1 << KI_UP   ) && key_repeat == START_REPEAT);
    bool virtual_down  = key_hit(1 << KI_DOWN ) || (key_is_down(1 << KI_DOWN ) && key_repeat == START_REPEAT);
    bool moved_cursor = false;
    if (virtual_left  && cursor_c > 0           ) {
      cursor_c--;
      REG_BG0HOFS = REG_BG1HOFS = (cursor_c * max_horiz_offset_16) / (NUR_COLS - 1);
      REG_BG2HOFS = REG_BG3HOFS = (cursor_c * max_horiz_offset_8 ) / (NUR_COLS - 1);
      moved_cursor = true;
    }
    if (virtual_right && cursor_c < NUR_COLS - 1) {
      cursor_c++;
      REG_BG0HOFS = REG_BG1HOFS = (cursor_c * max_horiz_offset_16) / (NUR_COLS - 1);
      REG_BG2HOFS = REG_BG3HOFS = (cursor_c * max_horiz_offset_8 ) / (NUR_COLS - 1);
      moved_cursor = true;
    }
    if (virtual_up    && cursor_r > 0           ) {
      cursor_r--;
      REG_BG0VOFS = REG_BG1VOFS = (cursor_r * max_vert_offset_16) / (NUR_ROWS - 1);
      REG_BG2VOFS = REG_BG3VOFS = (cursor_r * max_vert_offset_8 ) / (NUR_ROWS - 1);
      moved_cursor = true;
    }
    if (virtual_down  && cursor_r < NUR_ROWS - 1) {
      cursor_r++;
      REG_BG0VOFS = REG_BG1VOFS = (cursor_r * max_vert_offset_16) / (NUR_ROWS - 1);
      REG_BG2VOFS = REG_BG3VOFS = (cursor_r * max_vert_offset_8 ) / (NUR_ROWS - 1);
      moved_cursor = true;
    }

    if (key_hit(1 << KI_A)) {
      switch (puzzle[cursor_r][cursor_c]) {
        case WHITE:
        case BLACK:
          puzzle[cursor_r][cursor_c] = DOT;
          sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = DOT;
          set_tile(28, cursor_r, cursor_c, DOT);
          clearing = false;
          break;
        case DOT:
          puzzle[cursor_r][cursor_c] = WHITE;
          sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = WHITE;
          set_tile(28, cursor_r, cursor_c, WHITE);
          clearing = true;
          break;
        default:
          clearing = false;
          break;
      }
    }
    else if (key_is_down(1 << KI_A) && moved_cursor) {
      switch (puzzle[cursor_r][cursor_c]) {
        case WHITE:
        case BLACK:
        case DOT:
          if (clearing) {
            puzzle[cursor_r][cursor_c] = WHITE;
            sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = WHITE;
            set_tile(28, cursor_r, cursor_c, WHITE);
          }
          else {
            puzzle[cursor_r][cursor_c] = DOT;
            sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = DOT;
            set_tile(28, cursor_r, cursor_c, DOT);
          }
          break;
      }
    }

    if (key_hit(1 << KI_B)) {
      switch (puzzle[cursor_r][cursor_c]) {
        case WHITE:
        case DOT:
          puzzle[cursor_r][cursor_c] = BLACK;
          sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = BLACK;
          set_tile(28, cursor_r, cursor_c, BLACK);
          clearing = false;
          break;
        case BLACK:
          puzzle[cursor_r][cursor_c] = WHITE;
          sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = WHITE;
          set_tile(28, cursor_r, cursor_c, WHITE);
          clearing = true;
          break;
        default:
          clearing = false;
          break;
      }
    }
    else if (key_is_down(1 << KI_B) && moved_cursor) {
      switch (puzzle[cursor_r][cursor_c]) {
        case WHITE:
        case BLACK:
        case DOT:
          if (clearing) {
            puzzle[cursor_r][cursor_c] = WHITE;
            sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = WHITE;
            set_tile(28, cursor_r, cursor_c, WHITE);
          }
          else {
            puzzle[cursor_r][cursor_c] = BLACK;
            sram_mem[(puzzle_index + 1) * 1024 + cursor_r * NUR_COLS + cursor_c] = BLACK;
            set_tile(28, cursor_r, cursor_c, BLACK);
          }
          break;
      }
    }

    if (key_hit(1 << KI_SELECT)) {
      small_tiles = !small_tiles;
      if (small_tiles) {
        REG_DISPCNT = DCNT_MODE0 | DCNT_BG2 | DCNT_BG3;
      }
      else {
        REG_DISPCNT = DCNT_MODE0 | DCNT_BG0 | DCNT_BG1;
      }
    }

    if (key_hit(1 << KI_L)) {
      return -1; // move 1 puzzle to the left
    }

    if (key_hit(1 << KI_R)) {
      return 1; // move 1 puzzle to the right
    }

    set_tile(24, cursor_r, cursor_c, CURSOR); // readd the cursor
  }
}