int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X // glfw window creation // -------------------- GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL); glfwMakeContextCurrent(window); if (window == NULL) { std::cout << "Failed to create GLFW window" << std::endl; glfwTerminate(); return -1; } glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); glfwSetCursorPosCallback(window, mouse_callback); glfwSetScrollCallback(window, scroll_callback); // tell GLFW to capture our mouse glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // glad: load all OpenGL function pointers // --------------------------------------- if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Failed to initialize GLAD" << std::endl; return -1; } // configure global opengl state // ----------------------------- glEnable(GL_DEPTH_TEST); // set depth function to less than AND equal for skybox depth trick. glDepthFunc(GL_LEQUAL); // enable seamless cubemap sampling for lower mip levels in the pre-filter map. glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // build and compile shaders // ------------------------- Shader pbrShader("2.2.2.pbr.vs", "2.2.2.pbr.fs"); Shader equirectangularToCubemapShader("2.2.2.cubemap.vs", "2.2.2.equirectangular_to_cubemap.fs"); Shader irradianceShader("2.2.2.cubemap.vs", "2.2.2.irradiance_convolution.fs"); Shader prefilterShader("2.2.2.cubemap.vs", "2.2.2.prefilter.fs"); Shader brdfShader("2.2.2.brdf.vs", "2.2.2.brdf.fs"); Shader backgroundShader("2.2.2.background.vs", "2.2.2.background.fs"); pbrShader.use(); pbrShader.setInt("irradianceMap", 0); pbrShader.setInt("prefilterMap", 1); pbrShader.setInt("brdfLUT", 2); pbrShader.setInt("albedoMap", 3); pbrShader.setInt("normalMap", 4); pbrShader.setInt("metallicMap", 5); pbrShader.setInt("roughnessMap", 6); pbrShader.setInt("aoMap", 7); backgroundShader.use(); backgroundShader.setInt("environmentMap", 0); // load PBR material textures // -------------------------- // rusted iron unsigned int ironAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str()); unsigned int ironNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str()); unsigned int ironMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str()); unsigned int ironRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str()); unsigned int ironAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str()); // gold unsigned int goldAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/albedo.png").c_str()); unsigned int goldNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/normal.png").c_str()); unsigned int goldMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/metallic.png").c_str()); unsigned int goldRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/roughness.png").c_str()); unsigned int goldAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/ao.png").c_str()); // grass unsigned int grassAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/albedo.png").c_str()); unsigned int grassNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/normal.png").c_str()); unsigned int grassMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/metallic.png").c_str()); unsigned int grassRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/roughness.png").c_str()); unsigned int grassAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/ao.png").c_str()); // plastic unsigned int plasticAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/albedo.png").c_str()); unsigned int plasticNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/normal.png").c_str()); unsigned int plasticMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/metallic.png").c_str()); unsigned int plasticRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/roughness.png").c_str()); unsigned int plasticAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/ao.png").c_str()); // wall unsigned int wallAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/albedo.png").c_str()); unsigned int wallNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/normal.png").c_str()); unsigned int wallMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/metallic.png").c_str()); unsigned int wallRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/roughness.png").c_str()); unsigned int wallAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/ao.png").c_str()); // lights // ------ glm::vec3 lightPositions[] = { glm::vec3(-10.0f, 10.0f, 10.0f), glm::vec3( 10.0f, 10.0f, 10.0f), glm::vec3(-10.0f, -10.0f, 10.0f), glm::vec3( 10.0f, -10.0f, 10.0f), }; glm::vec3 lightColors[] = { glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f) }; int nrRows = 7; int nrColumns = 7; float spacing = 2.5; // pbr: setup framebuffer // ---------------------- unsigned int captureFBO; unsigned int captureRBO; glGenFramebuffers(1, &captureFBO); glGenRenderbuffers(1, &captureRBO); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO); // pbr: load the HDR environment map // --------------------------------- stbi_set_flip_vertically_on_load(true); int width, height, nrComponents; float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0); unsigned int hdrTexture; if (data) { glGenTextures(1, &hdrTexture); glBindTexture(GL_TEXTURE_2D, hdrTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Failed to load HDR image." << std::endl; } // pbr: setup cubemap to render to and attach to framebuffer // --------------------------------------------------------- unsigned int envCubemap; glGenTextures(1, &envCubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions // ---------------------------------------------------------------------------------------------- glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f); glm::mat4 captureViews[] = { glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3( 0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f)) }; // pbr: convert HDR equirectangular environment map to cubemap equivalent // ---------------------------------------------------------------------- equirectangularToCubemapShader.use(); equirectangularToCubemapShader.setInt("equirectangularMap", 0); equirectangularToCubemapShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, hdrTexture); glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { equirectangularToCubemapShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact) glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale. // -------------------------------------------------------------------------------- unsigned int irradianceMap; glGenTextures(1, &irradianceMap); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32); // pbr: solve diffuse integral by convolution to create an irradiance (cube)map. // ----------------------------------------------------------------------------- irradianceShader.use(); irradianceShader.setInt("environmentMap", 0); irradianceShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { irradianceShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale. // -------------------------------------------------------------------------------- unsigned int prefilterMap; glGenTextures(1, &prefilterMap); glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // generate mipmaps for the cubemap so OpenGL automatically allocates the required memory. glGenerateMipmap(GL_TEXTURE_CUBE_MAP); // pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map. // ---------------------------------------------------------------------------------------------------- prefilterShader.use(); prefilterShader.setInt("environmentMap", 0); prefilterShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); unsigned int maxMipLevels = 5; for (unsigned int mip = 0; mip < maxMipLevels; ++mip) { // reisze framebuffer according to mip-level size. unsigned int mipWidth = 128 * std::pow(0.5, mip); unsigned int mipHeight = 128 * std::pow(0.5, mip); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight); glViewport(0, 0, mipWidth, mipHeight); float roughness = (float)mip / (float)(maxMipLevels - 1); prefilterShader.setFloat("roughness", roughness); for (unsigned int i = 0; i < 6; ++i) { prefilterShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } } glBindFramebuffer(GL_FRAMEBUFFER, 0); // pbr: generate a 2D LUT from the BRDF equations used. // ---------------------------------------------------- unsigned int brdfLUTTexture; glGenTextures(1, &brdfLUTTexture); // pre-allocate enough memory for the LUT texture. glBindTexture(GL_TEXTURE_2D, brdfLUTTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0); // be sure to set wrapping mode to GL_CLAMP_TO_EDGE glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // then re-configure capture framebuffer object and render screen-space quad with BRDF shader. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0); glViewport(0, 0, 512, 512); brdfShader.use(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderQuad(); glBindFramebuffer(GL_FRAMEBUFFER, 0); // initialize static shader uniforms before rendering // -------------------------------------------------- glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); pbrShader.use(); pbrShader.setMat4("projection", projection); backgroundShader.use(); backgroundShader.setMat4("projection", projection); // then before rendering, configure the viewport to the original framebuffer's screen dimensions int scrWidth, scrHeight; glfwGetFramebufferSize(window, &scrWidth, &scrHeight); glViewport(0, 0, scrWidth, scrHeight); // render loop // ----------- while (!glfwWindowShouldClose(window)) { // per-frame time logic // -------------------- float currentFrame = glfwGetTime(); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // render scene, supplying the convoluted irradiance map to the final shader. // ------------------------------------------------------------------------------------------ pbrShader.use(); glm::mat4 model; glm::mat4 view = camera.GetViewMatrix(); pbrShader.setMat4("view", view); pbrShader.setVec3("camPos", camera.Position); // bind pre-computed IBL data glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, brdfLUTTexture); // rusted iron glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, ironAlbedoMap); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, ironNormalMap); glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, ironMetallicMap); glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, ironRoughnessMap); glActiveTexture(GL_TEXTURE7); glBindTexture(GL_TEXTURE_2D, ironAOMap); model = glm::mat4(); model = glm::translate(model, glm::vec3(-5.0, 0.0, 2.0)); pbrShader.setMat4("model", model); renderSphere(); // gold glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, goldAlbedoMap); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, goldNormalMap); glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, goldMetallicMap); glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, goldRoughnessMap); glActiveTexture(GL_TEXTURE7); glBindTexture(GL_TEXTURE_2D, goldAOMap); model = glm::mat4(); model = glm::translate(model, glm::vec3(-3.0, 0.0, 2.0)); pbrShader.setMat4("model", model); renderSphere(); // grass glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, grassAlbedoMap); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, grassNormalMap); glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, grassMetallicMap); glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, grassRoughnessMap); glActiveTexture(GL_TEXTURE7); glBindTexture(GL_TEXTURE_2D, grassAOMap); model = glm::mat4(); model = glm::translate(model, glm::vec3(-1.0, 0.0, 2.0)); pbrShader.setMat4("model", model); renderSphere(); // plastic glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, plasticAlbedoMap); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, plasticNormalMap); glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, plasticMetallicMap); glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, plasticRoughnessMap); glActiveTexture(GL_TEXTURE7); glBindTexture(GL_TEXTURE_2D, plasticAOMap); model = glm::mat4(); model = glm::translate(model, glm::vec3(1.0, 0.0, 2.0)); pbrShader.setMat4("model", model); renderSphere(); // wall glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, wallAlbedoMap); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, wallNormalMap); glActiveTexture(GL_TEXTURE5); glBindTexture(GL_TEXTURE_2D, wallMetallicMap); glActiveTexture(GL_TEXTURE6); glBindTexture(GL_TEXTURE_2D, wallRoughnessMap); glActiveTexture(GL_TEXTURE7); glBindTexture(GL_TEXTURE_2D, wallAOMap); model = glm::mat4(); model = glm::translate(model, glm::vec3(3.0, 0.0, 2.0)); pbrShader.setMat4("model", model); renderSphere(); // render light source (simply re-render sphere at light positions) // this looks a bit off as we use the same shader, but it'll make their positions obvious and // keeps the codeprint small. for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i) { glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0); newPos = lightPositions[i]; pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos); pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]); model = glm::mat4(); model = glm::translate(model, newPos); model = glm::scale(model, glm::vec3(0.5f)); pbrShader.setMat4("model", model); renderSphere(); } // render skybox (render as last to prevent overdraw) backgroundShader.use(); backgroundShader.setMat4("view", view); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map //glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map renderCube(); // render BRDF map to screen //brdfShader.Use(); //renderQuad(); // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwPollEvents(); } // glfw: terminate, clearing all previously allocated GLFW resources. // ------------------------------------------------------------------ glfwTerminate(); return 0; }
int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_SAMPLES, 4); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation // -------------------- GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL); glfwMakeContextCurrent(window); if (window == NULL) { std::cout << "Failed to create GLFW window" << std::endl; glfwTerminate(); return -1; } glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); glfwSetCursorPosCallback(window, mouse_callback); glfwSetScrollCallback(window, scroll_callback); // tell GLFW to capture our mouse glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // glad: load all OpenGL function pointers // --------------------------------------- if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Failed to initialize GLAD" << std::endl; return -1; } // configure global opengl state // ----------------------------- glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); // set depth function to less than AND equal for skybox depth trick. // build and compile shaders // ------------------------- Shader pbrShader("2.1.2.pbr.vs", "2.1.2.pbr.fs"); Shader equirectangularToCubemapShader("2.1.2.cubemap.vs", "2.1.2.equirectangular_to_cubemap.fs"); Shader irradianceShader("2.1.2.cubemap.vs", "2.1.2.irradiance_convolution.fs"); Shader backgroundShader("2.1.2.background.vs", "2.1.2.background.fs"); pbrShader.use(); pbrShader.setInt("irradianceMap", 0); pbrShader.setVec3("albedo", 0.5f, 0.0f, 0.0f); pbrShader.setFloat("ao", 1.0f); backgroundShader.use(); backgroundShader.setInt("environmentMap", 0); // lights // ------ glm::vec3 lightPositions[] = { glm::vec3(-10.0f, 10.0f, 10.0f), glm::vec3( 10.0f, 10.0f, 10.0f), glm::vec3(-10.0f, -10.0f, 10.0f), glm::vec3( 10.0f, -10.0f, 10.0f), }; glm::vec3 lightColors[] = { glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f), glm::vec3(300.0f, 300.0f, 300.0f) }; int nrRows = 7; int nrColumns = 7; float spacing = 2.5; // pbr: setup framebuffer // ---------------------- unsigned int captureFBO; unsigned int captureRBO; glGenFramebuffers(1, &captureFBO); glGenRenderbuffers(1, &captureRBO); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO); // pbr: load the HDR environment map // --------------------------------- stbi_set_flip_vertically_on_load(true); int width, height, nrComponents; float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0); unsigned int hdrTexture; if (data) { glGenTextures(1, &hdrTexture); glBindTexture(GL_TEXTURE_2D, hdrTexture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Failed to load HDR image." << std::endl; } // pbr: setup cubemap to render to and attach to framebuffer // --------------------------------------------------------- unsigned int envCubemap; glGenTextures(1, &envCubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions // ---------------------------------------------------------------------------------------------- glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f); glm::mat4 captureViews[] = { glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)), glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f)) }; // pbr: convert HDR equirectangular environment map to cubemap equivalent // ---------------------------------------------------------------------- equirectangularToCubemapShader.use(); equirectangularToCubemapShader.setInt("equirectangularMap", 0); equirectangularToCubemapShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, hdrTexture); glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { equirectangularToCubemapShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale. // -------------------------------------------------------------------------------- unsigned int irradianceMap; glGenTextures(1, &irradianceMap); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); for (unsigned int i = 0; i < 6; ++i) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); glBindRenderbuffer(GL_RENDERBUFFER, captureRBO); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32); // pbr: solve diffuse integral by convolution to create an irradiance (cube)map. // ----------------------------------------------------------------------------- irradianceShader.use(); irradianceShader.setInt("environmentMap", 0); irradianceShader.setMat4("projection", captureProjection); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions. glBindFramebuffer(GL_FRAMEBUFFER, captureFBO); for (unsigned int i = 0; i < 6; ++i) { irradianceShader.setMat4("view", captureViews[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderCube(); } glBindFramebuffer(GL_FRAMEBUFFER, 0); // initialize static shader uniforms before rendering // -------------------------------------------------- glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); pbrShader.use(); pbrShader.setMat4("projection", projection); backgroundShader.use(); backgroundShader.setMat4("projection", projection); // then before rendering, configure the viewport to the original framebuffer's screen dimensions int scrWidth, scrHeight; glfwGetFramebufferSize(window, &scrWidth, &scrHeight); glViewport(0, 0, scrWidth, scrHeight); // render loop // ----------- while (!glfwWindowShouldClose(window)) { // per-frame time logic // -------------------- float currentFrame = glfwGetTime(); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // render scene, supplying the convoluted irradiance map to the final shader. // ------------------------------------------------------------------------------------------ pbrShader.use(); glm::mat4 view = camera.GetViewMatrix(); pbrShader.setMat4("view", view); pbrShader.setVec3("camPos", camera.Position); // bind pre-computed IBL data glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // render rows*column number of spheres with material properties defined by textures (they all have the same material properties) glm::mat4 model; for (int row = 0; row < nrRows; ++row) { pbrShader.setFloat("metallic", (float)row / (float)nrRows); for (int col = 0; col < nrColumns; ++col) { // we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off // on direct lighting. pbrShader.setFloat("roughness", glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f)); model = glm::mat4(); model = glm::translate(model, glm::vec3( (float)(col - (nrColumns / 2)) * spacing, (float)(row - (nrRows / 2)) * spacing, -2.0f )); pbrShader.setMat4("model", model); renderSphere(); } } // render light source (simply re-render sphere at light positions) // this looks a bit off as we use the same shader, but it'll make their positions obvious and // keeps the codeprint small. for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i) { glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0); newPos = lightPositions[i]; pbrShader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos); pbrShader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]); model = glm::mat4(); model = glm::translate(model, newPos); model = glm::scale(model, glm::vec3(0.5f)); pbrShader.setMat4("model", model); renderSphere(); } // render skybox (render as last to prevent overdraw) backgroundShader.use(); backgroundShader.setMat4("view", view); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap); //glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map renderCube(); // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwPollEvents(); } // glfw: terminate, clearing all previously allocated GLFW resources. // ------------------------------------------------------------------ glfwTerminate(); return 0; }