Exemple #1
0
Initializer *ArrayInitializer::inferType(Scope *sc)
{
    //printf("ArrayInitializer::inferType() %s\n", toChars());
    Expressions *keys = NULL;
    Expressions *values;
    if (isAssociativeArray())
    {
        keys = new Expressions();
        keys->setDim(value.dim);
        values = new Expressions();
        values->setDim(value.dim);

        for (size_t i = 0; i < value.dim; i++)
        {
            Expression *e = index[i];
            if (!e)
                goto Lno;
            (*keys)[i] = e;

            Initializer *iz = value[i];
            if (!iz)
                goto Lno;
            iz = iz->inferType(sc);
            if (iz->isErrorInitializer())
                return iz;
            assert(iz->isExpInitializer());
            (*values)[i] = ((ExpInitializer *)iz)->exp;
            assert((*values)[i]->op != TOKerror);
        }

        Expression *e = new AssocArrayLiteralExp(loc, keys, values);
        ExpInitializer *ei = new ExpInitializer(loc, e);
        return ei->inferType(sc);
    }
    else
    {
        Expressions *elements = new Expressions();
        elements->setDim(value.dim);
        elements->zero();

        for (size_t i = 0; i < value.dim; i++)
        {
            assert(!index[i]);  // already asserted by isAssociativeArray()

            Initializer *iz = value[i];
            if (!iz)
                goto Lno;
            iz = iz->inferType(sc);
            if (iz->isErrorInitializer())
                return iz;
            assert(iz->isExpInitializer());
            (*elements)[i] = ((ExpInitializer *)iz)->exp;
            assert((*elements)[i]->op != TOKerror);
        }

        Expression *e = new ArrayLiteralExp(loc, elements);
        ExpInitializer *ei = new ExpInitializer(loc, e);
        return ei->inferType(sc);
    }
Lno:
    if (keys)
    {
        delete keys;
        delete values;
        error(loc, "not an associative array initializer");
    }
    else
    {
        error(loc, "cannot infer type from array initializer");
    }
    return new ErrorInitializer();
}
Exemple #2
0
Initializer *ArrayInitializer::semantic(Scope *sc, Type *t, NeedInterpret needInterpret)
{
    size_t length;
    const unsigned amax = 0x80000000;
    bool errors = false;

    //printf("ArrayInitializer::semantic(%s)\n", t->toChars());
    if (sem)                            // if semantic() already run
        return this;
    sem = true;
    t = t->toBasetype();
    switch (t->ty)
    {
        case Tsarray:
        case Tarray:
            break;

        case Tvector:
            t = ((TypeVector *)t)->basetype;
            break;

        case Taarray:
        case Tstruct:   // consider implicit constructor call
        {
            Expression *e;
            if (t->ty == Taarray || isAssociativeArray())
                e = toAssocArrayLiteral();
            else
                e = toExpression();
            ExpInitializer *ei = new ExpInitializer(e->loc, e);
            return ei->semantic(sc, t, needInterpret);
        }
        case Tpointer:
            if (t->nextOf()->ty != Tfunction)
                break;

        default:
            error(loc, "cannot use array to initialize %s", t->toChars());
            goto Lerr;
    }

    type = t;

    length = 0;
    for (size_t i = 0; i < index.dim; i++)
    {
        Expression *idx = index[i];
        if (idx)
        {
            sc = sc->startCTFE();
            idx = idx->semantic(sc);
            sc = sc->endCTFE();
            idx = idx->ctfeInterpret();
            index[i] = idx;
            length = (size_t)idx->toInteger();
            if (idx->op == TOKerror)
                errors = true;
        }

        Initializer *val = value[i];
        ExpInitializer *ei = val->isExpInitializer();
        if (ei && !idx)
            ei->expandTuples = true;
        val = val->semantic(sc, t->nextOf(), needInterpret);
        if (val->isErrorInitializer())
            errors = true;

        ei = val->isExpInitializer();
        // found a tuple, expand it
        if (ei && ei->exp->op == TOKtuple)
        {
            TupleExp *te = (TupleExp *)ei->exp;
            index.remove(i);
            value.remove(i);

            for (size_t j = 0; j < te->exps->dim; ++j)
            {
                Expression *e = (*te->exps)[j];
                index.insert(i + j, (Expression *)NULL);
                value.insert(i + j, new ExpInitializer(e->loc, e));
            }
            i--;
            continue;
        }
        else
        {
            value[i] = val;
        }

        length++;
        if (length == 0)
        {
            error(loc, "array dimension overflow");
            goto Lerr;
        }
        if (length > dim)
            dim = length;
    }
    if (t->ty == Tsarray)
    {
        dinteger_t edim = ((TypeSArray *)t)->dim->toInteger();
        if (dim > edim)
        {
            error(loc, "array initializer has %u elements, but array length is %lld", dim, edim);
            goto Lerr;
        }
    }
    if (errors)
        goto Lerr;

    if ((uinteger_t) dim * t->nextOf()->size() >= amax)
    {
        error(loc, "array dimension %u exceeds max of %u", (unsigned) dim, (unsigned)(amax / t->nextOf()->size()));
        goto Lerr;
    }
    return this;

Lerr:
    return new ErrorInitializer();
}
Exemple #3
0
Initializer *ArrayInitializer::inferType(Scope *sc, Type *tx)
{
    //printf("ArrayInitializer::inferType() %s\n", toChars());
    Expressions *keys = NULL;
    Expressions *values;
    if (tx ? (tx->ty == Taarray ||
              tx->ty != Tarray && tx->ty != Tsarray && isAssociativeArray())
           : isAssociativeArray())
    {
        Type *tidx = NULL;
        Type *tval = NULL;
        if (tx && tx->ty == Taarray)
        {
            tidx = ((TypeAArray *)tx)->index;
            tval = ((TypeAArray *)tx)->next;
        }

        keys = new Expressions();
        keys->setDim(value.dim);
        values = new Expressions();
        values->setDim(value.dim);

        for (size_t i = 0; i < value.dim; i++)
        {
            Expression *e = index[i];
            if (!e)
                goto Lno;
            if (tidx)
            {
                e = ::inferType(e, tidx);
                e = e->semantic(sc);
                e = resolveProperties(sc, e);
                if (tidx->deco) // tidx may be partial type
                    e = e->implicitCastTo(sc, tidx);
            }
            (*keys)[i] = e;

            Initializer *iz = value[i];
            if (!iz)
                goto Lno;
            iz = iz->inferType(sc, tval);
            if (iz->isErrorInitializer())
                return iz;
            assert(iz->isExpInitializer());
            (*values)[i] = ((ExpInitializer *)iz)->exp;
            assert((*values)[i]->op != TOKerror);
        }

        Expression *e = new AssocArrayLiteralExp(loc, keys, values);
        ExpInitializer *ei = new ExpInitializer(loc, e);
        return ei->inferType(sc, tx);
    }
    else
    {
        Type *tn = NULL;
        if (tx && (tx->ty == Tarray || tx->ty == Tsarray))
            tn = ((TypeNext *)tx)->next;

        Expressions *elements = new Expressions();
        elements->setDim(value.dim);
        elements->zero();

        for (size_t i = 0; i < value.dim; i++)
        {
            assert(!index[i]);  // already asserted by isAssociativeArray()

            Initializer *iz = value[i];
            if (!iz)
                goto Lno;
            iz = iz->inferType(sc, tn);
            if (iz->isErrorInitializer())
                return iz;
            assert(iz->isExpInitializer());
            (*elements)[i] = ((ExpInitializer *)iz)->exp;
            assert((*elements)[i]->op != TOKerror);
        }

        Expression *e = new ArrayLiteralExp(loc, elements);
        ExpInitializer *ei = new ExpInitializer(loc, e);
        return ei->inferType(sc, tx);
    }
Lno:
    if (keys)
    {
        delete keys;
        delete values;
        error(loc, "not an associative array initializer");
    }
    else
    {
        error(loc, "cannot infer type from array initializer");
    }
    return new ErrorInitializer();
}