TupleIdSequence* TupleStorageSubBlock::getMatchesForPredicate(const Predicate *pred) const {
  TupleIdSequence *matches = new TupleIdSequence();

  tuple_id max_tid = getMaxTupleID();

  if (pred == NULL) {
    if (isPacked()) {
      for (tuple_id tid = 0; tid <= max_tid; ++tid) {
        matches->append(tid);
      }
    } else {
      for (tuple_id tid = 0; tid <= max_tid; ++tid) {
        if (hasTupleWithID(tid)) {
          matches->append(tid);
        }
      }
    }
  } else {
    if (isPacked()) {
      for (tuple_id tid = 0; tid <= max_tid; ++tid) {
        if (pred->matchesForSingleTuple(*this, tid)) {
          matches->append(tid);
        }
      }
    } else {
      for (tuple_id tid = 0; tid <= max_tid; ++tid) {
        if (hasTupleWithID(tid) && (pred->matchesForSingleTuple(*this, tid))) {
          matches->append(tid);
        }
      }
    }
  }

  return matches;
}
Exemple #2
0
llvm::Constant* IrAggr::createInitializerConstant(
    const VarInitMap& explicitInitializers,
    llvm::StructType* initializerType)
{
    IF_LOG Logger::println("Creating initializer constant for %s", aggrdecl->toChars());
    LOG_SCOPE;

    llvm::SmallVector<llvm::Constant*, 16> constants;

    unsigned offset = 0;
    if (type->ty == Tclass)
    {
        // add vtbl
        constants.push_back(getVtblSymbol());
        // add monitor
        constants.push_back(getNullValue(DtoType(Type::tvoid->pointerTo())));

        // we start right after the vtbl and monitor
        offset = Target::ptrsize * 2;
    }

    // Add the initializers for the member fields. While we are traversing the
    // class hierarchy, use the opportunity to populate interfacesWithVtbls if
    // we haven't done so previously (due to e.g. ClassReferenceExp, we can
    // have multiple initializer constants for a single class).
    addFieldInitializers(constants, explicitInitializers, aggrdecl, offset,
        interfacesWithVtbls.empty());

    // tail padding?
    const size_t structsize = aggrdecl->size(Loc());
    if (offset < structsize)
    {
        add_zeros(constants, offset, structsize);
    }

    // get initializer type
    if (!initializerType || initializerType->isOpaque())
    {
        llvm::SmallVector<llvm::Constant*, 16>::iterator itr, end = constants.end();
        llvm::SmallVector<llvm::Type*, 16> types;
        types.reserve(constants.size());
        for (itr = constants.begin(); itr != end; ++itr)
            types.push_back((*itr)->getType());
        if (!initializerType)
            initializerType = LLStructType::get(gIR->context(), types, isPacked());
        else
            initializerType->setBody(types, isPacked());
    }

    // build constant
    assert(!constants.empty());
    llvm::Constant* c = LLConstantStruct::get(initializerType, constants);
    IF_LOG Logger::cout() << "final initializer: " << *c << std::endl;
    return c;
}
Exemple #3
0
SharedVariant::~SharedVariant() {
  switch (m_type) {
  case KindOfObject:
    if (getIsObj()) {
      delete m_data.obj;
      break;
    }
    // otherwise fall through
  case KindOfString:
    m_data.str->destruct();
    break;
  case KindOfArray:
    {
      if (getSerializedArray()) {
        m_data.str->destruct();
        break;
      }

      if (isPacked()) {
        delete m_data.packed;
      } else {
        ImmutableArray::Destroy(m_data.array);
      }
    }
    break;
  default:
    break;
  }
}
Exemple #4
0
int32_t SharedVariant::getSpaceUsage() const {
  int32_t size = sizeof(SharedVariant);
  if (!IS_REFCOUNTED_TYPE(m_type)) return size;
  switch (m_type) {
  case KindOfObject:
    if (getIsObj()) {
      return size + m_data.obj->getSpaceUsage();
    }
    // fall through
  case KindOfString:
    size += sizeof(StringData) + m_data.str->size();
    break;
  default:
    assert(is(KindOfArray));
    if (getSerializedArray()) {
      size += sizeof(StringData) + m_data.str->size();
    } else if (isPacked()) {
      auto size = m_data.packed->size();
      size += sizeof(ImmutablePackedArray) + size * sizeof(SharedVariant*);
      for (size_t i = 0, n = m_data.packed->size(); i < n; i++) {
        size += m_data.packed->vals()[i]->getSpaceUsage();
      }
    } else {
      auto array = m_data.array;
      size += array->getStructSize();
      for (size_t i = 0, n = array->size(); i < n; i++) {
        size += array->getKeyIndex(i)->getSpaceUsage();
        size += array->getValIndex(i)->getSpaceUsage();
      }
    }
    break;
  }
  return size;
}
void HLSLBlockEncoder::advanceOffset(GLenum typeIn, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride)
{
    GLenum type = (mTransposeMatrices ? gl::TransposeMatrixType(typeIn) : typeIn);

    if (arraySize > 0)
    {
        mCurrentOffset += arrayStride * (arraySize - 1);
    }

    if (gl::IsMatrixType(type))
    {
        ASSERT(matrixStride == ComponentsPerRegister);
        const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
        const int numComponents = gl::MatrixComponentCount(type, isRowMajorMatrix);
        mCurrentOffset += ComponentsPerRegister * (numRegisters - 1);
        mCurrentOffset += numComponents;
    }
    else if (isPacked())
    {
        mCurrentOffset += gl::VariableComponentCount(type);
    }
    else
    {
        mCurrentOffset += ComponentsPerRegister;
    }
}
Exemple #6
0
llvm::Constant *
IrAggr::createInitializerConstant(const VarInitMap &explicitInitializers) {
  IF_LOG Logger::println("Creating initializer constant for %s",
                         aggrdecl->toChars());
  LOG_SCOPE;

  llvm::SmallVector<llvm::Constant *, 16> constants;

  unsigned offset = 0;
  if (type->ty == Tclass) {
    // add vtbl
    constants.push_back(getVtblSymbol());
    offset += Target::ptrsize;

    // add monitor (except for C++ classes)
    if (!aggrdecl->isClassDeclaration()->isCPPclass()) {
      constants.push_back(getNullValue(getVoidPtrType()));
      offset += Target::ptrsize;
    }
  }

  // Add the initializers for the member fields. While we are traversing the
  // class hierarchy, use the opportunity to populate interfacesWithVtbls if
  // we haven't done so previously (due to e.g. ClassReferenceExp, we can
  // have multiple initializer constants for a single class).
  addFieldInitializers(constants, explicitInitializers, aggrdecl, offset,
                       interfacesWithVtbls.empty());

  // tail padding?
  const size_t structsize = aggrdecl->size(Loc());
  if (offset < structsize)
    add_zeros(constants, offset, structsize);

  assert(!constants.empty());

  // get LL field types
  llvm::SmallVector<llvm::Type *, 16> types;
  types.reserve(constants.size());
  for (auto c : constants)
    types.push_back(c->getType());

  auto llStructType = getLLStructType();
  bool isCompatible = (types.size() == llStructType->getNumElements());
  if (isCompatible) {
    for (size_t i = 0; i < types.size(); i++) {
      if (types[i] != llStructType->getElementType(i)) {
        isCompatible = false;
        break;
      }
    }
  }

  // build constant
  LLStructType *llType =
      isCompatible ? llStructType
                   : LLStructType::get(gIR->context(), types, isPacked());
  llvm::Constant *c = LLConstantStruct::get(llType, constants);
  IF_LOG Logger::cout() << "final initializer: " << *c << std::endl;
  return c;
}
Exemple #7
0
void SharedVariant::getStats(SharedVariantStats *stats) const {
  stats->initStats();
  stats->variantCount = 1;
  switch (m_type) {
  case KindOfUninit:
  case KindOfNull:
  case KindOfBoolean:
  case KindOfInt64:
  case KindOfDouble:
  case KindOfStaticString:
    stats->dataSize = sizeof(m_data.dbl);
    stats->dataTotalSize = sizeof(SharedVariant);
    break;
  case KindOfObject:
    if (getIsObj()) {
      SharedVariantStats childStats;
      m_data.obj->getSizeStats(&childStats);
      stats->addChildStats(&childStats);
      break;
    }
    // fall through
  case KindOfString:
    stats->dataSize = m_data.str->size();
    stats->dataTotalSize = sizeof(SharedVariant) + sizeof(StringData) +
                           stats->dataSize;
    break;
  default:
    assert(is(KindOfArray));
    if (getSerializedArray()) {
      stats->dataSize = m_data.str->size();
      stats->dataTotalSize = sizeof(SharedVariant) + sizeof(StringData) +
                             stats->dataSize;
      break;
    }
    if (isPacked()) {
      stats->dataTotalSize = sizeof(SharedVariant) +
                             sizeof(ImmutablePackedArray);
      auto size = m_data.packed->size();
      stats->dataTotalSize += sizeof(SharedVariant*) * size;
      for (size_t i = 0; i < size; i++) {
        SharedVariant *v = m_data.packed->vals()[i];
        SharedVariantStats childStats;
        v->getStats(&childStats);
        stats->addChildStats(&childStats);
      }
    } else {
      auto array = m_data.array;
      stats->dataTotalSize = sizeof(SharedVariant) + array->getStructSize();
      for (size_t i = 0, n = array->size(); i < n; i++) {
        SharedVariantStats childStats;
        array->getKeyIndex(i)->getStats(&childStats);
        stats->addChildStats(&childStats);
        array->getValIndex(i)->getStats(&childStats);
        stats->addChildStats(&childStats);
      }
    }
    break;
  }
}
Exemple #8
0
Variant SharedVariant::getKey(ssize_t pos) const {
  assert(is(KindOfArray));
  if (isPacked()) {
    assert(pos < (ssize_t) m_data.packed->size());
    return pos;
  }
  return m_data.array->getKeyIndex(pos)->toLocal();
}
void HLSLBlockEncoder::getBlockLayoutInfo(GLenum typeIn, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut)
{
    GLenum type = (mTransposeMatrices ? gl::TransposeMatrixType(typeIn) : typeIn);

    // We assume we are only dealing with 4 byte components (no doubles or half-words currently)
    ASSERT(gl::VariableComponentSize(gl::VariableComponentType(type)) == BytesPerComponent);

    int matrixStride = 0;
    int arrayStride = 0;

    // if variables are not to be packed, or we're about to
    // pack a matrix or array, skip to the start of the next
    // register
    if (!isPacked() ||
        gl::IsMatrixType(type) ||
        arraySize > 0)
    {
        nextRegister();
    }

    if (gl::IsMatrixType(type))
    {
        matrixStride = ComponentsPerRegister;

        if (arraySize > 0)
        {
            const int numRegisters = gl::MatrixRegisterCount(type, isRowMajorMatrix);
            arrayStride = ComponentsPerRegister * numRegisters;
        }
    }
    else if (arraySize > 0)
    {
        arrayStride = ComponentsPerRegister;
    }
    else if (isPacked())
    {
        int numComponents = gl::VariableComponentCount(type);
        if ((numComponents + (mCurrentOffset % ComponentsPerRegister)) > ComponentsPerRegister)
        {
            nextRegister();
        }
    }

    *matrixStrideOut = matrixStride;
    *arrayStrideOut = arrayStride;
}
Exemple #10
0
int SharedVariant::getIndex(int64_t key) {
  assert(is(KindOfArray));
  if (isPacked()) {
    if (key < 0 || (size_t) key >= m_data.packed->size()) return -1;
    return key;
  }
  return m_data.array->indexOf(key);
}
Exemple #11
0
std::string getObjectConnectionName(
  ObjectData* obj,
  const void* target
) {
  Class* cls = obj->getVMClass();
  FTRACE(5, "HG: Getting connection name for type {} at {}\n",
    obj->getClassName().data(),
    obj
  );

  if (!supportsToArray(obj)) {
    return "";
  }

  auto arr = obj->toArray();
  bool is_packed = arr->isPacked();
  for (ArrayIter iter(arr); iter; ++iter) {
    auto first = iter.first();
    auto key = first.toString();
    auto key_tv = first.asTypedValue();
    auto val_tv = iter.secondRef().asTypedValue();

    if (key_tv->m_type == HPHP::KindOfString) {
      // If the key begins with a NUL, it's a private or protected property.
      // Read the class name from between the two NUL bytes.
      //
      // Note: Copied from object-data.cpp
      if (!key.empty() && key[0] == '\0') {
        int subLen = key.find('\0', 1) + 1;
        key = key.substr(subLen);
      }
    }

    FTRACE(5, "HG: ...Iterating over object key-val {}=>{}\n",
      key, tname(val_tv->m_type)
    );

    // We're only interested in the porperty name that points to our target
    if ((void*)val_tv->m_data.pobj != target) {
      continue;
    }

    bool is_declared =
        key_tv->m_type == HPHP::KindOfString &&
        cls->lookupDeclProp(key.get()) != kInvalidSlot;

    if (!is_declared && !is_packed) {
      return std::string("Key:" + key);
    } else if (is_packed) {
      return std::string("PropertyIndex");
    } else {
      return std::string("Property:" + key);
    }
  }

  return "";
}
Exemple #12
0
HOT_FUNC
SharedVariant* SharedVariant::getValue(ssize_t pos) const {
  assert(is(KindOfArray));
  if (isPacked()) {
    assert(pos < (ssize_t) m_data.packed->size());
    return m_data.packed->vals()[pos];
  }
  return m_data.array->getValIndex(pos);
}
Exemple #13
0
HphpArray::SortFlavor
HphpArray::preSort(const AccessorT& acc, bool checkTypes) {
  assert(m_size > 0);
  if (isPacked()) {
    // todo t2607563: this is pessimistic.
    packedToMixed();
  }
  if (!checkTypes && m_size == m_used) {
    // No need to loop over the elements, we're done
    return GenericSort;
  }
  Elm* start = data();
  Elm* end = data() + m_used;
  bool allInts UNUSED = true;
  bool allStrs UNUSED = true;
  for (;;) {
    if (checkTypes) {
      while (!isTombstone(start->data.m_type)) {
        allInts = (allInts && acc.isInt(*start));
        allStrs = (allStrs && acc.isStr(*start));
        ++start;
        if (start == end) {
          goto done;
        }
      }
    } else {
      while (!isTombstone(start->data.m_type)) {
        ++start;
        if (start == end) {
          goto done;
        }
      }
    }
    --end;
    if (start == end) {
      goto done;
    }
    while (isTombstone(end->data.m_type)) {
      --end;
      if (start == end) {
        goto done;
      }
    }
    memcpy(start, end, sizeof(Elm));
  }
done:
  m_used = start - data();
  assert(m_size == m_used);
  if (checkTypes) {
    return allStrs ? StringSort : allInts ? IntegerSort : GenericSort;
  } else {
    return GenericSort;
  }
}
Exemple #14
0
APCArray::~APCArray() {
  if (isPacked()) {
    APCHandle** v = vals();
    for (size_t i = 0, n = m_size; i < n; i++) {
      v[i]->unreference();
    }
  } else {
    Bucket* bks = buckets();
    for (int i = 0; i < m.m_num; i++) {
      bks[i].key->unreference();
      bks[i].val->unreference();
    }
  }
}
Exemple #15
0
int SharedVariant::countReachable() const {
  int count = 1;
  if (getType() == KindOfArray) {
    int size = arrSize();
    if (!isPacked()) {
      count += size; // for keys
    }
    for (int i = 0; i < size; i++) {
      SharedVariant* p = getValue(i);
      count += p->countReachable(); // for values
    }
  }
  return count;
}
TupleIdSequence* TupleStorageSubBlock::getExistenceMap() const {
  const tuple_id max_tid = getMaxTupleID();
  TupleIdSequence *existing_tuples = new TupleIdSequence(max_tid + 1);

  if (isPacked()) {
    existing_tuples->setRange(0, max_tid + 1, true);
  } else {
    for (tuple_id tid = 0; tid <= max_tid; ++tid) {
      if (hasTupleWithID(tid)) {
        existing_tuples->set(tid, true);
      }
    }
  }

  return existing_tuples;
}
Exemple #17
0
APCArray::~APCArray() {
  // This array is refcounted, but keys/values might be uncounted strings, so
  // we must use unreferenceRoot here (corresponding to Create calls above).
  if (isPacked()) {
    APCHandle** v = vals();
    for (size_t i = 0, n = m_size; i < n; i++) {
      v[i]->unreferenceRoot();
    }
  } else {
    Bucket* bks = buckets();
    for (int i = 0; i < m.m_num; i++) {
      bks[i].key->unreferenceRoot();
      bks[i].val->unreferenceRoot();
    }
  }
}
tuple_id TupleStorageSubBlock::numTuples() const {
  if (isEmpty()) {
    return 0;
  } else if (isPacked()) {
    return getMaxTupleID() + 1;
  } else {
    // WARNING: This branch is O(N). Subclasses should override wherever possible.
    tuple_id count = 0;
    for (tuple_id tid = 0; tid <= getMaxTupleID(); ++tid) {
      if (hasTupleWithID(tid)) {
        ++count;
      }
    }
    // Should have at least one tuple, otherwise isEmpty() would have been true.
    DEBUG_ASSERT(count > 0);
    return count;
  }
}
OrderedTupleIdSequence* TupleStorageSubBlock::getExistenceList() const {
  const tuple_id max_tid = getMaxTupleID();
  OrderedTupleIdSequence *existence_list = new OrderedTupleIdSequence();
  existence_list->reserve(numTuples());

  if (isPacked()) {
    for (tuple_id tid = 0; tid <= max_tid; ++tid) {
      existence_list->emplace_back(tid);
    }
  } else {
    for (tuple_id tid = 0; tid <= max_tid; ++tid) {
      if (hasTupleWithID(tid)) {
        existence_list->emplace_back(tid);
      }
    }
  }

  return existence_list;
}
Exemple #20
0
IrTypeStruct *IrTypeStruct::get(StructDeclaration *sd) {
  auto t = new IrTypeStruct(sd);
  sd->type->ctype = t;

  IF_LOG Logger::println("Building struct type %s @ %s", sd->toPrettyChars(),
                         sd->loc.toChars());
  LOG_SCOPE;

  // if it's a forward declaration, all bets are off, stick with the opaque
  if (sd->sizeok != SIZEOKdone) {
    return t;
  }

  t->packed = isPacked(sd);

  // For ldc.dcomptetypes.Pointer!(uint n,T),
  // emit { T addrspace(gIR->dcomputetarget->mapping[n])* }
    llvm::Optional<DcomputePointer> p;
  if (gIR->dcomputetarget && (p = toDcomputePointer(sd))) {
   
    // Translate the virtual dcompute address space into the real one for
    // the target
    int realAS = gIR->dcomputetarget->mapping[p->addrspace];

    llvm::SmallVector<LLType *, 1> body;
    body.push_back(DtoMemType(p->type)->getPointerTo(realAS));

    isaStruct(t->type)->setBody(body, t->packed);
    VarGEPIndices v;
    v[sd->fields[0]] = 0;
    t->varGEPIndices = v;
  } else {
    AggrTypeBuilder builder(t->packed);
    builder.addAggregate(sd);
    builder.addTailPadding(sd->structsize);
    isaStruct(t->type)->setBody(builder.defaultTypes(), t->packed);
    t->varGEPIndices = builder.varGEPIndices();
  }

  IF_LOG Logger::cout() << "final struct type: " << *t->type << std::endl;

  return t;
}
Exemple #21
0
ArrayData* SharedVariant::loadElems(const SharedArray &array) {
  assert(is(KindOfArray));
  auto count = arrSize();
  ArrayData* elems;
  if (isPacked()) {
    PackedArrayInit ai(count);
    for (uint i = 0; i < count; i++) {
      ai.append(array.getValueRef(i));
    }
    elems = ai.create();
  } else {
    ArrayInit ai(count);
    for (uint i = 0; i < count; i++) {
      ai.add(m_data.array->getKeyIndex(i)->toLocal(), array.getValueRef(i),
             true);
    }
    elems = ai.create();
  }
  if (elems->isStatic()) elems = elems->copy();
  return elems;
}
// ---------------------------------------------------------------------
// Driver for Unpacking
//
// In a nutshell, unpacking consists of the following major steps:
//
// 1. fix the endianness of the version header (members of this class)
// 2. fix up the virtual table function pointer for the object
// 3. migrate an object of a previous version to the current version
// 4. fix the endianness of all other members in the subclasses
// 5. convert pointers in this object from offsets back to addresses
// 5. initiate unpacking for other objects referenced by this object
// 6. initialize new members added in the new version
//
// Parameters:
// base             is the base address (added to offset to get pointer)
// vtblPtr          (first form) is the pointer to the virtual function table
//                  of the class
// ptrToAnchorClass (second form, see below) is a pointer to an object
//                  that has the desired virtual function pointer
// ---------------------------------------------------------------------
NA_EIDPROC NAVersionedObject *NAVersionedObject::driveUnpack(
                                    void *base,
				    char *vtblPtr,
				    void * reallocator)
  {
    // -----------------------------------------------------------------
    // Make sure we are really dealing with a NAVersionedObject by
    // examining its eyeCatcher_.
    // -----------------------------------------------------------------
    if (str_cmp(eyeCatcher_,VOBJ_EYE_CATCHER,VOBJ_EYE_CATCHER_SIZE))
      return NULL;

    // -----------------------------------------------------------------
    // If object has already been unpacked, just return either its own
    // address or the reallocated address if the object was reallocated
    // to somewhere else.
    // -----------------------------------------------------------------
    if (!isPacked())
    {
      if (reallocatedAddress_.isNull())
        return this;
      else
        return reallocatedAddress_.getPointer();
    }
#ifdef NA_64BIT
    // dg64 - the 32-bit module files have junk in them, so let's try zero
    //        at least in the high-order 32-bits
    else
      reallocatedAddress_ = (NAVersionedObjectPtr) NULL ;
#endif

    // -----------------------------------------------------------------
    // Fix the Version Header to the endianness of the local platform
    // if necessary. Correct classID_ field is necessary to determine
    // the right subclass the object belongs.
    //
    // *** DON'T DO THIS JUST YET: PLAN IS TO SUPPORT THIS ONLY FROM
    // *** SECOND RELEASE.
    // -----------------------------------------------------------------
#ifndef NA_LITTLE_ENDIAN
    // toggleEndiannessOfVersionHeader();
#endif

    // -----------------------------------------------------------------
    // The method findVTblPtr() was called on an object of the Anthor
    // Class T to find out what subclass of the Anchor Class this object
    // belongs based on its classID_. Now, the virtual function table
    // pointer is used to fix up this object.
    // -----------------------------------------------------------------
    if (vtblPtr == NULL)
      return NULL;                                // unknown class ID //
    else
      setVTblPtr(vtblPtr);

    // -----------------------------------------------------------------
    // Call the virtual method migrateToNewVersion() so that older
    // objects can be migrated to fit in the new class template.
    // -----------------------------------------------------------------
    NAVersionedObject *objPtr = NULL;

    // -----------------------------------------------------------------
    // migrateToNewVersion() should either set objPtr to this or to an
    // reallocated image.
    // -----------------------------------------------------------------
    if (migrateToNewVersion(objPtr))
      return NULL;                           // version not supported //

    // -----------------------------------------------------------------
    // Convert members of this object from reference platform to local
    // platform.
    //
    // *** DON'T DO THIS JUST YET: PLAN IS TO SUPPORT THIS ONLY FROM
    // *** SECOND RELEASE.
    // -----------------------------------------------------------------
    // objPtr->convertToLocalPlatform();

    // -----------------------------------------------------------------
    // Mark object as not packed, despite it is not completely unpacked
    // yet. This is needed because the call that follows to the virtual
    // method unpack() drives the unpacking of all objects referenced by
    // this object. If this object is subsequently referenced by another
    // object down the row, driveUnpack() will be called on this object
    // again. At that point of time, we should see the packed flag set
    // to "not packed" so that "double-unpacking" can be avoided.
    // -----------------------------------------------------------------
    markAsNotPacked();
    objPtr->markAsNotPacked();

    // -----------------------------------------------------------------
    // After migration, the object might have been reallocated. In that
    // case objPtr will be changed to point to the reallocated object.
    // The following calls are then made on the reallocated object
    // instead of this.
    // -----------------------------------------------------------------
    if(objPtr->unpack(base, reallocator))
      return NULL;              // Should this ever happen? Internal Error.

    objPtr->initNewMembers();
    return objPtr;
  }
// ---------------------------------------------------------------------
// Driver for Packing
//
// Should return a 64 bit integer on a 64 bit platform. Could be fixed
// later when 64-bit platforms are really available since it doesn't
// affect object layout.
// ---------------------------------------------------------------------
NA_EIDPROC Long NAVersionedObject::drivePack(void *space, short isSpacePtr)
  {
    // -----------------------------------------------------------------
    // If the object has already been packed, just convert the pointer
    // of the object to an offset and return its value. That value will
    // be used by the caller to replace the pointer stored there.
    // -----------------------------------------------------------------
    if (isPacked())
    {
      if (isSpacePtr)
        return ((Space *)space)->convertToOffset((char *)this);
      else
        return ((char *)space - (char *)this);
    }

    // -----------------------------------------------------------------
    // Make sure the image size and the version ID are set properly
    // before proceeding on to pack the object.
    // -----------------------------------------------------------------
    Int16 classSize = getClassSize();
    if ((classSize % 8) != 0)
      assert((classSize % 8) == 0);
    setImageSize(classSize);
    populateImageVersionIDArray();

    // -----------------------------------------------------------------
    // Toggle the Endianness of the Version Header if it's not stored
    // in little-endian form.
    //
    // *** DON'T DO THIS JUST YET: PLAN IS TO SUPPORT THIS ONLY FROM
    // *** SECOND RELEASE.
    // -----------------------------------------------------------------
#ifndef NA_LITTLE_ENDIAN
    // toggleEndiannessOfVersionHeader();
#endif

    // -----------------------------------------------------------------
    // Convert members of this object from local platform to reference
    // platform.
    //
    // *** DON'T DO THIS JUST YET: PLAN IS TO SUPPORT THIS ONLY FROM
    // *** SECOND RELEASE.
    // -----------------------------------------------------------------
    // convertToReferencePlatform();

    // -----------------------------------------------------------------
    // Mark object as packed, despite it is not completely packed yet.
    // It is needed because the call that follows to the virtual method
    // pack() drives the packing of all objects referenced by this
    // object. If this object is subsequently referenced by another
    // object down the row, drivePack() will be called on this object
    // again. At that point of time, we should see the packed flag set
    // so that "double-packing" can be avoided.
    // -----------------------------------------------------------------
    markAsPacked();

    // -----------------------------------------------------------------
    // pack() is a virtual method the subclass should redefine to drive
    // the packing of all objects it references by pointers and convert
    // those pointers to offsets. It should also convert the endianness
    // of its members to the reference if necessary.
    // -----------------------------------------------------------------
    setIsSpacePtr( isSpacePtr !=0 );
    Long offset = pack(space);

    //    long offset = (isSpacePtr ? pack(space) : pack(space,0));

    // -----------------------------------------------------------------
    // Make sure the eyeCatcher_ field of the object is proper. Also
    // clean up the virtual table function pointer, so that the image
    // look identical each time.
    // -----------------------------------------------------------------
    str_cpy_all(eyeCatcher_,VOBJ_EYE_CATCHER,VOBJ_EYE_CATCHER_SIZE);
    setVTblPtr(NULL);

    return offset;
  }
Exemple #24
0
void IrAggr::addFieldInitializers(
    llvm::SmallVectorImpl<llvm::Constant*>& constants,
    const VarInitMap& explicitInitializers,
    AggregateDeclaration* decl,
    unsigned& offset,
    bool populateInterfacesWithVtbls
)
{
    if (ClassDeclaration* cd = decl->isClassDeclaration())
    {
        if (cd->baseClass)
        {
            addFieldInitializers(constants, explicitInitializers,
                                 cd->baseClass, offset, populateInterfacesWithVtbls);
        }
    }

    // Build up vector with one-to-one mapping to field indices.
    const size_t n = decl->fields.dim;
    llvm::SmallVector<VarInitConst, 16> data(n);

    // Fill in explicit initializers.
    for (size_t i = 0; i < n; ++i)
    {
        VarDeclaration* vd = decl->fields[i];
        VarInitMap::const_iterator expl = explicitInitializers.find(vd);
        if (expl != explicitInitializers.end())
            data[i] = *expl;
    }

    // Fill in implicit initializers
    for (size_t i = 0; i < n; i++)
    {
        if (data[i].first) continue;

        VarDeclaration* vd = decl->fields[i];

        /* Skip void initializers for unions. DMD bug 3991:
            union X
            {
                int   a = void;
                dchar b = 'a';
            }
        */
        if (decl->isUnionDeclaration() && vd->init && vd->init->isVoidInitializer())
            continue;

        unsigned vd_begin = vd->offset;
        unsigned vd_end = vd_begin + vd->type->size();

        /* Skip zero size fields like zero-length static arrays, LDC issue 812:
            class B {
                ubyte[0] test;
            }
        */
        if (vd_begin == vd_end)
            continue;

        // make sure it doesn't overlap any explicit initializers.
        bool overlaps = false;
        if (type->ty == Tstruct)
        {
            // Only structs and unions can have overlapping fields.
            for (size_t j = 0; j < n; ++j)
            {
                if (i == j || !data[j].first)
                    continue;

                VarDeclaration* it = decl->fields[j];
                unsigned f_begin = it->offset;
                unsigned f_end = f_begin + it->type->size();

                if (vd_begin >= f_end || vd_end <= f_begin)
                    continue;

                overlaps = true;
                break;
            }
        }
        // add if no overlap found
        if (!overlaps)
        {
            IF_LOG Logger::println("Implicit initializer: %s @+%u", vd->toChars(), vd->offset);
            LOG_SCOPE;

            data[i].first = vd;
            data[i].second = get_default_initializer(vd, NULL);
        }
    }

    // Sort data array by offset.
    // TODO: Figure out whether this is really necessary, fields should already
    // be in offset order. Not having do do this would mean we could use a plain
    // llvm::Constant* vector for initializers and avoid all the VarInitConst business.
    std::sort(data.begin(), data.end(), struct_init_data_sort);

    // build array of constants and make sure explicit zero padding is inserted when necessary.
    for (size_t i = 0; i < n; i++)
    {
        VarDeclaration* vd = data[i].first;
        if (vd == NULL)
            continue;

        // get next aligned offset for this field
        size_t alignedoffset = offset;
        if (!isPacked())
        {
            alignedoffset = realignOffset(alignedoffset, vd->type);
        }

        // insert explicit padding?
        if (alignedoffset < vd->offset)
        {
            add_zeros(constants, alignedoffset, vd->offset);
        }

        IF_LOG Logger::println("adding field %s", vd->toChars());

        constants.push_back(FillSArrayDims(vd->type, data[i].second));
        offset = vd->offset + vd->type->size();
    }

    if (ClassDeclaration* cd = decl->isClassDeclaration())
    {
        // has interface vtbls?
        if (cd->vtblInterfaces && cd->vtblInterfaces->dim > 0)
        {
            // false when it's not okay to use functions from super classes
            bool newinsts = (cd == aggrdecl->isClassDeclaration());

            size_t inter_idx = interfacesWithVtbls.size();

            offset = (offset + Target::ptrsize - 1) & ~(Target::ptrsize - 1);

            for (BaseClasses::iterator I = cd->vtblInterfaces->begin(),
                    E = cd->vtblInterfaces->end();
                    I != E; ++I)
            {
                constants.push_back(getInterfaceVtbl(*I, newinsts, inter_idx));
                offset += Target::ptrsize;
                inter_idx++;

                if (populateInterfacesWithVtbls)
                    interfacesWithVtbls.push_back(*I);
            }
        }
    }
}
Exemple #25
0
HOT_FUNC
int SharedVariant::getIndex(const StringData* key) {
  assert(is(KindOfArray));
  if (isPacked()) return -1;
  return m_data.array->indexOf(key);
}
Exemple #26
0
void AstArrayDType::dump(ostream& str) {
    this->AstNodeDType::dump(str);
    if (isPacked()) str<<" [PACKED]";
}
Exemple #27
0
IrTypeClass *IrTypeClass::get(ClassDeclaration *cd) {
  const auto t = new IrTypeClass(cd);
  cd->type->ctype = t;

  IF_LOG Logger::println("Building class type %s @ %s", cd->toPrettyChars(),
                         cd->loc.toChars());
  LOG_SCOPE;
  IF_LOG Logger::println("Instance size: %u", cd->structsize);

  // This class may contain an align declaration. See GitHub #726.
  t->packed = false;
  for (auto base = cd; base != nullptr && !t->packed; base = base->baseClass) {
    t->packed = isPacked(base);
  }

  AggrTypeBuilder builder(t->packed);

  // add vtbl
  builder.addType(llvm::PointerType::get(t->vtbl_type, 0), Target::ptrsize);

  if (cd->isInterfaceDeclaration()) {
    // interfaces are just a vtable
    t->num_interface_vtbls = cd->vtblInterfaces ? cd->vtblInterfaces->dim : 0;
  } else {
    // classes have monitor and fields
    if (!cd->isCPPclass() && !cd->isCPPinterface()) {
      // add monitor
      builder.addType(
          llvm::PointerType::get(llvm::Type::getInt8Ty(gIR->context()), 0),
          Target::ptrsize);
    }

    // add data members recursively
    t->addClassData(builder, cd);

    // add tail padding
    builder.addTailPadding(cd->structsize);
  }

  if (global.errors) {
    fatal();
  }

  // set struct body and copy GEP indices
  isaStruct(t->type)->setBody(builder.defaultTypes(), t->packed);
  t->varGEPIndices = builder.varGEPIndices();

  // set vtbl type body
  FuncDeclarations vtbl;
  vtbl.reserve(cd->vtbl.dim);
  if (!cd->isCPPclass())
    vtbl.push(nullptr);
  for (size_t i = cd->vtblOffset(); i < cd->vtbl.dim; ++i) {
    FuncDeclaration *fd = cd->vtbl[i]->isFuncDeclaration();
    assert(fd);
    vtbl.push(fd);
  }
  Type* first = cd->isCPPclass() ? nullptr : Type::typeinfoclass->type;
  t->vtbl_type->setBody(t->buildVtblType(first, &vtbl));

  IF_LOG Logger::cout() << "class type: " << *t->type << std::endl;

  return t;
}
Exemple #28
0
static int swscale(SwsContext *c, const uint8_t *src[],
                   int srcStride[], int srcSliceY,
                   int srcSliceH, uint8_t *dst[], int dstStride[])
{
    /* load a few things into local vars to make the code more readable?
     * and faster */
#ifndef NEW_FILTER
    const int srcW                   = c->srcW;
#endif
    const int dstW                   = c->dstW;
    const int dstH                   = c->dstH;
#ifndef NEW_FILTER
    const int chrDstW                = c->chrDstW;
    const int chrSrcW                = c->chrSrcW;
    const int lumXInc                = c->lumXInc;
    const int chrXInc                = c->chrXInc;
#endif
    const enum AVPixelFormat dstFormat = c->dstFormat;
    const int flags                  = c->flags;
    int32_t *vLumFilterPos           = c->vLumFilterPos;
    int32_t *vChrFilterPos           = c->vChrFilterPos;
#ifndef NEW_FILTER
    int32_t *hLumFilterPos           = c->hLumFilterPos;
    int32_t *hChrFilterPos           = c->hChrFilterPos;
    int16_t *hLumFilter              = c->hLumFilter;
    int16_t *hChrFilter              = c->hChrFilter;
    int32_t *lumMmxFilter            = c->lumMmxFilter;
    int32_t *chrMmxFilter            = c->chrMmxFilter;
#endif
    const int vLumFilterSize         = c->vLumFilterSize;
    const int vChrFilterSize         = c->vChrFilterSize;
#ifndef NEW_FILTER
    const int hLumFilterSize         = c->hLumFilterSize;
    const int hChrFilterSize         = c->hChrFilterSize;
    int16_t **lumPixBuf              = c->lumPixBuf;
    int16_t **chrUPixBuf             = c->chrUPixBuf;
    int16_t **chrVPixBuf             = c->chrVPixBuf;
#endif
    int16_t **alpPixBuf              = c->alpPixBuf;
    const int vLumBufSize            = c->vLumBufSize;
    const int vChrBufSize            = c->vChrBufSize;
#ifndef NEW_FILTER
    uint8_t *formatConvBuffer        = c->formatConvBuffer;
    uint32_t *pal                    = c->pal_yuv;
#endif
    yuv2planar1_fn yuv2plane1        = c->yuv2plane1;
    yuv2planarX_fn yuv2planeX        = c->yuv2planeX;
    yuv2interleavedX_fn yuv2nv12cX   = c->yuv2nv12cX;
    yuv2packed1_fn yuv2packed1       = c->yuv2packed1;
    yuv2packed2_fn yuv2packed2       = c->yuv2packed2;
    yuv2packedX_fn yuv2packedX       = c->yuv2packedX;
    yuv2anyX_fn yuv2anyX             = c->yuv2anyX;
    const int chrSrcSliceY           =                srcSliceY >> c->chrSrcVSubSample;
    const int chrSrcSliceH           = FF_CEIL_RSHIFT(srcSliceH,   c->chrSrcVSubSample);
    int should_dither                = is9_OR_10BPS(c->srcFormat) ||
                                       is16BPS(c->srcFormat);
    int lastDstY;

    /* vars which will change and which we need to store back in the context */
    int dstY         = c->dstY;
    int lumBufIndex  = c->lumBufIndex;
    int chrBufIndex  = c->chrBufIndex;
    int lastInLumBuf = c->lastInLumBuf;
    int lastInChrBuf = c->lastInChrBuf;
    int perform_gamma = c->is_internal_gamma;

#ifdef NEW_FILTER
    int lumStart = 0;
    int lumEnd = c->descIndex[0];
    int chrStart = lumEnd;
    int chrEnd = c->descIndex[1];
    int vStart = chrEnd;
    int vEnd = c->numDesc;
    SwsSlice *src_slice = &c->slice[lumStart];
    SwsSlice *hout_slice = &c->slice[c->numSlice-2];
    SwsSlice *vout_slice = &c->slice[c->numSlice-1];
    SwsFilterDescriptor *desc = c->desc;

    int hasLumHoles = 1;
    int hasChrHoles = 1;
#endif

#ifndef NEW_FILTER
    if (!usePal(c->srcFormat)) {
        pal = c->input_rgb2yuv_table;
    }
#endif

    if (isPacked(c->srcFormat)) {
        src[0] =
        src[1] =
        src[2] =
        src[3] = src[0];
        srcStride[0] =
        srcStride[1] =
        srcStride[2] =
        srcStride[3] = srcStride[0];
    }
    srcStride[1] <<= c->vChrDrop;
    srcStride[2] <<= c->vChrDrop;

    DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
                  src[0], srcStride[0], src[1], srcStride[1],
                  src[2], srcStride[2], src[3], srcStride[3],
                  dst[0], dstStride[0], dst[1], dstStride[1],
                  dst[2], dstStride[2], dst[3], dstStride[3]);
    DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
                  srcSliceY, srcSliceH, dstY, dstH);
    DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
                  vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);

    if (dstStride[0]&15 || dstStride[1]&15 ||
        dstStride[2]&15 || dstStride[3]&15) {
        static int warnedAlready = 0; // FIXME maybe move this into the context
        if (flags & SWS_PRINT_INFO && !warnedAlready) {
            av_log(c, AV_LOG_WARNING,
                   "Warning: dstStride is not aligned!\n"
                   "         ->cannot do aligned memory accesses anymore\n");
            warnedAlready = 1;
        }
    }

    if (   (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
        || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
        || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
        || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
    ) {
        static int warnedAlready=0;
        int cpu_flags = av_get_cpu_flags();
        if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
            av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
            warnedAlready=1;
        }
    }

    /* Note the user might start scaling the picture in the middle so this
     * will not get executed. This is not really intended but works
     * currently, so people might do it. */
    if (srcSliceY == 0) {
        lumBufIndex  = -1;
        chrBufIndex  = -1;
        dstY         = 0;
        lastInLumBuf = -1;
        lastInChrBuf = -1;
    }

    if (!should_dither) {
        c->chrDither8 = c->lumDither8 = sws_pb_64;
    }
    lastDstY = dstY;

#ifdef NEW_FILTER
    ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
                   yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, c->use_mmx_vfilter);

    ff_init_slice_from_src(src_slice, (uint8_t**)src, srcStride, c->srcW,
            srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH);

    ff_init_slice_from_src(vout_slice, (uint8_t**)dst, dstStride, c->dstW,
            dstY, dstH, dstY >> c->chrDstVSubSample,
            FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample));

    hout_slice->plane[0].sliceY = lastInLumBuf + 1;
    hout_slice->plane[1].sliceY = lastInChrBuf + 1;
    hout_slice->plane[2].sliceY = lastInChrBuf + 1;
    hout_slice->plane[3].sliceY = lastInLumBuf + 1;

    hout_slice->plane[0].sliceH =
    hout_slice->plane[1].sliceH =
    hout_slice->plane[2].sliceH =
    hout_slice->plane[3].sliceH = 0;
    hout_slice->width = dstW;
#endif

    for (; dstY < dstH; dstY++) {
        const int chrDstY = dstY >> c->chrDstVSubSample;
#ifndef NEW_FILTER
        uint8_t *dest[4]  = {
            dst[0] + dstStride[0] * dstY,
            dst[1] + dstStride[1] * chrDstY,
            dst[2] + dstStride[2] * chrDstY,
            (CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
        };
#endif
        int use_mmx_vfilter= c->use_mmx_vfilter;

        // First line needed as input
        const int firstLumSrcY  = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
        const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
        // First line needed as input
        const int firstChrSrcY  = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);

        // Last line needed as input
        int lastLumSrcY  = FFMIN(c->srcH,    firstLumSrcY  + vLumFilterSize) - 1;
        int lastLumSrcY2 = FFMIN(c->srcH,    firstLumSrcY2 + vLumFilterSize) - 1;
        int lastChrSrcY  = FFMIN(c->chrSrcH, firstChrSrcY  + vChrFilterSize) - 1;
        int enough_lines;
#ifdef NEW_FILTER
        int i;
        int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
#endif

        // handle holes (FAST_BILINEAR & weird filters)
        if (firstLumSrcY > lastInLumBuf) {
#ifdef NEW_FILTER
            hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
            if (hasLumHoles) {
                hout_slice->plane[0].sliceY = lastInLumBuf + 1;
                hout_slice->plane[3].sliceY = lastInLumBuf + 1;
                hout_slice->plane[0].sliceH =
                hout_slice->plane[3].sliceH = 0;
            }
#endif
            lastInLumBuf = firstLumSrcY - 1;
        }
        if (firstChrSrcY > lastInChrBuf) {
#ifdef NEW_FILTER
            hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
            if (hasChrHoles) {
                hout_slice->plane[1].sliceY = lastInChrBuf + 1;
                hout_slice->plane[2].sliceY = lastInChrBuf + 1;
                hout_slice->plane[1].sliceH =
                hout_slice->plane[2].sliceH = 0;
            }
#endif
            lastInChrBuf = firstChrSrcY - 1;
        }
        av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
        av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);

        DEBUG_BUFFERS("dstY: %d\n", dstY);
        DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
                      firstLumSrcY, lastLumSrcY, lastInLumBuf);
        DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
                      firstChrSrcY, lastChrSrcY, lastInChrBuf);

        // Do we have enough lines in this slice to output the dstY line
        enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
                       lastChrSrcY < FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);

        if (!enough_lines) {
            lastLumSrcY = srcSliceY + srcSliceH - 1;
            lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
            DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
                          lastLumSrcY, lastChrSrcY);
        }

#ifdef NEW_FILTER
        posY = hout_slice->plane[0].sliceY + hout_slice->plane[0].sliceH;
        if (posY <= lastLumSrcY && !hasLumHoles) {
            firstPosY = FFMAX(firstLumSrcY, posY);
            lastPosY = FFMIN(lastLumSrcY + MAX_LINES_AHEAD, srcSliceY + srcSliceH - 1);
        } else {
            firstPosY = lastInLumBuf + 1;
            lastPosY = lastLumSrcY;
        }

        cPosY = hout_slice->plane[1].sliceY + hout_slice->plane[1].sliceH;
        if (cPosY <= lastChrSrcY && !hasChrHoles) {
            firstCPosY = FFMAX(firstChrSrcY, cPosY);
            lastCPosY = FFMIN(lastChrSrcY + MAX_LINES_AHEAD, FF_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample) - 1);
        } else {
            firstCPosY = lastInChrBuf + 1;
            lastCPosY = lastChrSrcY;
        }

        ff_rotate_slice(hout_slice, lastPosY, lastCPosY);

        if (posY < lastLumSrcY + 1) {
            for (i = lumStart; i < lumEnd; ++i)
                desc[i].process(c, &desc[i], firstPosY, lastPosY - firstPosY + 1);
        }

        lumBufIndex += lastLumSrcY - lastInLumBuf;
        lastInLumBuf = lastLumSrcY;

        if (cPosY < lastChrSrcY + 1) {
            for (i = chrStart; i < chrEnd; ++i)
                desc[i].process(c, &desc[i], firstCPosY, lastCPosY - firstCPosY + 1);
        }

        chrBufIndex += lastChrSrcY - lastInChrBuf;
        lastInChrBuf = lastChrSrcY;

#else
        // Do horizontal scaling
        while (lastInLumBuf < lastLumSrcY) {
            const uint8_t *src1[4] = {
                src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
                src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
                src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
                src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
            };
            lumBufIndex++;
            av_assert0(lumBufIndex < 2 * vLumBufSize);
            av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
            av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);

            if (perform_gamma)
                gamma_convert((uint8_t **)src1, srcW, c->inv_gamma);

            hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
                    hLumFilter, hLumFilterPos, hLumFilterSize,
                    formatConvBuffer, pal, 0);
            if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
                hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
                        lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
                        formatConvBuffer, pal, 1);
            lastInLumBuf++;
            DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
                          lumBufIndex, lastInLumBuf);
        }
        while (lastInChrBuf < lastChrSrcY) {
            const uint8_t *src1[4] = {
                src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
                src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
                src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
                src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
            };
            chrBufIndex++;
            av_assert0(chrBufIndex < 2 * vChrBufSize);
            av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
            av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
            // FIXME replace parameters through context struct (some at least)

            if (c->needs_hcscale)
                hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
                        chrDstW, src1, chrSrcW, chrXInc,
                        hChrFilter, hChrFilterPos, hChrFilterSize,
                        formatConvBuffer, pal);
            lastInChrBuf++;
            DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
                          chrBufIndex, lastInChrBuf);
        }
#endif
        // wrap buf index around to stay inside the ring buffer
        if (lumBufIndex >= vLumBufSize)
            lumBufIndex -= vLumBufSize;
        if (chrBufIndex >= vChrBufSize)
            chrBufIndex -= vChrBufSize;
        if (!enough_lines)
            break;  // we can't output a dstY line so let's try with the next slice

#if HAVE_MMX_INLINE
        ff_updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
                              lastInLumBuf, lastInChrBuf);
#endif
        if (should_dither) {
            c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
            c->lumDither8 = ff_dither_8x8_128[dstY    & 7];
        }
        if (dstY >= dstH - 2) {
            /* hmm looks like we can't use MMX here without overwriting
             * this array's tail */
            ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
                                     &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
            use_mmx_vfilter= 0;
            ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
                           yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
        }

        {
#ifdef NEW_FILTER
            for (i = vStart; i < vEnd; ++i)
                desc[i].process(c, &desc[i], dstY, 1);
#else
            const int16_t **lumSrcPtr  = (const int16_t **)(void*) lumPixBuf  + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
            const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
            const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
            const int16_t **alpSrcPtr  = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
                                         (const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
            int16_t *vLumFilter = c->vLumFilter;
            int16_t *vChrFilter = c->vChrFilter;

            if (isPlanarYUV(dstFormat) ||
                (isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
                const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;

                vLumFilter +=    dstY * vLumFilterSize;
                vChrFilter += chrDstY * vChrFilterSize;

//                 av_assert0(use_mmx_vfilter != (
//                                yuv2planeX == yuv2planeX_10BE_c
//                             || yuv2planeX == yuv2planeX_10LE_c
//                             || yuv2planeX == yuv2planeX_9BE_c
//                             || yuv2planeX == yuv2planeX_9LE_c
//                             || yuv2planeX == yuv2planeX_16BE_c
//                             || yuv2planeX == yuv2planeX_16LE_c
//                             || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);

                if(use_mmx_vfilter){
                    vLumFilter= (int16_t *)c->lumMmxFilter;
                    vChrFilter= (int16_t *)c->chrMmxFilter;
                }

                if (vLumFilterSize == 1) {
                    yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
                } else {
                    yuv2planeX(vLumFilter, vLumFilterSize,
                               lumSrcPtr, dest[0],
                               dstW, c->lumDither8, 0);
                }

                if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
                    if (yuv2nv12cX) {
                        yuv2nv12cX(c, vChrFilter,
                                   vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
                                   dest[1], chrDstW);
                    } else if (vChrFilterSize == 1) {
                        yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
                        yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
                    } else {
                        yuv2planeX(vChrFilter,
                                   vChrFilterSize, chrUSrcPtr, dest[1],
                                   chrDstW, c->chrDither8, 0);
                        yuv2planeX(vChrFilter,
                                   vChrFilterSize, chrVSrcPtr, dest[2],
                                   chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
                    }
                }

                if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
                    if(use_mmx_vfilter){
                        vLumFilter= (int16_t *)c->alpMmxFilter;
                    }
                    if (vLumFilterSize == 1) {
                        yuv2plane1(alpSrcPtr[0], dest[3], dstW,
                                   c->lumDither8, 0);
                    } else {
                        yuv2planeX(vLumFilter,
                                   vLumFilterSize, alpSrcPtr, dest[3],
                                   dstW, c->lumDither8, 0);
                    }
                }
            } else if (yuv2packedX) {
                av_assert1(lumSrcPtr  + vLumFilterSize - 1 < (const int16_t **)lumPixBuf  + vLumBufSize * 2);
                av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
                if (c->yuv2packed1 && vLumFilterSize == 1 &&
                    vChrFilterSize <= 2) { // unscaled RGB
                    int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
                    yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
                                alpPixBuf ? *alpSrcPtr : NULL,
                                dest[0], dstW, chrAlpha, dstY);
                } else if (c->yuv2packed2 && vLumFilterSize == 2 &&
                           vChrFilterSize == 2) { // bilinear upscale RGB
                    int lumAlpha = vLumFilter[2 * dstY + 1];
                    int chrAlpha = vChrFilter[2 * dstY + 1];
                    lumMmxFilter[2] =
                    lumMmxFilter[3] = vLumFilter[2 * dstY]    * 0x10001;
                    chrMmxFilter[2] =
                    chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
                    yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
                                alpPixBuf ? alpSrcPtr : NULL,
                                dest[0], dstW, lumAlpha, chrAlpha, dstY);
                } else { // general RGB
                    yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
                                lumSrcPtr, vLumFilterSize,
                                vChrFilter + dstY * vChrFilterSize,
                                chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
                                alpSrcPtr, dest[0], dstW, dstY);
                }
            } else {
                av_assert1(!yuv2packed1 && !yuv2packed2);
                yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
                         lumSrcPtr, vLumFilterSize,
                         vChrFilter + dstY * vChrFilterSize,
                         chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
                         alpSrcPtr, dest, dstW, dstY);
            }
            if (perform_gamma)
                gamma_convert(dest, dstW, c->gamma);
#endif
        }
    }