/* Construct a basic set described by the "n" equalities of "bset" starting * at "first". */ static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset, unsigned first, unsigned n) { int i, k; isl_basic_set *eq; unsigned total; isl_assert(bset->ctx, bset->n_div == 0, return NULL); total = isl_basic_set_total_dim(bset); eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0); if (!eq) return NULL; for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_equality(eq); if (k < 0) goto error; isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total); } return eq; error: isl_basic_set_free(eq); return NULL; }
/* Look for all equalities satisfied by the integer points in bset, * which is assumed not to have any explicit equalities. * * The equalities are obtained by successively looking for * a point that is affinely independent of the points found so far. * In particular, for each equality satisfied by the points so far, * we check if there is any point on a hyperplane parallel to the * corresponding hyperplane shifted by at least one (in either direction). * * Before looking for any outside points, we first compute the recession * cone. The directions of this recession cone will always be part * of the affine hull, so there is no need for looking for any points * in these directions. * In particular, if the recession cone is full-dimensional, then * the affine hull is simply the whole universe. */ static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset) { struct isl_basic_set *cone; if (isl_basic_set_plain_is_empty(bset)) return bset; cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); if (!cone) goto error; if (cone->n_eq == 0) { struct isl_basic_set *hull; isl_basic_set_free(cone); hull = isl_basic_set_universe_like(bset); isl_basic_set_free(bset); return hull; } if (cone->n_eq < isl_basic_set_total_dim(cone)) return affine_hull_with_cone(bset, cone); isl_basic_set_free(cone); return uset_affine_hull_bounded(bset); error: isl_basic_set_free(bset); return NULL; }
/* Compute the affine hull of "bset", where "cone" is the recession cone * of "bset". * * We first compute a unimodular transformation that puts the unbounded * directions in the last dimensions. In particular, we take a transformation * that maps all equalities to equalities (in HNF) on the first dimensions. * Let x be the original dimensions and y the transformed, with y_1 bounded * and y_2 unbounded. * * [ y_1 ] [ y_1 ] [ Q_1 ] * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x * * Let's call the input basic set S. We compute S' = preimage(S, U) * and drop the final dimensions including any constraints involving them. * This results in set S''. * Then we compute the affine hull A'' of S''. * Let F y_1 >= g be the constraint system of A''. In the transformed * space the y_2 are unbounded, so we can add them back without any constraints, * resulting in * * [ y_1 ] * [ F 0 ] [ y_2 ] >= g * or * [ Q_1 ] * [ F 0 ] [ Q_2 ] x >= g * or * F Q_1 x >= g * * The affine hull in the original space is then obtained as * A = preimage(A'', Q_1). */ static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset, struct isl_basic_set *cone) { unsigned total; unsigned cone_dim; struct isl_basic_set *hull; struct isl_mat *M, *U, *Q; if (!bset || !cone) goto error; total = isl_basic_set_total_dim(cone); cone_dim = total - cone->n_eq; M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; isl_mat_free(M); U = isl_mat_lin_to_aff(U); bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim, cone_dim); bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim); Q = isl_mat_lin_to_aff(Q); Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim); if (bset && bset->sample && bset->sample->size == 1 + total) bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample); hull = uset_affine_hull_bounded(bset); if (!hull) isl_mat_free(U); else { struct isl_vec *sample = isl_vec_copy(hull->sample); U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim); if (sample && sample->size > 0) sample = isl_mat_vec_product(U, sample); else isl_mat_free(U); hull = isl_basic_set_preimage(hull, Q); if (hull) { isl_vec_free(hull->sample); hull->sample = sample; } else isl_vec_free(sample); } isl_basic_set_free(cone); return hull; error: isl_basic_set_free(bset); isl_basic_set_free(cone); return NULL; }
/* Construct a zero sample of the same dimension as bset. * As a special case, if bset is zero-dimensional, this * function creates a zero-dimensional sample point. */ static struct isl_vec *zero_sample(struct isl_basic_set *bset) { unsigned dim; struct isl_vec *sample; dim = isl_basic_set_total_dim(bset); sample = isl_vec_alloc(bset->ctx, 1 + dim); if (sample) { isl_int_set_si(sample->el[0], 1); isl_seq_clr(sample->el + 1, dim); } isl_basic_set_free(bset); return sample; }
int main(int argc, char **argv) { struct isl_ctx *ctx = isl_ctx_alloc(); struct isl_basic_set *bset; struct isl_vec *obj; struct isl_vec *sol; isl_int opt; unsigned dim; enum isl_lp_result res; isl_printer *p; isl_int_init(opt); bset = isl_basic_set_read_from_file(ctx, stdin); assert(bset); obj = isl_vec_read_from_file(ctx, stdin); assert(obj); dim = isl_basic_set_total_dim(bset); assert(obj->size >= dim && obj->size <= dim + 1); if (obj->size != dim + 1) obj = isl_vec_lin_to_aff(obj); else obj = vec_ror(obj); res = isl_basic_set_solve_ilp(bset, 0, obj->el, &opt, &sol); switch (res) { case isl_lp_error: fprintf(stderr, "error\n"); return -1; case isl_lp_empty: fprintf(stdout, "empty\n"); break; case isl_lp_unbounded: fprintf(stdout, "unbounded\n"); break; case isl_lp_ok: p = isl_printer_to_file(ctx, stdout); p = isl_printer_print_vec(p, sol); p = isl_printer_end_line(p); p = isl_printer_print_isl_int(p, opt); p = isl_printer_end_line(p); isl_printer_free(p); } isl_basic_set_free(bset); isl_vec_free(obj); isl_vec_free(sol); isl_ctx_free(ctx); isl_int_clear(opt); return 0; }
/* Create a(n identity) morphism between empty sets of the same dimension * a "bset". */ __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *empty; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); empty = isl_basic_set_empty(isl_space_copy(bset->dim)); return isl_morph_alloc(empty, isl_basic_set_copy(empty), id, isl_mat_copy(id)); }
__isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *universe; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); universe = isl_basic_set_universe(isl_space_copy(bset->dim)); return isl_morph_alloc(universe, isl_basic_set_copy(universe), id, isl_mat_copy(id)); }
/* Detect and make explicit all equalities satisfied by the (integer) * points in bmap. */ struct isl_basic_map *isl_basic_map_detect_equalities( struct isl_basic_map *bmap) { int i, j; struct isl_basic_set *hull = NULL; if (!bmap) return NULL; if (bmap->n_ineq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return isl_basic_map_implicit_equalities(bmap); hull = equalities_in_underlying_set(isl_basic_map_copy(bmap)); if (!hull) goto error; if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) { isl_basic_set_free(hull); return isl_basic_map_set_to_empty(bmap); } bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0, hull->n_eq, 0); for (i = 0; i < hull->n_eq; ++i) { j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + isl_basic_set_total_dim(hull)); } isl_vec_free(bmap->sample); bmap->sample = isl_vec_copy(hull->sample); isl_basic_set_free(hull); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_set_free(hull); isl_basic_map_free(bmap); return NULL; }
static struct isl_mat *isl_basic_set_scan_samples(struct isl_basic_set *bset) { isl_ctx *ctx; unsigned dim; struct scan_samples ss; ctx = isl_basic_set_get_ctx(bset); dim = isl_basic_set_total_dim(bset); ss.callback.add = scan_samples_add_sample; ss.samples = isl_mat_alloc(ctx, 0, 1 + dim); if (!ss.samples) goto error; if (isl_basic_set_scan(bset, &ss.callback) < 0) { isl_mat_free(ss.samples); return NULL; } return ss.samples; error: isl_basic_set_free(bset); return NULL; }
/* Given a basic set, exploit the equalties in the a basic set to construct * a morphishm that maps the basic set to a lower-dimensional space. * Specifically, the morphism reduces the number of dimensions of type "type". * * This function is a slight generalization of isl_mat_variable_compression * in that it allows the input to be parametric and that it allows for the * compression of either parameters or set variables. * * We first select the equalities of interest, that is those that involve * variables of type "type" and no later variables. * Denote those equalities as * * -C(p) + M x = 0 * * where C(p) depends on the parameters if type == isl_dim_set and * is a constant if type == isl_dim_param. * * First compute the (left) Hermite normal form of M, * * M [U1 U2] = M U = H = [H1 0] * or * M = H Q = [H1 0] [Q1] * [Q2] * * with U, Q unimodular, Q = U^{-1} (and H lower triangular). * Define the transformed variables as * * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x * [ x2' ] [Q2] * * The equalities then become * * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p) * * If the denominator of the constant term does not divide the * the common denominator of the parametric terms, then every * integer point is mapped to a non-integer point and then the original set has no * integer solutions (since the x' are a unimodular transformation * of the x). In this case, an empty morphism is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} C(p) + U2 x2' * * The inverse transformation is simply * * x2' = Q2 x * * Both matrices are extended to map the full original space to the full * compressed space. */ __isl_give isl_morph *isl_basic_set_variable_compression( __isl_keep isl_basic_set *bset, enum isl_dim_type type) { unsigned otype; unsigned ntype; unsigned orest; unsigned nrest; int f_eq, n_eq; isl_space *dim; isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); isl_assert(bset->ctx, bset->n_div == 0, return NULL); otype = 1 + isl_space_offset(bset->dim, type); ntype = isl_basic_set_dim(bset, type); orest = otype + ntype; nrest = isl_basic_set_total_dim(bset) - (orest - 1); for (f_eq = 0; f_eq < bset->n_eq; ++f_eq) if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1) break; for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq) if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1) break; if (n_eq == 0) return isl_morph_identity(bset); H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype); H = isl_mat_left_hermite(H, 0, &U, &Q); if (!H || !U || !Q) goto error; Q = isl_mat_drop_rows(Q, 0, n_eq); Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q); Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest)); C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_seq_clr(C->row[0] + 1, otype - 1); isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); if (!C) goto error; isl_mat_free(H); if (!isl_int_is_one(C->row[0][0])) { int i; isl_int g; isl_int_init(g); for (i = 0; i < n_eq; ++i) { isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g); isl_int_gcd(g, g, C->row[0][0]); if (!isl_int_is_divisible_by(C->row[1 + i][0], g)) break; } isl_int_clear(g); if (i < n_eq) { isl_mat_free(C); isl_mat_free(U); isl_mat_free(Q); return isl_morph_empty(bset); } C = isl_mat_normalize(C); } U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq); U1 = isl_mat_lin_to_aff(U1); U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); C = isl_mat_product(U1, C); C = isl_mat_aff_direct_sum(C, U2); C = insert_parameter_rows(C, otype - 1); C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest)); dim = isl_space_copy(bset->dim); dim = isl_space_drop_dims(dim, type, 0, ntype); dim = isl_space_add_dims(dim, type, ntype - n_eq); ran = isl_basic_set_universe(dim); dom = copy_equalities(bset, f_eq, n_eq); return isl_morph_alloc(dom, ran, Q, C); error: isl_mat_free(C); isl_mat_free(H); isl_mat_free(U); isl_mat_free(Q); return NULL; }
/* Check if dimension dim belongs to a residue class * i_dim \equiv r mod m * with m != 1 and if so return m in *modulo and r in *residue. * As a special case, when i_dim has a fixed value v, then * *modulo is set to 0 and *residue to v. * * If i_dim does not belong to such a residue class, then *modulo * is set to 1 and *residue is set to 0. */ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, int pos, isl_int *modulo, isl_int *residue) { struct isl_ctx *ctx; struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1; unsigned total; unsigned nparam; if (!bset || !modulo || !residue) return -1; if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { isl_int_set_si(*modulo, 0); return 0; } ctx = isl_basic_set_get_ctx(bset); total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total); H = isl_mat_left_hermite(H, 0, &U, NULL); if (!H) return -1; isl_seq_gcd(U->row[nparam + pos]+bset->n_eq, total-bset->n_eq, modulo); if (isl_int_is_zero(*modulo)) isl_int_set_si(*modulo, 1); if (isl_int_is_one(*modulo)) { isl_int_set_si(*residue, 0); isl_mat_free(H); isl_mat_free(U); return 0; } C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); isl_mat_free(H); U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); U1 = isl_mat_lin_to_aff(U1); isl_mat_free(U); C = isl_mat_product(U1, C); if (!C) return -1; if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) { bset = isl_basic_set_copy(bset); bset = isl_basic_set_set_to_empty(bset); isl_basic_set_free(bset); isl_int_set_si(*modulo, 1); isl_int_set_si(*residue, 0); return 0; } isl_int_divexact(*residue, C->row[1][0], C->row[0][0]); isl_int_fdiv_r(*residue, *residue, *modulo); isl_mat_free(C); return 0; error: isl_mat_free(H); isl_mat_free(U); return -1; }
int cloog_constraint_set_total_dimension(CloogConstraintSet *constraints) { isl_basic_set *bset; bset = cloog_constraints_set_to_isl(constraints); return isl_basic_set_total_dim(bset); }
/* Look for all integer points in "bset", which is assumed to be bounded, * and call callback->add on each of them. * * We first compute a reduced basis for the set and then scan * the set in the directions of this basis. * We basically perform a depth first search, where in each level i * we compute the range in the i-th basis vector direction, given * fixed values in the directions of the previous basis vector. * We then add an equality to the tableau fixing the value in the * direction of the current basis vector to each value in the range * in turn and then continue to the next level. * * The search is implemented iteratively. "level" identifies the current * basis vector. "init" is true if we want the first value at the current * level and false if we want the next value. * Solutions are added in the leaves of the search tree, i.e., after * we have fixed a value in each direction of the basis. */ int isl_basic_set_scan(struct isl_basic_set *bset, struct isl_scan_callback *callback) { unsigned dim; struct isl_mat *B = NULL; struct isl_tab *tab = NULL; struct isl_vec *min; struct isl_vec *max; struct isl_tab_undo **snap; int level; int init; enum isl_lp_result res; if (!bset) return -1; dim = isl_basic_set_total_dim(bset); if (dim == 0) return scan_0D(bset, callback); min = isl_vec_alloc(bset->ctx, dim); max = isl_vec_alloc(bset->ctx, dim); snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim); if (!min || !max || !snap) goto error; tab = isl_tab_from_basic_set(bset, 0); if (!tab) goto error; if (isl_tab_extend_cons(tab, dim + 1) < 0) goto error; tab->basis = isl_mat_identity(bset->ctx, 1 + dim); if (1) tab = isl_tab_compute_reduced_basis(tab); if (!tab) goto error; B = isl_mat_copy(tab->basis); if (!B) goto error; level = 0; init = 1; while (level >= 0) { int empty = 0; if (init) { res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &min->el[level], NULL, 0); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &max->el[level], NULL, 0); isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); isl_int_neg(max->el[level], max->el[level]); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; snap[level] = isl_tab_snap(tab); } else isl_int_add_ui(min->el[level], min->el[level], 1); if (empty || isl_int_gt(min->el[level], max->el[level])) { level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } if (level == dim - 1 && callback->add == increment_counter) { if (increment_range(callback, min->el[level], max->el[level])) goto error; level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } isl_int_neg(B->row[1 + level][0], min->el[level]); if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0) goto error; isl_int_set_si(B->row[1 + level][0], 0); if (level < dim - 1) { ++level; init = 1; continue; } if (add_solution(tab, callback) < 0) goto error; init = 0; if (isl_tab_rollback(tab, snap[level]) < 0) goto error; } isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return 0; error: isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return -1; }