/* Given a stride constraint on iterator i (specified by level) of the form
 *
 *	i = f(outer iterators) + stride * f(existentials)
 *
 * extract f as an isl_aff.
 */
static isl_aff *extract_stride_offset(__isl_keep isl_constraint *c,
	int level, CloogStride *stride)
{
	int i;
	isl_space *dim = isl_constraint_get_space(c);
	isl_local_space *ls = isl_local_space_from_space(dim);
	isl_aff *offset = isl_aff_zero_on_domain(ls);
	isl_int u;
	unsigned nparam, nvar;

	isl_int_init(u);

	nparam = isl_constraint_dim(c, isl_dim_param);
	nvar = isl_constraint_dim(c, isl_dim_set);

	for (i = 0; i < nparam; ++i) {
		isl_constraint_get_coefficient(c, isl_dim_param, i, &u);
		isl_int_mul(u, u, stride->factor);
		offset = isl_aff_set_coefficient(offset, isl_dim_param, i, u);
	}
	for (i = 0; i < nvar; ++i) {
		if (i == level - 1)
			continue;
		isl_constraint_get_coefficient(c, isl_dim_set, i, &u);
		isl_int_mul(u, u, stride->factor);
		offset = isl_aff_set_coefficient(offset, isl_dim_in, i, u);
	}
	isl_constraint_get_constant(c, &u);
	isl_int_mul(u, u, stride->factor);
	offset = isl_aff_set_constant(offset, u);

	isl_int_clear(u);

	return offset;
}
Exemple #2
0
/* Compute a common lattice of solutions to the linear modulo
 * constraints specified by B and d.
 * See also the documentation of isl_mat_parameter_compression.
 * We put the matrix
 * 
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * on a common denominator.  This denominator D is the lcm of modulos d.
 * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
 * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
 * Putting this on the common denominator, we have
 * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
 */
static struct isl_mat *parameter_compression_multi(
			struct isl_mat *B, struct isl_vec *d)
{
	int i, j, k;
	isl_int D;
	struct isl_mat *A = NULL, *U = NULL;
	struct isl_mat *T;
	unsigned size;

	isl_int_init(D);

	isl_vec_lcm(d, &D);

	size = B->n_col - 1;
	A = isl_mat_alloc(B->ctx, size, B->n_row * size);
	U = isl_mat_alloc(B->ctx, size, size);
	if (!U || !A)
		goto error;
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_cpy(U->row[0], B->row[i] + 1, size);
		U = isl_mat_unimodular_complete(U, 1);
		if (!U)
			goto error;
		isl_int_divexact(D, D, d->block.data[i]);
		for (k = 0; k < U->n_col; ++k)
			isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
		isl_int_mul(D, D, d->block.data[i]);
		for (j = 1; j < U->n_row; ++j)
			for (k = 0; k < U->n_col; ++k)
				isl_int_mul(A->row[k][i*size+j],
						D, U->row[j][k]);
	}
	A = isl_mat_left_hermite(A, 0, NULL, NULL);
	T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
	T = isl_mat_lin_to_aff(T);
	if (!T)
		goto error;
	isl_int_set(T->row[0][0], D);
	T = isl_mat_right_inverse(T);
	if (!T)
		goto error;
	isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
	T = isl_mat_transpose(T);
	isl_mat_free(A);
	isl_mat_free(U);

	isl_int_clear(D);
	return T;
error:
	isl_mat_free(A);
	isl_mat_free(U);
	isl_int_clear(D);
	return NULL;
}
static isl_constraint *
build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
{
  isl_constraint *res;
  isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
  unsigned offset, nsubs;
  int i;
  isl_int size, subsize;

  res = isl_equality_alloc (ls);
  isl_int_init (size);
  isl_int_set_ui (size, 1);
  isl_int_init (subsize);
  isl_int_set_ui (subsize, 1);

  nsubs = isl_set_dim (pdr->extent, isl_dim_set);
  /* -1 for the already included L dimension.  */
  offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
  res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
  /* Go through all subscripts from last to first.  First dimension
     is the alias set, ignore it.  */
  for (i = nsubs - 1; i >= 1; i--)
    {
      isl_space *dc;
      isl_aff *aff;

      res = isl_constraint_set_coefficient (res, isl_dim_out, offset + i, size);

      dc = isl_set_get_space (pdr->extent);
      aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
      aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
      isl_set_max (pdr->extent, aff, &subsize);
      isl_aff_free (aff);
      isl_int_mul (size, size, subsize);
    }

  isl_int_clear (subsize);
  isl_int_clear (size);

  return res;
}
Exemple #4
0
static void copy_solution(struct isl_vec *vec, int maximize, isl_int *opt,
	isl_int *opt_denom, PipQuast *sol)
{
	int i;
	PipList *list;
	isl_int tmp;

	if (opt) {
		if (opt_denom) {
			isl_seq_cpy_from_pip(opt,
				 &sol->list->vector->the_vector[0], 1);
			isl_seq_cpy_from_pip(opt_denom,
				 &sol->list->vector->the_deno[0], 1);
		} else if (maximize)
			mpz_fdiv_q(*opt, sol->list->vector->the_vector[0],
					 sol->list->vector->the_deno[0]);
		else
			mpz_cdiv_q(*opt, sol->list->vector->the_vector[0],
					 sol->list->vector->the_deno[0]);
	}

	if (!vec)
		return;

	isl_int_init(tmp);
	isl_int_set_si(vec->el[0], 1);
	for (i = 0, list = sol->list->next; list; ++i, list = list->next) {
		isl_seq_cpy_from_pip(&vec->el[1 + i],
			&list->vector->the_deno[0], 1);
		isl_int_lcm(vec->el[0], vec->el[0], vec->el[1 + i]);
	}
	for (i = 0, list = sol->list->next; list; ++i, list = list->next) {
		isl_seq_cpy_from_pip(&tmp, &list->vector->the_deno[0], 1);
		isl_int_divexact(tmp, vec->el[0], tmp);
		isl_seq_cpy_from_pip(&vec->el[1 + i],
			&list->vector->the_vector[0], 1);
		isl_int_mul(vec->el[1 + i], vec->el[1 + i], tmp);
	}
	isl_int_clear(tmp);
}
/* Apply the morphism to the basic set.
 * We basically just compute the preimage of "bset" under the inverse mapping
 * in morph, add in stride constraints and intersect with the range
 * of the morphism.
 */
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
	__isl_take isl_basic_set *bset)
{
	isl_basic_set *res = NULL;
	isl_mat *mat = NULL;
	int i, k;
	int max_stride;

	if (!morph || !bset)
		goto error;

	isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
		    goto error);

	max_stride = morph->inv->n_row - 1;
	if (isl_int_is_one(morph->inv->row[0][0]))
		max_stride = 0;
	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);

	for (i = 0; i < bset->n_div; ++i)
		if (isl_basic_set_alloc_div(res) < 0)
			goto error;

	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_eq; ++i) {
		k = isl_basic_set_alloc_equality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->ineq[k] + mat->n_col,
				bset->ineq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
					1, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_div; ++i) {
		isl_int_mul(res->div[i][0],
				morph->inv->row[0][0], bset->div[i][0]);
		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
		isl_seq_scale(res->div[i] + 1 + mat->n_col,
				bset->div[i] + 1 + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	res = add_strides(res, morph);

	if (isl_basic_set_is_rational(bset))
		res = isl_basic_set_set_rational(res);

	res = isl_basic_set_simplify(res);
	res = isl_basic_set_finalize(res);

	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));

	isl_morph_free(morph);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(mat);
	isl_morph_free(morph);
	isl_basic_set_free(bset);
	isl_basic_set_free(res);
	return NULL;
}
__isl_give isl_basic_set *isl_basic_set_box_from_points(
	__isl_take isl_point *pnt1, __isl_take isl_point *pnt2)
{
	isl_basic_set *bset;
	unsigned total;
	int i;
	int k;
	isl_int t;

	isl_int_init(t);

	if (!pnt1 || !pnt2)
		goto error;

	isl_assert(pnt1->dim->ctx,
			isl_dim_equal(pnt1->dim, pnt2->dim), goto error);

	if (isl_point_is_void(pnt1) && isl_point_is_void(pnt2)) {
		isl_dim *dim = isl_dim_copy(pnt1->dim);
		isl_point_free(pnt1);
		isl_point_free(pnt2);
		isl_int_clear(t);
		return isl_basic_set_empty(dim);
	}
	if (isl_point_is_void(pnt1)) {
		isl_point_free(pnt1);
		isl_int_clear(t);
		return isl_basic_set_from_point(pnt2);
	}
	if (isl_point_is_void(pnt2)) {
		isl_point_free(pnt2);
		isl_int_clear(t);
		return isl_basic_set_from_point(pnt1);
	}

	total = isl_dim_total(pnt1->dim);
	bset = isl_basic_set_alloc_dim(isl_dim_copy(pnt1->dim), 0, 0, 2 * total);

	for (i = 0; i < total; ++i) {
		isl_int_mul(t, pnt1->vec->el[1 + i], pnt2->vec->el[0]);
		isl_int_submul(t, pnt2->vec->el[1 + i], pnt1->vec->el[0]);

		k = isl_basic_set_alloc_inequality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->ineq[k] + 1, total);
		if (isl_int_is_pos(t)) {
			isl_int_set_si(bset->ineq[k][1 + i], -1);
			isl_int_set(bset->ineq[k][0], pnt1->vec->el[1 + i]);
		} else {
			isl_int_set_si(bset->ineq[k][1 + i], 1);
			isl_int_neg(bset->ineq[k][0], pnt1->vec->el[1 + i]);
		}
		isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt1->vec->el[0]);

		k = isl_basic_set_alloc_inequality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->ineq[k] + 1, total);
		if (isl_int_is_pos(t)) {
			isl_int_set_si(bset->ineq[k][1 + i], 1);
			isl_int_neg(bset->ineq[k][0], pnt2->vec->el[1 + i]);
		} else {
			isl_int_set_si(bset->ineq[k][1 + i], -1);
			isl_int_set(bset->ineq[k][0], pnt2->vec->el[1 + i]);
		}
		isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt2->vec->el[0]);
	}

	bset = isl_basic_set_finalize(bset);

	isl_point_free(pnt1);
	isl_point_free(pnt2);

	isl_int_clear(t);

	return bset;
error:
	isl_point_free(pnt1);
	isl_point_free(pnt2);
	isl_int_clear(t);
	return NULL;
}