/* Compute the affine hull of "bset", where "cone" is the recession cone
 * of "bset".
 *
 * We first compute a unimodular transformation that puts the unbounded
 * directions in the last dimensions.  In particular, we take a transformation
 * that maps all equalities to equalities (in HNF) on the first dimensions.
 * Let x be the original dimensions and y the transformed, with y_1 bounded
 * and y_2 unbounded.
 *
 *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
 *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
 *
 * Let's call the input basic set S.  We compute S' = preimage(S, U)
 * and drop the final dimensions including any constraints involving them.
 * This results in set S''.
 * Then we compute the affine hull A'' of S''.
 * Let F y_1 >= g be the constraint system of A''.  In the transformed
 * space the y_2 are unbounded, so we can add them back without any constraints,
 * resulting in
 *
 *		        [ y_1 ]
 *		[ F 0 ] [ y_2 ] >= g
 * or
 *		        [ Q_1 ]
 *		[ F 0 ] [ Q_2 ] x >= g
 * or
 *		F Q_1 x >= g
 *
 * The affine hull in the original space is then obtained as
 * A = preimage(A'', Q_1).
 */
static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
	struct isl_basic_set *cone)
{
	unsigned total;
	unsigned cone_dim;
	struct isl_basic_set *hull;
	struct isl_mat *M, *U, *Q;

	if (!bset || !cone)
		goto error;

	total = isl_basic_set_total_dim(cone);
	cone_dim = total - cone->n_eq;

	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
	M = isl_mat_left_hermite(M, 0, &U, &Q);
	if (!M)
		goto error;
	isl_mat_free(M);

	U = isl_mat_lin_to_aff(U);
	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));

	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
							cone_dim);
	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);

	Q = isl_mat_lin_to_aff(Q);
	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);

	if (bset && bset->sample && bset->sample->size == 1 + total)
		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);

	hull = uset_affine_hull_bounded(bset);

	if (!hull)
		isl_mat_free(U);
	else {
		struct isl_vec *sample = isl_vec_copy(hull->sample);
		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
		if (sample && sample->size > 0)
			sample = isl_mat_vec_product(U, sample);
		else
			isl_mat_free(U);
		hull = isl_basic_set_preimage(hull, Q);
		if (hull) {
			isl_vec_free(hull->sample);
			hull->sample = sample;
		} else
			isl_vec_free(sample);
	}

	isl_basic_set_free(cone);

	return hull;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(cone);
	return NULL;
}
/* Construct a morphism that first does morph2 and then morph1.
 */
__isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
	__isl_take isl_morph *morph2)
{
	isl_mat *map, *inv;
	isl_basic_set *dom, *ran;

	if (!morph1 || !morph2)
		goto error;

	map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
	inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
	dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
				  isl_basic_set_copy(morph1->dom));
	dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
	ran = isl_morph_basic_set(isl_morph_copy(morph1),
				  isl_basic_set_copy(morph2->ran));
	ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));

	isl_morph_free(morph1);
	isl_morph_free(morph2);

	return isl_morph_alloc(dom, ran, map, inv);
error:
	isl_morph_free(morph1);
	isl_morph_free(morph2);
	return NULL;
}
__isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
{
	if (!morph)
		return NULL;

	return isl_morph_alloc(isl_basic_set_copy(morph->dom),
		isl_basic_set_copy(morph->ran),
		isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
}
/* Construct a parameter compression for "bset".
 * We basically just call isl_mat_parameter_compression with the right input
 * and then extend the resulting matrix to include the variables.
 *
 * Let the equalities be given as
 *
 *	B(p) + A x = 0
 *
 * and let [H 0] be the Hermite Normal Form of A, then
 *
 *	H^-1 B(p)
 *
 * needs to be integer, so we impose that each row is divisible by
 * the denominator.
 */
__isl_give isl_morph *isl_basic_set_parameter_compression(
	__isl_keep isl_basic_set *bset)
{
	unsigned nparam;
	unsigned nvar;
	int n_eq;
	isl_mat *H, *B;
	isl_vec *d;
	isl_mat *map, *inv;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);
	if (bset->n_eq == 0)
		return isl_morph_identity(bset);

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	n_eq = bset->n_eq;
	nparam = isl_basic_set_dim(bset, isl_dim_param);
	nvar = isl_basic_set_dim(bset, isl_dim_set);

	isl_assert(bset->ctx, n_eq <= nvar, return NULL);

	d = isl_vec_alloc(bset->ctx, n_eq);
	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
	H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar);
	H = isl_mat_left_hermite(H, 0, NULL, NULL);
	H = isl_mat_drop_cols(H, n_eq, nvar - n_eq);
	H = isl_mat_lin_to_aff(H);
	H = isl_mat_right_inverse(H);
	if (!H || !d)
		goto error;
	isl_seq_set(d->el, H->row[0][0], d->size);
	H = isl_mat_drop_rows(H, 0, 1);
	H = isl_mat_drop_cols(H, 0, 1);
	B = isl_mat_product(H, B);
	inv = isl_mat_parameter_compression(B, d);
	inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
	map = isl_mat_right_inverse(isl_mat_copy(inv));

	dom = isl_basic_set_universe(isl_space_copy(bset->dim));
	ran = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(dom, ran, map, inv);
error:
	isl_mat_free(H);
	isl_mat_free(B);
	isl_vec_free(d);
	return NULL;
}
__isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
	__isl_take isl_vec *vec)
{
	if (!morph)
		goto error;

	vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);

	isl_morph_free(morph);
	return vec;
error:
	isl_morph_free(morph);
	isl_vec_free(vec);
	return NULL;
}
/* Create a(n identity) morphism between empty sets of the same dimension
 * a "bset".
 */
__isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *empty;
	unsigned total;

	if (!bset)
		return NULL;

	total = isl_basic_set_total_dim(bset);
	id = isl_mat_identity(bset->ctx, 1 + total);
	empty = isl_basic_set_empty(isl_space_copy(bset->dim));

	return isl_morph_alloc(empty, isl_basic_set_copy(empty),
		id, isl_mat_copy(id));
}
__isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
{
	isl_mat *id;
	isl_basic_set *universe;
	unsigned total;

	if (!bset)
		return NULL;

	total = isl_basic_set_total_dim(bset);
	id = isl_mat_identity(bset->ctx, 1 + total);
	universe = isl_basic_set_universe(isl_space_copy(bset->dim));

	return isl_morph_alloc(universe, isl_basic_set_copy(universe),
		id, isl_mat_copy(id));
}
Exemple #8
0
/* Use the n equalities of bset to unimodularly transform the
 * variables x such that n transformed variables x1' have a constant value
 * and rewrite the constraints of bset in terms of the remaining
 * transformed variables x2'.  The matrix pointed to by T maps
 * the new variables x2' back to the original variables x, while T2
 * maps the original variables to the new variables.
 */
static struct isl_basic_set *compress_variables(
	struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2)
{
	struct isl_mat *B, *TC;
	unsigned dim;

	if (T)
		*T = NULL;
	if (T2)
		*T2 = NULL;
	if (!bset)
		goto error;
	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
	isl_assert(bset->ctx, bset->n_div == 0, goto error);
	dim = isl_basic_set_n_dim(bset);
	isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
	if (bset->n_eq == 0)
		return bset;

	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
	TC = isl_mat_variable_compression(B, T2);
	if (!TC)
		goto error;
	if (TC->n_col == 0) {
		isl_mat_free(TC);
		if (T2) {
			isl_mat_free(*T2);
			*T2 = NULL;
		}
		return isl_basic_set_set_to_empty(bset);
	}

	bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
	if (T)
		*T = TC;
	return bset;
error:
	isl_basic_set_free(bset);
	return NULL;
}
/* Apply the morphism to the basic set.
 * We basically just compute the preimage of "bset" under the inverse mapping
 * in morph, add in stride constraints and intersect with the range
 * of the morphism.
 */
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
	__isl_take isl_basic_set *bset)
{
	isl_basic_set *res = NULL;
	isl_mat *mat = NULL;
	int i, k;
	int max_stride;

	if (!morph || !bset)
		goto error;

	isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
		    goto error);

	max_stride = morph->inv->n_row - 1;
	if (isl_int_is_one(morph->inv->row[0][0]))
		max_stride = 0;
	res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
		bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);

	for (i = 0; i < bset->n_div; ++i)
		if (isl_basic_set_alloc_div(res) < 0)
			goto error;

	mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_eq; ++i) {
		k = isl_basic_set_alloc_equality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
					0, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(res);
		if (k < 0)
			goto error;
		isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
		isl_seq_scale(res->ineq[k] + mat->n_col,
				bset->ineq[i] + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
					1, morph->inv->n_row);
	mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
	if (!mat)
		goto error;
	for (i = 0; i < bset->n_div; ++i) {
		isl_int_mul(res->div[i][0],
				morph->inv->row[0][0], bset->div[i][0]);
		isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
		isl_seq_scale(res->div[i] + 1 + mat->n_col,
				bset->div[i] + 1 + mat->n_col,
				morph->inv->row[0][0], bset->n_div);
	}
	isl_mat_free(mat);

	res = add_strides(res, morph);

	if (isl_basic_set_is_rational(bset))
		res = isl_basic_set_set_rational(res);

	res = isl_basic_set_simplify(res);
	res = isl_basic_set_finalize(res);

	res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));

	isl_morph_free(morph);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(mat);
	isl_morph_free(morph);
	isl_basic_set_free(bset);
	isl_basic_set_free(res);
	return NULL;
}
/* Look for all integer points in "bset", which is assumed to be bounded,
 * and call callback->add on each of them.
 *
 * We first compute a reduced basis for the set and then scan
 * the set in the directions of this basis.
 * We basically perform a depth first search, where in each level i
 * we compute the range in the i-th basis vector direction, given
 * fixed values in the directions of the previous basis vector.
 * We then add an equality to the tableau fixing the value in the
 * direction of the current basis vector to each value in the range
 * in turn and then continue to the next level.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 * Solutions are added in the leaves of the search tree, i.e., after
 * we have fixed a value in each direction of the basis.
 */
int isl_basic_set_scan(struct isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	unsigned dim;
	struct isl_mat *B = NULL;
	struct isl_tab *tab = NULL;
	struct isl_vec *min;
	struct isl_vec *max;
	struct isl_tab_undo **snap;
	int level;
	int init;
	enum isl_lp_result res;

	if (!bset)
		return -1;

	dim = isl_basic_set_total_dim(bset);
	if (dim == 0)
		return scan_0D(bset, callback);

	min = isl_vec_alloc(bset->ctx, dim);
	max = isl_vec_alloc(bset->ctx, dim);
	snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim);

	if (!min || !max || !snap)
		goto error;

	tab = isl_tab_from_basic_set(bset, 0);
	if (!tab)
		goto error;
	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		goto error;

	tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
	if (1)
		tab = isl_tab_compute_reduced_basis(tab);
	if (!tab)
		goto error;
	B = isl_mat_copy(tab->basis);
	if (!B)
		goto error;

	level = 0;
	init = 1;

	while (level >= 0) {
		int empty = 0;
		if (init) {
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &min->el[level], NULL, 0);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &max->el[level], NULL, 0);
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			isl_int_neg(max->el[level], max->el[level]);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);

		if (empty || isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		if (level == dim - 1 && callback->add == increment_counter) {
			if (increment_range(callback,
					    min->el[level], max->el[level]))
				goto error;
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(B->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(B->row[1 + level][0], 0);
		if (level < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		if (add_solution(tab, callback) < 0)
			goto error;
		init = 0;
		if (isl_tab_rollback(tab, snap[level]) < 0)
			goto error;
	}

	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return 0;
error:
	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return -1;
}