Exemple #1
0
static void draw_udp_in_scope(ivl_net_logic_t lptr)
{
  unsigned pdx;

  ivl_udp_t udp = ivl_logic_udp(lptr);

  static ivl_udp_t *udps = 0x0;
  static int nudps = 0;
  int i;

  for (i=0; i<nudps; i++)
    if (udps[i] == udp)
      break;

  if (i >= nudps)
    {
      udps = realloc(udps, (nudps+1)*sizeof(ivl_udp_t));
      assert(udps);
      udps[nudps++] = udp;
      draw_udp_def(udp);
    }

  fprintf(vvp_out, "L_%p .udp", lptr);
  fprintf(vvp_out, " UDP_%s",
	  vvp_mangle_id(ivl_udp_name(udp)));
  draw_delay(lptr);

  for (pdx = 1 ;  pdx < ivl_logic_pins(lptr) ;  pdx += 1) {
	ivl_nexus_t nex = ivl_logic_pin(lptr, pdx);

	  /* Unlike other logic gates, primitives may have unconnected
	     inputs. The proper behavior is to attach a HiZ to the
	     port. */
	if (nex == 0) {
	      assert(ivl_logic_width(lptr) == 1);
	      fprintf(vvp_out, ", C4<z>");

	} else {
	      fprintf(vvp_out, ", %s", draw_net_input(nex));
	}
  }

  fprintf(vvp_out, ";\n");
}
Exemple #2
0
/*
 * This function draws a BUFT to drive a net pullup or pulldown value.
 * If the drive strength is strong we can draw a C4<> constant as the
 * pull value, otherwise we need to draw a C8<> constant.
 */
static char* draw_net_pull(ivl_net_logic_t lptr, ivl_drive_t drive, const char*level)
{
      char*result;
      char tmp[32];
      if (drive == IVL_DR_STRONG) {
            size_t result_len = 5 + ivl_logic_width(lptr);
            result = malloc(result_len);
            char*dp = result;
            strcpy(dp, "C4<");
            dp += strlen(dp);
            str_repeat(dp, level, ivl_logic_width(lptr));
            dp += ivl_logic_width(lptr);
            *dp++ = '>';
            *dp = 0;
            assert(dp >= result);
            assert((unsigned)(dp - result) <= result_len);
      } else {
            char val[4];
            size_t result_len = 5 + 3*ivl_logic_width(lptr);
            result = malloc(result_len);
            char*dp = result;

            val[0] = "01234567"[drive];
            val[1] = val[0];
            val[2] = level[0];
            val[3] = 0;

            strcpy(dp, "C8<");
            dp += strlen(dp);
            str_repeat(dp, val, ivl_logic_width(lptr));
            dp += 3*ivl_logic_width(lptr);
            *dp++ = '>';
            *dp = 0;
            assert(dp >= result);
            assert((unsigned)(dp - result) <= result_len);
      }

        /* Make the constant an argument to a BUFZ, which is
           what we use to drive the PULLed value. */
      fprintf(vvp_out, "L_%p .functor BUFT 1, %s, C4<0>, C4<0>, C4<0>;\n",
              lptr, result);
      snprintf(tmp, sizeof tmp, "L_%p", lptr);
      result = realloc(result, strlen(tmp)+1);
      strcpy(result, tmp);
      return result;
}
static char* draw_net_input_drive(ivl_nexus_t nex, ivl_nexus_ptr_t nptr)
{
      unsigned nptr_pin = ivl_nexus_ptr_pin(nptr);
      ivl_net_const_t cptr;
      ivl_net_logic_t lptr;
      ivl_signal_t sptr;
      ivl_lpm_t lpm;

      lptr = ivl_nexus_ptr_log(nptr);
      if (lptr
	  && ((ivl_logic_type(lptr)==IVL_LO_BUFZ)||(ivl_logic_type(lptr)==IVL_LO_BUFT))
	  && (nptr_pin == 0))
	    do {
		  if (! can_elide_bufz(lptr, nptr))
			break;

		  return strdup(draw_net_input(ivl_logic_pin(lptr, 1)));
	    } while(0);

	/* If this is a pulldown device, then there is a single pin
	   that drives a constant value to the entire width of the
	   vector. The driver normally drives a pull0 value, so a C8<>
	   constant is appropriate, but if the drive is really strong,
	   then we can draw a C4<> constant instead. */
      if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLDOWN)) {
	    if (ivl_nexus_ptr_drive0(nptr) == IVL_DR_STRONG) {
		  size_t result_len = ivl_logic_width(lptr) + 5;
		  char*result = malloc(result_len);
		  char*dp = result;
		  strcpy(dp, "C4<");
		  dp += strlen(dp);
		  str_repeat(dp, "0", ivl_logic_width(lptr));
		  dp += ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);
		  return result;
	    } else {
		  char val[4];
		  size_t result_len = 3*ivl_logic_width(lptr) + 5;
		  char*result = malloc(result_len);
		  char*dp = result;

		  val[0] = "01234567"[ivl_nexus_ptr_drive0(nptr)];
		  val[1] = val[0];
		  val[2] = '0';
		  val[3] = 0;

		  strcpy(dp, "C8<");
		  dp += strlen(dp);
		  str_repeat(dp, val, ivl_logic_width(lptr));
		  dp += 3*ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);
		  return result;
	    }
      }

      if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLUP)) {
	    char*result;
	    char tmp[32];
	    if (ivl_nexus_ptr_drive1(nptr) == IVL_DR_STRONG) {
		  size_t result_len = 5 + ivl_logic_width(lptr);
		  result = malloc(result_len);
		  char*dp = result;
		  strcpy(dp, "C4<");
		  dp += strlen(dp);
		  str_repeat(dp, "1", ivl_logic_width(lptr));
		  dp += ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);

	    } else {
		  char val[4];
		  size_t result_len = 5 + 3*ivl_logic_width(lptr);
		  result = malloc(result_len);
		  char*dp = result;

		  val[0] = "01234567"[ivl_nexus_ptr_drive1(nptr)];
		  val[1] = val[0];
		  val[2] = '1';
		  val[3] = 0;

		  strcpy(dp, "C8<");
		  dp += strlen(dp);
		  str_repeat(dp, val, ivl_logic_width(lptr));
		  dp += 3*ivl_logic_width(lptr);
		  *dp++ = '>';
		  *dp = 0;
		  assert(dp >= result);
		  assert((unsigned)(dp - result) <= result_len);

	    }

	      /* Make the constant an argument to a BUFZ, which is
		 what we use to drive the PULLed value. */
	    fprintf(vvp_out, "L_%p .functor BUFT 1, %s, C4<0>, C4<0>, C4<0>;\n",
		    lptr, result);
	    snprintf(tmp, sizeof tmp, "L_%p", lptr);
	    result = realloc(result, strlen(tmp)+1);
	    strcpy(result, tmp);
	    return result;
      }

      if (lptr && (nptr_pin == 0)) {
	    char tmp[128];
	    snprintf(tmp, sizeof tmp, "L_%p", lptr);
	    return strdup(tmp);
      }

      sptr = ivl_nexus_ptr_sig(nptr);
      if (sptr && (ivl_signal_type(sptr) == IVL_SIT_REG)) {
	    char tmp[128];
	      /* Input is a .var. This device may be a non-zero pin
	         because it may be an array of reg vectors. */
	    snprintf(tmp, sizeof tmp, "v%p_%u", sptr, nptr_pin);

	    if (ivl_signal_dimensions(sptr) > 0) {
		  fprintf(vvp_out, "v%p_%u .array/port v%p, %u;\n",
			  sptr, nptr_pin, sptr, nptr_pin);
	    }

	    return strdup(tmp);
      }

      cptr = ivl_nexus_ptr_con(nptr);
      if (cptr) {
	    char *result = 0;
	    ivl_expr_t d_rise, d_fall, d_decay;
            unsigned dly_width = 0;

	      /* Constants should have exactly 1 pin, with a literal value. */
	    assert(nptr_pin == 0);

	    switch (ivl_const_type(cptr)) {
		case IVL_VT_LOGIC:
		case IVL_VT_BOOL:
		case IVL_VT_STRING:
		  if ((ivl_nexus_ptr_drive0(nptr) == IVL_DR_STRONG)
		      && (ivl_nexus_ptr_drive1(nptr) == IVL_DR_STRONG)) {

			result = draw_C4_to_string(cptr);

		  } else {
			result = draw_C8_to_string(cptr,
						   ivl_nexus_ptr_drive0(nptr),
						   ivl_nexus_ptr_drive1(nptr));
		  }
                  dly_width = ivl_const_width(cptr);
		  break;

		case IVL_VT_REAL:
		  result = draw_Cr_to_string(ivl_const_real(cptr));
                  dly_width = 0;
		  break;

		default:
		  assert(0);
		  break;
	    }

	    d_rise = ivl_const_delay(cptr, 0);
	    d_fall = ivl_const_delay(cptr, 1);
	    d_decay = ivl_const_delay(cptr, 2);

	      /* We have a delayed constant, so we need to build some code. */
	    if (d_rise != 0) {
		  char tmp[128];
		  fprintf(vvp_out, "L_%p/d .functor BUFT 1, %s, "
		                   "C4<0>, C4<0>, C4<0>;\n", cptr, result);
		  free(result);

		    /* Is this a fixed or variable delay? */
		  if (number_is_immediate(d_rise, 64, 0) &&
		      number_is_immediate(d_fall, 64, 0) &&
		      number_is_immediate(d_decay, 64, 0)) {

			assert(! number_is_unknown(d_rise));
			assert(! number_is_unknown(d_fall));
			assert(! number_is_unknown(d_decay));

			fprintf(vvp_out, "L_%p .delay %u "
				"(%" PRIu64 ",%" PRIu64 ",%" PRIu64 ") L_%p/d;\n",
			                 cptr, dly_width,
			                 get_number_immediate64(d_rise),
			                 get_number_immediate64(d_fall),
			                 get_number_immediate64(d_decay), cptr);

		  } else {
			ivl_signal_t sig;
			// We do not currently support calculating the decay
			// from the rise and fall variable delays.
			assert(d_decay != 0);
			assert(ivl_expr_type(d_rise) == IVL_EX_SIGNAL);
			assert(ivl_expr_type(d_fall) == IVL_EX_SIGNAL);
			assert(ivl_expr_type(d_decay) == IVL_EX_SIGNAL);

			fprintf(vvp_out, "L_%p .delay %u L_%p/d",
                                cptr, dly_width, cptr);

			sig = ivl_expr_signal(d_rise);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0", sig);

			sig = ivl_expr_signal(d_fall);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0", sig);

			sig = ivl_expr_signal(d_decay);
			assert(ivl_signal_dimensions(sig) == 0);
			fprintf(vvp_out, ", v%p_0;\n", sig);
		  }

		  snprintf(tmp, sizeof tmp, "L_%p", cptr);
		  result = strdup(tmp);

	    } else {
		  char tmp[64];
		  fprintf(vvp_out, "L_%p .functor BUFT 1, %s, "
			  "C4<0>, C4<0>, C4<0>;\n", cptr, result);
		  free(result);

		  snprintf(tmp, sizeof tmp, "L_%p", cptr);
		  result = strdup(tmp);
	    }

	    return result;
      }

      lpm = ivl_nexus_ptr_lpm(nptr);
      if (lpm) switch (ivl_lpm_type(lpm)) {

	  case IVL_LPM_FF:
	  case IVL_LPM_ABS:
	  case IVL_LPM_ADD:
	  case IVL_LPM_ARRAY:
	  case IVL_LPM_CAST_INT2:
	  case IVL_LPM_CAST_INT:
	  case IVL_LPM_CAST_REAL:
	  case IVL_LPM_CONCAT:
	  case IVL_LPM_CONCATZ:
	  case IVL_LPM_CMP_EEQ:
	  case IVL_LPM_CMP_EQ:
	  case IVL_LPM_CMP_GE:
	  case IVL_LPM_CMP_GT:
	  case IVL_LPM_CMP_NE:
	  case IVL_LPM_CMP_NEE:
	  case IVL_LPM_RE_AND:
	  case IVL_LPM_RE_OR:
	  case IVL_LPM_RE_XOR:
	  case IVL_LPM_RE_NAND:
	  case IVL_LPM_RE_NOR:
	  case IVL_LPM_RE_XNOR:
	  case IVL_LPM_SFUNC:
	  case IVL_LPM_SHIFTL:
	  case IVL_LPM_SHIFTR:
	  case IVL_LPM_SIGN_EXT:
	  case IVL_LPM_SUB:
	  case IVL_LPM_MULT:
	  case IVL_LPM_MUX:
	  case IVL_LPM_POW:
	  case IVL_LPM_DIVIDE:
	  case IVL_LPM_MOD:
	  case IVL_LPM_UFUNC:
	  case IVL_LPM_PART_VP:
	  case IVL_LPM_PART_PV: /* NOTE: This is only a partial driver. */
	  case IVL_LPM_REPEAT:
	    if (ivl_lpm_q(lpm) == nex) {
		  char tmp[128];
		  snprintf(tmp, sizeof tmp, "L_%p", lpm);
		  return strdup(tmp);
	    }
	    break;

      }

      fprintf(stderr, "vvp.tgt error: no input to nexus.\n");
      assert(0);
      return strdup("C<z>");
}
Exemple #4
0
/*
 * All logic gates have inputs and outputs that match exactly in
 * width. For example, and AND gate with 4 bit inputs generates a 4
 * bit output, and all the inputs are 4 bits.
 */
static void show_logic(ivl_net_logic_t net)
{
      unsigned npins, idx;
      const char*name = ivl_logic_basename(net);
      ivl_drive_t drive0 = ivl_logic_drive0(net);
      ivl_drive_t drive1 = ivl_logic_drive1(net);

      switch (ivl_logic_type(net)) {
	  case IVL_LO_AND:
	    fprintf(out, "  and %s", name);
	    break;
	  case IVL_LO_BUF:
	    fprintf(out, "  buf %s", name);
	    break;
	  case IVL_LO_BUFIF0:
	    fprintf(out, "  bufif0 %s", name);
	    break;
	  case IVL_LO_BUFIF1:
	    fprintf(out, "  bufif1 %s", name);
	    break;
	  case IVL_LO_BUFT:
	    fprintf(out, "  buft %s", name);
	    break;
	  case IVL_LO_BUFZ:
	    fprintf(out, "  bufz %s", name);
	    break;
	  case IVL_LO_CMOS:
	    fprintf(out, "  cmos %s", name);
	    break;
	  case IVL_LO_NAND:
	    fprintf(out, "  nand %s", name);
	    break;
	  case IVL_LO_NMOS:
	    fprintf(out, "  nmos %s", name);
	    break;
	  case IVL_LO_NOR:
	    fprintf(out, "  nor %s", name);
	    break;
	  case IVL_LO_NOT:
	    fprintf(out, "  not %s", name);
	    break;
	  case IVL_LO_NOTIF0:
	    fprintf(out, "  notif0 %s", name);
	    break;
	  case IVL_LO_NOTIF1:
	    fprintf(out, "  notif1 %s", name);
	    break;
	  case IVL_LO_OR:
	    fprintf(out, "  or %s", name);
	    break;
	  case IVL_LO_PMOS:
	    fprintf(out, "  pmos %s", name);
	    break;
	  case IVL_LO_PULLDOWN:
	    fprintf(out, "  pulldown %s", name);
	    break;
	  case IVL_LO_PULLUP:
	    fprintf(out, "  pullup %s", name);
	    break;
	  case IVL_LO_RCMOS:
	    fprintf(out, "  rcmos %s", name);
	    break;
	  case IVL_LO_RNMOS:
	    fprintf(out, "  rnmos %s", name);
	    break;
	  case IVL_LO_RPMOS:
	    fprintf(out, "  rpmos %s", name);
	    break;
	  case IVL_LO_XNOR:
	    fprintf(out, "  xnor %s", name);
	    break;
	  case IVL_LO_XOR:
	    fprintf(out, "  xor %s", name);
	    break;

	  case IVL_LO_UDP:
	    fprintf(out, "  primitive<%s> %s",
		    ivl_udp_name(ivl_logic_udp(net)), name);
	    break;

	  default:
	    fprintf(out, "  unsupported gate<type=%d> %s", ivl_logic_type(net), name);
	    break;
      }

      fprintf(out, " <width=%u>\n", ivl_logic_width(net));

      fprintf(out, "    <Delays...>\n");
      if (ivl_logic_delay(net,0)) {
	    test_expr_is_delay(ivl_logic_delay(net,0));
	    show_expression(ivl_logic_delay(net,0), 6);
      }
      if (ivl_logic_delay(net,1)) {
	    test_expr_is_delay(ivl_logic_delay(net,1));
	    show_expression(ivl_logic_delay(net,1), 6);
      }
      if (ivl_logic_delay(net,2)) {
	    test_expr_is_delay(ivl_logic_delay(net,2));
	    show_expression(ivl_logic_delay(net,2), 6);
      }

      npins = ivl_logic_pins(net);

	/* Show the pins of the gate. Pin-0 is always the output, and
	   the remaining pins are the inputs. Inputs may be
	   unconnected, but if connected the nexus width must exactly
	   match the gate width. */
      for (idx = 0 ;  idx < npins ;  idx += 1) {
	    ivl_nexus_t nex = ivl_logic_pin(net, idx);

	    fprintf(out, "    %d: %p", idx, nex);
	    if (idx == 0)
		  fprintf(out, " <drive0/1 = %u/%u>", drive0, drive1);
	    fprintf(out, "\n");

	    if (nex == 0) {
		  if (idx == 0) {
			fprintf(out, "    0: ERROR: Pin 0 must not "
				"be unconnected\n");
			stub_errors += 1;
		  }
		  continue;
	    }

	    if (ivl_logic_width(net) != width_of_nexus(nex)) {
		  fprintf(out, "    %d: ERROR: Nexus width is %u\n",
			  idx, width_of_nexus(nex));
		  stub_errors += 1;
	    }
      }

	/* If this is an instance of a UDP, then check that the
	   instantiation is consistent with the definition. */
      if (ivl_logic_type(net) == IVL_LO_UDP) {
	    ivl_udp_t udp = ivl_logic_udp(net);
	    if (npins != 1+ivl_udp_nin(udp)) {
		  fprintf(out, "    ERROR: UDP %s expects %u inputs\n",
			  ivl_udp_name(udp), ivl_udp_nin(udp));
		  stub_errors += 1;
	    }

	      /* Add a reference to this udp definition. */
	    reference_udp_definition(udp);
      }

      npins = ivl_logic_attr_cnt(net);
      for (idx = 0 ;  idx < npins ;  idx += 1) {
	    ivl_attribute_t cur = ivl_logic_attr_val(net,idx);
	    switch (cur->type) {
		case IVL_ATT_VOID:
		  fprintf(out, "    %s\n", cur->key);
		  break;
		case IVL_ATT_NUM:
		  fprintf(out, "    %s = %ld\n", cur->key, cur->val.num);
		  break;
		case IVL_ATT_STR:
		  fprintf(out, "    %s = %s\n", cur->key, cur->val.str);
		  break;
	    }
      }
}