static void set_to_lvariable(ivl_lval_t lval, unsigned idx, unsigned bit, unsigned wid) { ivl_signal_t sig = ivl_lval_sig(lval); unsigned part_off = ivl_lval_part_off(lval); if (ivl_lval_mux(lval)) { assert(wid == 1); if ((ivl_signal_pins(sig)-1) <= 0xffffU) { fprintf(vvp_out, " %%set/x0 V_%s, %u, %u;\n", vvp_signal_label(sig), bit, ivl_signal_pins(sig)-1); } else { /* If the target bound is too big for the %set/x0 instruction, then use the %set/x0/x instruction instead. */ fprintf(vvp_out, " %%ix/load 3, %u;\n", ivl_signal_pins(sig)-1); fprintf(vvp_out, " %%set/x0/x V_%s, %u, 3;\n", vvp_signal_label(sig), bit); } } else if (wid == 1) { fprintf(vvp_out, " %%set V_%s[%u], %u;\n", vvp_signal_label(sig), idx+part_off, bit); } else { fprintf(vvp_out, " %%set/v V_%s[%u], %u, %u;\n", vvp_signal_label(sig), idx+part_off, bit, wid); } }
static int show_stmt_force(ivl_statement_t net) { ivl_lval_t lval; ivl_signal_t lsig; unsigned idx; static unsigned force_functor_label = 0; char*tmp_label; assert(ivl_stmt_lvals(net) == 1); lval = ivl_stmt_lval(net, 0); lsig = ivl_lval_sig(lval); assert(lsig != 0); assert(ivl_lval_mux(lval) == 0); assert(ivl_lval_part_off(lval) == 0); force_functor_label += 1; tmp_label = strdup(vvp_signal_label(lsig)); for (idx = 0 ; idx < ivl_lval_pins(lval) ; idx += 1) { fprintf(vvp_out, "f_%u.%u .force V_%s[%u], %s;\n", force_functor_label, idx, tmp_label, idx, draw_net_input(ivl_stmt_nexus(net, idx))); } free(tmp_label); for (idx = 0 ; idx < ivl_lval_pins(lval) ; idx += 1) { fprintf(vvp_out, " %%force f_%u.%u, 1;\n", force_functor_label, idx); } return 0; }
/* * Check to see if the statement L-value is a port in the given scope. * If it is return the zero based port number. */ static unsigned utask_in_port_idx(ivl_scope_t scope, ivl_statement_t stmt) { unsigned idx, ports = ivl_scope_ports(scope); ivl_lval_t lval = ivl_stmt_lval(stmt, 0); ivl_signal_t lsig = ivl_lval_sig(lval); const char *sig_name; /* The L-value must be a single signal. */ if (ivl_stmt_lvals(stmt) != 1) return ports; /* It must not have an array select. */ if (ivl_lval_idx(lval)) return ports; /* It must not have a non-zero base. */ if (ivl_lval_part_off(lval)) return ports; /* It must not be part of the signal. */ if (ivl_lval_width(lval) != ivl_signal_width(lsig)) return ports; /* It must have the same scope as the task. */ if (scope != ivl_signal_scope(lsig)) return ports; /* It must be an input or inout port of the task. */ sig_name = ivl_signal_basename(lsig); for (idx = 0; idx < ports; idx += 1) { ivl_signal_t port = ivl_scope_port(scope, idx); ivl_signal_port_t port_type = ivl_signal_port(port); if ((port_type != IVL_SIP_INPUT) && (port_type != IVL_SIP_INOUT)) continue; if (strcmp(sig_name, ivl_signal_basename(port)) == 0) break; } return idx; }
static int show_stmt_cassign(ivl_statement_t net) { ivl_lval_t lval; ivl_signal_t lsig; unsigned idx; char*tmp_label; assert(ivl_stmt_lvals(net) == 1); lval = ivl_stmt_lval(net, 0); lsig = ivl_lval_sig(lval); assert(lsig != 0); assert(ivl_lval_mux(lval) == 0); assert(ivl_signal_pins(lsig) == ivl_stmt_nexus_count(net)); assert(ivl_lval_part_off(lval) == 0); tmp_label = strdup(vvp_signal_label(lsig)); for (idx = 0 ; idx < ivl_stmt_nexus_count(net) ; idx += 1) { fprintf(vvp_out, " %%cassign V_%s[%u], %s;\n", tmp_label, idx, draw_net_input(ivl_stmt_nexus(net, idx))); } free(tmp_label); return 0; }
static int show_stmt_assign_sig_darray(ivl_statement_t net) { int errors = 0; ivl_lval_t lval = ivl_stmt_lval(net, 0); ivl_expr_t rval = ivl_stmt_rval(net); ivl_expr_t part = ivl_lval_part_off(lval); ivl_signal_t var= ivl_lval_sig(lval); ivl_type_t var_type= ivl_signal_net_type(var); assert(ivl_type_base(var_type) == IVL_VT_DARRAY); ivl_type_t element_type = ivl_type_element(var_type); ivl_expr_t mux = ivl_lval_idx(lval); assert(ivl_stmt_lvals(net) == 1); assert(ivl_stmt_opcode(net) == 0); assert(ivl_lval_mux(lval) == 0); assert(part == 0); if (mux && (ivl_type_base(element_type)==IVL_VT_REAL)) { draw_eval_real(rval); /* The %set/dar expects the array index to be in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%store/dar/r v%p_0;\n", var); } else if (mux && ivl_type_base(element_type)==IVL_VT_STRING) { /* Evaluate the rval into the top of the string stack. */ draw_eval_string(rval); /* The %store/dar/s expects the array index to me in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%store/dar/str v%p_0;\n", var); } else if (mux) { struct vector_info rvec = draw_eval_expr_wid(rval, ivl_lval_width(lval), STUFF_OK_XZ); /* The %set/dar expects the array index to be in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%set/dar v%p_0, %u, %u;\n", var, rvec.base, rvec.wid); if (rvec.base >= 4) clr_vector(rvec); } else { /* There is no l-value mux, so this must be an assignment to the array as a whole. Evaluate the "object", and store the evaluated result. */ errors += draw_eval_object(rval); fprintf(vvp_out, " %%store/obj v%p_0;\n", var); } return errors; }
static int show_stmt_release(ivl_statement_t net) { ivl_lval_t lval; ivl_signal_t lsig; unsigned idx; /* If there are no l-vals (the target signal has been elided) then turn the release into a no-op. In other words, we are done before we start. */ if (ivl_stmt_lvals(net) == 0) return 0; assert(ivl_stmt_lvals(net) == 1); lval = ivl_stmt_lval(net, 0); lsig = ivl_lval_sig(lval); assert(lsig != 0); assert(ivl_lval_mux(lval) == 0); assert(ivl_lval_part_off(lval) == 0); /* On release, reg variables hold the value that was forced on to them. */ for (idx = 0 ; idx < ivl_lval_pins(lval) ; idx += 1) { if (ivl_signal_type(lsig) == IVL_SIT_REG) { fprintf(vvp_out, " %%load 4, V_%s[%u];\n", vvp_signal_label(lsig), idx); fprintf(vvp_out, " %%set V_%s[%u], 4;\n", vvp_signal_label(lsig), idx); } fprintf(vvp_out, " %%release V_%s[%u];\n", vvp_signal_label(lsig), idx); } return 0; }
static void assign_to_lvector(ivl_lval_t lval, unsigned idx, unsigned bit, unsigned delay, unsigned width) { ivl_signal_t sig = ivl_lval_sig(lval); unsigned part_off = ivl_lval_part_off(lval); assert(ivl_lval_mux(lval) == 0); fprintf(vvp_out, " %%ix/load 0, %u;\n", width); fprintf(vvp_out, " %%assign/v0 V_%s[%u], %u, %u;\n", vvp_signal_label(sig), part_off+idx, delay, bit); }
static int show_stmt_assign_sig_string(ivl_statement_t net) { ivl_lval_t lval = ivl_stmt_lval(net, 0); ivl_expr_t rval = ivl_stmt_rval(net); ivl_expr_t part = ivl_lval_part_off(lval); ivl_expr_t aidx = ivl_lval_idx(lval); ivl_signal_t var= ivl_lval_sig(lval); assert(ivl_stmt_lvals(net) == 1); assert(ivl_stmt_opcode(net) == 0); assert(ivl_lval_mux(lval) == 0); /* Simplest case: no mux. Evaluate the r-value as a string and store the result into the variable. Note that the %store/str opcode pops the string result. */ if (part == 0 && aidx == 0) { draw_eval_string(rval); fprintf(vvp_out, " %%store/str v%p_0;\n", var); return 0; } /* Assign to array. The l-value has an index expression expression so we are assigning to an array word. */ if (aidx != 0) { unsigned ix; assert(part == 0); draw_eval_string(rval); draw_eval_expr_into_integer(aidx, (ix = allocate_word())); fprintf(vvp_out, " %%store/stra v%p, %u;\n", var, ix); clr_word(ix); return 0; } /* Calculate the character select for the word. */ int mux_word = allocate_word(); draw_eval_expr_into_integer(part, mux_word); /* Evaluate the r-value as a vector. */ struct vector_info rvec = draw_eval_expr_wid(rval, 8, STUFF_OK_XZ); assert(rvec.wid == 8); fprintf(vvp_out, " %%putc/str/v v%p_0, %d, %u;\n", var, mux_word, rvec.base); clr_vector(rvec); clr_word(mux_word); return 0; }
/* * This generates an assign to a single bit of an lvalue variable. If * the bit is a part select, then index the label to set the right * bit. If there is an lvalue mux, then use the indexed assign to make * a calculated assign. */ static void assign_to_lvariable(ivl_lval_t lval, unsigned idx, unsigned bit, unsigned delay, int delay_in_index_flag) { ivl_signal_t sig = ivl_lval_sig(lval); unsigned part_off = ivl_lval_part_off(lval); char *delay_suffix = delay_in_index_flag? "/d" : ""; if (ivl_lval_mux(lval)) fprintf(vvp_out, " %%assign/x0%s V_%s, %u, %u;\n", delay_suffix, vvp_signal_label(sig), delay, bit); else fprintf(vvp_out, " %%assign%s V_%s[%u], %u, %u;\n", delay_suffix, vvp_signal_label(sig), idx+part_off, delay, bit); }
static int show_stmt_deassign(ivl_statement_t net) { ivl_lval_t lval; ivl_signal_t lsig; unsigned idx; assert(ivl_stmt_lvals(net) == 1); lval = ivl_stmt_lval(net, 0); lsig = ivl_lval_sig(lval); assert(lsig != 0); assert(ivl_lval_mux(lval) == 0); assert(ivl_lval_part_off(lval) == 0); for (idx = 0 ; idx < ivl_lval_pins(lval) ; idx += 1) { fprintf(vvp_out, " %%deassign V_%s[%u], 1;\n", vvp_signal_label(lsig), idx); } return 0; }
static void emit_stmt_lval_piece(ivl_scope_t scope, ivl_lval_t lval) { ivl_signal_t sig = ivl_lval_sig(lval); ivl_expr_t sel_expr; ivl_select_type_t sel_type; unsigned width = ivl_lval_width(lval); int msb, lsb; assert(width > 0); /* If there are no selects then just print the name. */ sel_expr = ivl_lval_part_off(lval); if (! sel_expr && (width == ivl_signal_width(sig))) { emit_stmt_lval_name(scope, lval, sig); return; } /* We have some kind of select. */ lsb = ivl_signal_lsb(sig); msb = ivl_signal_msb(sig); sel_type = ivl_lval_sel_type(lval); assert(sel_expr); /* A bit select. */ if (width == 1) { emit_stmt_lval_name(scope, lval, sig); fprintf(vlog_out, "["); emit_scaled_expr(scope, sel_expr, msb, lsb); fprintf(vlog_out, "]"); } else { /* A constant part select. */ if (ivl_expr_type(sel_expr) == IVL_EX_NUMBER) { emit_stmt_lval_name(scope, lval, sig); emit_scaled_range(scope, sel_expr, width, msb, lsb); /* An indexed part select. */ } else { assert(sel_type != IVL_SEL_OTHER); emit_stmt_lval_ips(scope, lval, sig, sel_expr, sel_type, width, msb, lsb); } } }
/* * Icarus translated <var> = repeat(<count>) <event> <value> into * begin * <tmp> = <value>; * repeat(<count>) <event>; * <var> = <tmp>; * end * This routine looks for this pattern and turns it back into the * appropriate blocking assignment. */ static unsigned is_repeat_event_assign(ivl_scope_t scope, ivl_statement_t stmt) { unsigned wid; ivl_statement_t assign, event, event_assign, repeat; ivl_lval_t lval; ivl_expr_t rval; ivl_signal_t lsig, rsig; /* We must have three block elements. */ if (ivl_stmt_block_count(stmt) != 3) return 0; /* The first must be an assign. */ assign = ivl_stmt_block_stmt(stmt, 0); if (ivl_statement_type(assign) != IVL_ST_ASSIGN) return 0; /* The second must be a repeat with an event or an event. */ repeat = ivl_stmt_block_stmt(stmt, 1); if (ivl_statement_type(repeat) != IVL_ST_REPEAT) return 0; /* The repeat must have an event statement. */ event = ivl_stmt_sub_stmt(repeat); if (ivl_statement_type(event) != IVL_ST_WAIT) return 0; /* The third must be an assign. */ event_assign = ivl_stmt_block_stmt(stmt, 2); if (ivl_statement_type(event_assign) != IVL_ST_ASSIGN) return 0; /* The L-value must be a single signal. */ if (ivl_stmt_lvals(assign) != 1) return 0; lval = ivl_stmt_lval(assign, 0); /* It must not have an array select. */ if (ivl_lval_idx(lval)) return 0; /* It must not have a non-zero base. */ if (ivl_lval_part_off(lval)) return 0; lsig = ivl_lval_sig(lval); /* It must not be part of the signal. */ if (ivl_lval_width(lval) != ivl_signal_width(lsig)) return 0; /* The R-value must be a single signal. */ rval = ivl_stmt_rval(event_assign); if (ivl_expr_type(rval) != IVL_EX_SIGNAL) return 0; /* It must not be an array word. */ if (ivl_expr_oper1(rval)) return 0; rsig = ivl_expr_signal(rval); /* The two signals must be the same. */ if (lsig != rsig) return 0; /* And finally the four statements must have the same line number * as the block. */ if ((ivl_stmt_lineno(stmt) != ivl_stmt_lineno(assign)) || (ivl_stmt_lineno(stmt) != ivl_stmt_lineno(repeat)) || (ivl_stmt_lineno(stmt) != ivl_stmt_lineno(event)) || (ivl_stmt_lineno(stmt) != ivl_stmt_lineno(event_assign))) { return 0; } /* The pattern matched so generate the appropriate code. */ fprintf(vlog_out, "%*c", get_indent(), ' '); wid = emit_stmt_lval(scope, event_assign); fprintf(vlog_out, " ="); if (repeat) { fprintf(vlog_out, " repeat ("); emit_expr(scope, ivl_stmt_cond_expr(repeat), 0); fprintf(vlog_out, ")"); } fprintf(vlog_out, " @("); emit_event(scope, event); fprintf(vlog_out, ") "); emit_expr(scope, ivl_stmt_rval(assign), wid); fprintf(vlog_out, ";"); emit_stmt_file_line(stmt); fprintf(vlog_out, "\n"); return 1; }
static void get_vec_from_lval_slice(ivl_lval_t lval, struct vec_slice_info*slice, unsigned bit, unsigned wid) { ivl_signal_t sig = ivl_lval_sig(lval); ivl_expr_t part_off_ex = ivl_lval_part_off(lval); unsigned long part_off = 0; /* Although Verilog doesn't support it, we'll handle here the case of an l-value part select of an array word if the address is constant. */ ivl_expr_t word_ix = ivl_lval_idx(lval); unsigned long use_word = 0; if (part_off_ex == 0) { part_off = 0; } else if (number_is_immediate(part_off_ex, IMM_WID, 0) && !number_is_unknown(part_off_ex)) { part_off = get_number_immediate(part_off_ex); part_off_ex = 0; } /* If the word index is a constant expression, then evaluate it to select the word, and pay no further heed to the expression itself. */ if (word_ix && number_is_immediate(word_ix, IMM_WID, 0)) { assert(! number_is_unknown(word_ix)); use_word = get_number_immediate(word_ix); word_ix = 0; } if (ivl_lval_mux(lval)) part_off_ex = ivl_lval_mux(lval); if (ivl_signal_dimensions(sig)==0 && part_off_ex==0 && word_ix==0 && part_off==0 && wid==ivl_signal_width(sig)) { slice->type = SLICE_SIMPLE_VECTOR; slice->u_.simple_vector.use_word = use_word; fprintf(vvp_out, " %%load/v %u, v%p_%lu, %u;\n", bit, sig, use_word, wid); } else if (ivl_signal_dimensions(sig)==0 && part_off_ex==0 && word_ix==0) { assert(use_word == 0); slice->type = SLICE_PART_SELECT_STATIC; slice->u_.part_select_static.part_off = part_off; fprintf(vvp_out, " %%ix/load 1, %lu, 0;\n", part_off); fprintf(vvp_out, " %%load/x1p %u, v%p_0, %u;\n", bit, sig, wid); } else if (ivl_signal_dimensions(sig)==0 && part_off_ex!=0 && word_ix==0) { unsigned skip_set = transient_id++; unsigned out_set = transient_id++; assert(use_word == 0); assert(part_off == 0); slice->type = SLICE_PART_SELECT_DYNAMIC; draw_eval_expr_into_integer(part_off_ex, 1); slice->u_.part_select_dynamic.word_idx_reg = allocate_word(); slice->u_.part_select_dynamic.x_flag = allocate_vector(1); fprintf(vvp_out, " %%mov %u, %u, 1;\n", slice->u_.part_select_dynamic.x_flag, 4); fprintf(vvp_out, " %%mov/wu %d, %d;\n", slice->u_.part_select_dynamic.word_idx_reg, 1); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%load/x1p %u, v%p_0, %u;\n", bit, sig, wid); fprintf(vvp_out, " %%jmp t_%u;\n", out_set); fprintf(vvp_out, "t_%u ;\n", skip_set); fprintf(vvp_out, " %%mov %u, 2, %u;\n", bit, wid); fprintf(vvp_out, "t_%u ;\n", out_set); } else if (ivl_signal_dimensions(sig) > 0 && word_ix == 0) { slice->type = SLICE_MEMORY_WORD_STATIC; slice->u_.memory_word_static.use_word = use_word; if (use_word < ivl_signal_array_count(sig)) { fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word); fprintf(vvp_out, " %%load/av %u, v%p, %u;\n", bit, sig, wid); } else { fprintf(vvp_out, " %%mov %u, 2, %u; OUT OF BOUNDS\n", bit, wid); } } else if (ivl_signal_dimensions(sig) > 0 && word_ix != 0) { unsigned skip_set = transient_id++; unsigned out_set = transient_id++; slice->type = SLICE_MEMORY_WORD_DYNAMIC; draw_eval_expr_into_integer(word_ix, 3); slice->u_.memory_word_dynamic.word_idx_reg = allocate_word(); slice->u_.memory_word_dynamic.x_flag = allocate_vector(1); fprintf(vvp_out, " %%mov/wu %d, 3;\n", slice->u_.memory_word_dynamic.word_idx_reg); fprintf(vvp_out, " %%mov %u, 4, 1;\n", slice->u_.memory_word_dynamic.x_flag); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%ix/load 1, 0, 0;\n"); fprintf(vvp_out, " %%load/av %u, v%p, %u;\n", bit, sig, wid); fprintf(vvp_out, " %%jmp t_%u;\n", out_set); fprintf(vvp_out, "t_%u ;\n", skip_set); fprintf(vvp_out, " %%mov %u, 2, %u;\n", bit, wid); fprintf(vvp_out, "t_%u ;\n", out_set); } else { assert(0); } }
/* * Store a vector from the vec4 stack to the statement l-values. This * all assumes that the value to be assigned is already on the top of * the stack. * * NOTE TO SELF: The %store/vec4 takes a width, but the %assign/vec4 * instructions do not, instead relying on the expression width. I * think that it the proper way to do it, so soon I should change the * %store/vec4 to not include the width operand. */ static void store_vec4_to_lval(ivl_statement_t net) { for (unsigned lidx = 0 ; lidx < ivl_stmt_lvals(net) ; lidx += 1) { ivl_lval_t lval = ivl_stmt_lval(net,lidx); ivl_signal_t lsig = ivl_lval_sig(lval); ivl_lval_t nest = ivl_lval_nest(lval); unsigned lwid = ivl_lval_width(lval); ivl_expr_t part_off_ex = ivl_lval_part_off(lval); /* This is non-nil if the l-val is the word of a memory, and nil otherwise. */ ivl_expr_t word_ex = ivl_lval_idx(lval); if (lidx+1 < ivl_stmt_lvals(net)) fprintf(vvp_out, " %%split/vec4 %u;\n", lwid); if (word_ex) { /* Handle index into an array */ int word_index = allocate_word(); int part_index = 0; /* Calculate the word address into word_index */ draw_eval_expr_into_integer(word_ex, word_index); /* If there is a part_offset, calculate it into part_index. */ if (part_off_ex) { int flag_index = allocate_flag(); part_index = allocate_word(); fprintf(vvp_out, " %%flag_mov %d, 4;\n", flag_index); draw_eval_expr_into_integer(part_off_ex, part_index); fprintf(vvp_out, " %%flag_or 4, %d;\n", flag_index); clr_flag(flag_index); } assert(lsig); fprintf(vvp_out, " %%store/vec4a v%p, %d, %d;\n", lsig, word_index, part_index); clr_word(word_index); if (part_index) clr_word(part_index); } else if (part_off_ex) { /* Dynamically calculated part offset */ int offset_index = allocate_word(); draw_eval_expr_into_integer(part_off_ex, offset_index); /* Note that flag4 is set by the eval above. */ assert(lsig); if (ivl_signal_type(lsig)==IVL_SIT_UWIRE) { fprintf(vvp_out, " %%force/vec4/off v%p_0, %u;\n", lsig, offset_index); } else { fprintf(vvp_out, " %%store/vec4 v%p_0, %d, %u;\n", lsig, offset_index, lwid); } clr_word(offset_index); } else if (nest) { /* No offset expression, but the l-value is nested, which probably means that it is a class member. We will use a property assign function. */ assert(!lsig); ivl_type_t sub_type = draw_lval_expr(nest); assert(ivl_type_base(sub_type) == IVL_VT_CLASS); fprintf(vvp_out, " %%store/prop/v %u, %u;\n", ivl_lval_property_idx(lval), lwid); fprintf(vvp_out, " %%pop/obj 1, 0;\n"); } else { /* No offset expression, so use simpler store function. */ assert(lsig); assert(lwid == ivl_signal_width(lsig)); fprintf(vvp_out, " %%store/vec4 v%p_0, 0, %u;\n", lsig, lwid); } } }
static void set_vec_to_lval_slice(ivl_lval_t lval, unsigned bit, unsigned wid) { ivl_signal_t sig = ivl_lval_sig(lval); ivl_expr_t part_off_ex = ivl_lval_part_off(lval); unsigned long part_off = 0; /* Although Verilog doesn't support it, we'll handle here the case of an l-value part select of an array word if the address is constant. */ ivl_expr_t word_ix = ivl_lval_idx(lval); unsigned long use_word = 0; if (part_off_ex == 0) { part_off = 0; } else if (number_is_immediate(part_off_ex, IMM_WID, 0) && !number_is_unknown(part_off_ex)) { part_off = get_number_immediate(part_off_ex); part_off_ex = 0; } /* If the word index is a constant expression, then evaluate it to select the word, and pay no further heed to the expression itself. Out-of-bounds and undefined indices are converted to a canonical index of 'bx during elaboration, and we don't try to optimise that case. */ if (word_ix && number_is_immediate(word_ix, IMM_WID, 0) && !number_is_unknown(word_ix)) { use_word = get_number_immediate(word_ix); assert(use_word < ivl_signal_array_count(sig)); word_ix = 0; } if (ivl_lval_mux(lval)) part_off_ex = ivl_lval_mux(lval); if (part_off_ex && ivl_signal_dimensions(sig) == 0) { unsigned skip_set = transient_id++; /* There is a mux expression, so this must be a write to a bit-select l-val. Presumably, the x0 index register has been loaded wit the result of the evaluated part select base expression. */ assert(!word_ix); draw_eval_expr_into_integer(part_off_ex, 0); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%set/x0 v%p_%lu, %u, %u;\n", sig, use_word, bit, wid); fprintf(vvp_out, "t_%u ;\n", skip_set); /* save_signal width of 0 CLEARS the signal from the lookaside. */ save_signal_lookaside(bit, sig, use_word, 0); } else if (part_off_ex && ivl_signal_dimensions(sig) > 0) { /* Here we have a part select write into an array word. */ unsigned skip_set = transient_id++; if (word_ix) { draw_eval_expr_into_integer(word_ix, 3); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); } else { fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word); } draw_eval_expr_into_integer(part_off_ex, 1); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%set/av v%p, %u, %u;\n", sig, bit, wid); fprintf(vvp_out, "t_%u ;\n", skip_set); } else if ((part_off>0 || ivl_lval_width(lval)!=ivl_signal_width(sig)) && ivl_signal_dimensions(sig) > 0) { /* Here we have a part select write into an array word. */ unsigned skip_set = transient_id++; if (word_ix) { draw_eval_expr_into_integer(word_ix, 3); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); } else { fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word); } fprintf(vvp_out, " %%ix/load 1, %lu, 0;\n", part_off); fprintf(vvp_out, " %%set/av v%p, %u, %u;\n", sig, bit, wid); if (word_ix) /* Only need this label if word_ix is set. */ fprintf(vvp_out, "t_%u ;\n", skip_set); } else if (part_off>0 || ivl_lval_width(lval)!=ivl_signal_width(sig)) { /* There is no mux expression, but a constant part offset. Load that into index x0 and generate a vector set instruction. */ assert(ivl_lval_width(lval) == wid); /* If the word index is a constant, then we can write directly to the word and save the index calculation. */ if (word_ix == 0) { fprintf(vvp_out, " %%ix/load 0, %lu, 0;\n", part_off); fprintf(vvp_out, " %%set/x0 v%p_%lu, %u, %u;\n", sig, use_word, bit, wid); } else { unsigned skip_set = transient_id++; unsigned index_reg = 3; draw_eval_expr_into_integer(word_ix, index_reg); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%ix/load 1, %lu, 0;\n", part_off); fprintf(vvp_out, " %%set/av v%p, %u, %u;\n", sig, bit, wid); fprintf(vvp_out, "t_%u ;\n", skip_set); } /* save_signal width of 0 CLEARS the signal from the lookaside. */ save_signal_lookaside(bit, sig, use_word, 0); } else if (ivl_signal_dimensions(sig) > 0) { /* If the word index is a constant, then we can write directly to the word and save the index calculation. */ if (word_ix == 0) { fprintf(vvp_out, " %%ix/load 1, 0, 0;\n"); fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word); fprintf(vvp_out, " %%set/av v%p, %u, %u;\n", sig, bit, wid); } else { unsigned skip_set = transient_id++; unsigned index_reg = 3; draw_eval_expr_into_integer(word_ix, index_reg); fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set); fprintf(vvp_out, " %%ix/load 1, 0, 0;\n"); fprintf(vvp_out, " %%set/av v%p, %u, %u;\n", sig, bit, wid); fprintf(vvp_out, "t_%u ;\n", skip_set); } /* save_signal width of 0 CLEARS the signal from the lookaside. */ save_signal_lookaside(bit, sig, use_word, 0); } else { fprintf(vvp_out, " %%set/v v%p_%lu, %u, %u;\n", sig, use_word, bit, wid); /* save_signal width of 0 CLEARS the signal from the lookaside. */ save_signal_lookaside(bit, sig, use_word, 0); } }
static int show_stmt_assign_sig_darray(ivl_statement_t net) { int errors = 0; ivl_lval_t lval = ivl_stmt_lval(net, 0); ivl_expr_t rval = ivl_stmt_rval(net); ivl_expr_t part = ivl_lval_part_off(lval); ivl_signal_t var= ivl_lval_sig(lval); ivl_type_t var_type= ivl_signal_net_type(var); assert(ivl_type_base(var_type) == IVL_VT_DARRAY); ivl_type_t element_type = ivl_type_element(var_type); ivl_expr_t mux = ivl_lval_idx(lval); assert(ivl_stmt_lvals(net) == 1); assert(ivl_stmt_opcode(net) == 0); assert(part == 0); if (mux && (ivl_type_base(element_type)==IVL_VT_REAL)) { draw_eval_real(rval); /* The %set/dar expects the array index to be in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%store/dar/r v%p_0;\n", var); } else if (mux && ivl_type_base(element_type)==IVL_VT_STRING) { /* Evaluate the rval into the top of the string stack. */ draw_eval_string(rval); /* The %store/dar/s expects the array index to me in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%store/dar/str v%p_0;\n", var); } else if (mux) { draw_eval_vec4(rval); /* The %store/dar/vec4 expects the array index to be in index register 3. Calculate the index in place. */ draw_eval_expr_into_integer(mux, 3); fprintf(vvp_out, " %%store/dar/vec4 v%p_0;\n", var); } else if (ivl_expr_type(rval) == IVL_EX_ARRAY_PATTERN) { /* There is no l-value mux, but the r-value is an array pattern. This is a special case of an assignment to elements of the l-value. */ errors += show_stmt_assign_darray_pattern(net); } else { /* There is no l-value mux, so this must be an assignment to the array as a whole. Evaluate the "object", and store the evaluated result. */ errors += draw_eval_object(rval); fprintf(vvp_out, " %%store/obj v%p_0;\n", var); } return errors; }
static void get_vec_from_lval_slice(ivl_lval_t lval, struct vec_slice_info*slice, unsigned wid) { ivl_signal_t sig = ivl_lval_sig(lval); ivl_expr_t part_off_ex = ivl_lval_part_off(lval); unsigned long part_off = 0; /* Although Verilog doesn't support it, we'll handle here the case of an l-value part select of an array word if the address is constant. */ ivl_expr_t word_ix = ivl_lval_idx(lval); unsigned long use_word = 0; if (part_off_ex == 0) { part_off = 0; } else if (number_is_immediate(part_off_ex, IMM_WID, 0) && !number_is_unknown(part_off_ex)) { part_off = get_number_immediate(part_off_ex); part_off_ex = 0; } /* If the word index is a constant expression, then evaluate it to select the word, and pay no further heed to the expression itself. */ if (word_ix && number_is_immediate(word_ix, IMM_WID, 0)) { assert(! number_is_unknown(word_ix)); use_word = get_number_immediate(word_ix); word_ix = 0; } if (ivl_signal_dimensions(sig)==0 && part_off_ex==0 && word_ix==0 && part_off==0 && wid==ivl_signal_width(sig)) { slice->type = SLICE_SIMPLE_VECTOR; slice->u_.simple_vector.use_word = use_word; fprintf(vvp_out, " %%load/vec4 v%p_%lu;\n", sig, use_word); } else if (ivl_signal_dimensions(sig)==0 && part_off_ex==0 && word_ix==0) { assert(use_word == 0); slice->type = SLICE_PART_SELECT_STATIC; slice->u_.part_select_static.part_off = part_off; fprintf(vvp_out, " %%load/vec4 v%p_%lu;\n", sig, use_word); fprintf(vvp_out, " %%pushi/vec4 %lu, 0, 32;\n", part_off); fprintf(vvp_out, " %%part/u %u;\n", wid); } else if (ivl_signal_dimensions(sig)==0 && part_off_ex!=0 && word_ix==0) { assert(use_word == 0); assert(part_off == 0); slice->type = SLICE_PART_SELECT_DYNAMIC; slice->u_.part_select_dynamic.word_idx_reg = allocate_word(); slice->u_.part_select_dynamic.x_flag = allocate_flag(); fprintf(vvp_out, " %%load/vec4 v%p_%lu;\n", sig, use_word); draw_eval_vec4(part_off_ex); fprintf(vvp_out, " %%flag_mov %u, 4;\n", slice->u_.part_select_dynamic.x_flag); fprintf(vvp_out, " %%dup/vec4;\n"); fprintf(vvp_out, " %%ix/vec4 %u;\n", slice->u_.part_select_dynamic.word_idx_reg); fprintf(vvp_out, " %%part/u %u;\n", wid); } else if (ivl_signal_dimensions(sig) > 0 && word_ix == 0) { slice->type = SLICE_MEMORY_WORD_STATIC; slice->u_.memory_word_static.use_word = use_word; if (use_word < ivl_signal_array_count(sig)) { fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word); fprintf(vvp_out, " %%load/vec4a v%p, 3;\n", sig); } else { assert(wid <= 32); fprintf(vvp_out, " %%pushi/vec4 4294967295, 4294967295, %u;\n", wid); } } else if (ivl_signal_dimensions(sig) > 0 && word_ix != 0) { slice->type = SLICE_MEMORY_WORD_DYNAMIC; slice->u_.memory_word_dynamic.word_idx_reg = allocate_word(); slice->u_.memory_word_dynamic.x_flag = allocate_flag(); draw_eval_expr_into_integer(word_ix, slice->u_.memory_word_dynamic.word_idx_reg); fprintf(vvp_out, " %%flag_mov %d, 4;\n", slice->u_.memory_word_dynamic.x_flag); fprintf(vvp_out, " %%load/vec4a v%p, %d;\n", sig, slice->u_.memory_word_dynamic.word_idx_reg); } else { assert(0); } }
/* * Icarus translated <var> = <delay or event> <value> into * begin * <tmp> = <value>; * <delay or event> <var> = <tmp>; * end * This routine looks for this pattern and turns it back into the * appropriate blocking assignment. */ static unsigned is_delayed_or_event_assign(ivl_scope_t scope, ivl_statement_t stmt) { unsigned wid; ivl_statement_t assign, delay, delayed_assign; ivl_statement_type_t delay_type; ivl_lval_t lval; ivl_expr_t rval; ivl_signal_t lsig, rsig; /* We must have two block elements. */ if (ivl_stmt_block_count(stmt) != 2) return 0; /* The first must be an assign. */ assign = ivl_stmt_block_stmt(stmt, 0); if (ivl_statement_type(assign) != IVL_ST_ASSIGN) return 0; /* The second must be a delayx. */ delay = ivl_stmt_block_stmt(stmt, 1); delay_type = ivl_statement_type(delay); if ((delay_type != IVL_ST_DELAYX) && (delay_type != IVL_ST_WAIT)) return 0; /* The statement for the delayx must be an assign. */ delayed_assign = ivl_stmt_sub_stmt(delay); if (ivl_statement_type(delayed_assign) != IVL_ST_ASSIGN) return 0; /* The L-value must be a single signal. */ if (ivl_stmt_lvals(assign) != 1) return 0; lval = ivl_stmt_lval(assign, 0); /* It must not have an array select. */ if (ivl_lval_idx(lval)) return 0; /* It must not have a non-zero base. */ if (ivl_lval_part_off(lval)) return 0; lsig = ivl_lval_sig(lval); /* It must not be part of the signal. */ if (ivl_lval_width(lval) != ivl_signal_width(lsig)) return 0; /* The R-value must be a single signal. */ rval = ivl_stmt_rval(delayed_assign); if (ivl_expr_type(rval) != IVL_EX_SIGNAL) return 0; /* It must not be an array word. */ if (ivl_expr_oper1(rval)) return 0; rsig = ivl_expr_signal(rval); /* The two signals must be the same. */ if (lsig != rsig) return 0; /* And finally the three statements must have the same line number * as the block. */ if ((ivl_stmt_lineno(stmt) != ivl_stmt_lineno(assign)) || (ivl_stmt_lineno(stmt) != ivl_stmt_lineno(delay)) || (ivl_stmt_lineno(stmt) != ivl_stmt_lineno(delayed_assign))) { return 0; } /* The pattern matched so generate the appropriate code. */ fprintf(vlog_out, "%*c", get_indent(), ' '); wid = emit_stmt_lval(scope, delayed_assign); fprintf(vlog_out, " = "); if (delay_type == IVL_ST_DELAYX) { fprintf(vlog_out, "#("); emit_scaled_delayx(scope, ivl_stmt_delay_expr(delay), 1); } else { fprintf(vlog_out, "@("); emit_event(scope, delay); } fprintf(vlog_out, ") "); emit_expr(scope, ivl_stmt_rval(assign), wid); fprintf(vlog_out, ";"); emit_stmt_file_line(stmt); fprintf(vlog_out, "\n"); return 1; }