/// Gas viscosity.
    /// \param[in]  pg     Array of n gas pressure values.
    /// \param[in]  rv     Array of n vapor oil/gas ratio
    /// \param[in]  cond   Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAd::muGas(const ADB& pg,
                               const ADB& rv,
                               const std::vector<PhasePresence>& cond,
                               const Cells& cells) const
    {
#if 1
        return ADB::constant(muGas(pg.value(), rv.value(),cond,cells), pg.blockPattern());
#else
        if (!pu_.phase_used[Gas]) {
            OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
        }
        const int n = cells.size();
        assert(pg.value().size() == n);
        const int np = props_.numPhases();
        Block z = Block::Zero(n, np);
        if (pu_.phase_used[Oil]) {
            // Faking a z with the right ratio:
            //   rv = zo/zg
            z.col(pu_.phase_pos[Oil]) = rv;
            z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
        }
        Block mu(n, np);
        Block dmu(n, np);
        props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
        ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
        const int num_blocks = pg.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmu_diag * pg.derivative()[block];
        }
        return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
#endif
    }
    /// Water viscosity.
    /// \param[in]  pw     Array of n water pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAd::muWat(const ADB& pw,
                               const Cells& cells) const
    {
#if 1
        return ADB::constant(muWat(pw.value(), cells), pw.blockPattern());
#else
        if (!pu_.phase_used[Water]) {
            OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
        }
        const int n = cells.size();
        assert(pw.value().size() == n);
        const int np = props_.numPhases();
        Block z = Block::Zero(n, np);
        Block mu(n, np);
        Block dmu(n, np);
        props_.viscosity(n, pw.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
        ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Water]));
        const int num_blocks = pw.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmu_diag * pw.derivative()[block];
        }
        return ADB::function(mu.col(pu_.phase_pos[Water]), jacs);
#endif
    }
ADB SolventPropsAdFromDeck::muSolvent(const ADB& pg,
                                 const Cells& cells) const
{
    const int n = cells.size();
    assert(pg.value().size() == n);
    V mu(n);
    V dmudp(n);
    for (int i = 0; i < n; ++i) {
        const double& pg_i = pg.value()[i];
        int regionIdx = cellPvtRegionIdx_[cells[i]];
        double tempInvB = b_[regionIdx](pg_i);
        double tempInvBmu = inverseBmu_[regionIdx](pg_i);
        mu[i] = tempInvB / tempInvBmu;
        dmudp[i] = (tempInvBmu * b_[regionIdx].derivative(pg_i)
                         - tempInvB * inverseBmu_[regionIdx].derivative(pg_i)) / (tempInvBmu * tempInvBmu);
    }

    ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
    const int num_blocks = pg.numBlocks();
    std::vector<ADB::M> jacs(num_blocks);
    for (int block = 0; block < num_blocks; ++block) {
        jacs[block] = dmudp_diag * pg.derivative()[block];
    }
    return ADB::function(std::move(mu), std::move(jacs));
}
 /// Oil formation volume factor.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  rs     Array of n gas solution factor values.
 /// \param[in]  cond   Array of n taxonomies classifying fluid condition.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bOil(const ADB& po,
                           const ADB& rs,
                           const std::vector<PhasePresence>& /*cond*/,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Oil]) {
         OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
     }
     const int n = cells.size();
     assert(po.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     if (pu_.phase_used[Gas]) {
         // Faking a z with the right ratio:
         //   rs = zg/zo
         z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
         z.col(pu_.phase_pos[Gas]) = rs.value();
     }
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, po.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Oil];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = po.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         // For now, we deliberately ignore the derivative with respect to rs,
         // since the BlackoilPropertiesInterface class does not evaluate it.
         // We would add to the next line: + db_drs_diag * rs.derivative()[block]
         jacs[block] = db_diag * po.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
    /// Gas viscosity.
    /// \param[in]  pg     Array of n gas pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAd::muGas(const ADB& pg,
                               const Cells& cells) const
    {
#if 1
        return ADB::constant(muGas(pg.value(), cells), pg.blockPattern());
#else
        if (!pu_.phase_used[Gas]) {
            THROW("Cannot call muGas(): gas phase not present.");
        }
        const int n = cells.size();
        ASSERT(pg.value().size() == n);
        const int np = props_.numPhases();
        Block z = Block::Zero(n, np);
        Block mu(n, np);
        Block dmu(n, np);
        props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
        ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
        const int num_blocks = pg.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmu_diag * pg.derivative()[block];
        }
        return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
#endif
    }
 /// Gas formation volume factor.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  rv     Array of n vapor oil/gas ratio
 /// \param[in]  cond   Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bGas(const ADB& pg,
                           const ADB& rv,
                           const std::vector<PhasePresence>& /*cond*/,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
     }
     const int n = cells.size();
     assert(pg.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     if (pu_.phase_used[Oil]) {
         // Faking a z with the right ratio:
         //   rv = zo/zg
         z.col(pu_.phase_pos[Oil]) = rv.value();
         z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
     }
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Gas];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = pg.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = db_diag * pg.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
    /// Gas formation volume factor.
    /// \param[in]  pg     Array of n gas pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n formation volume factor values.
    ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
                                      const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Gas]) {
            OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
        }
        const int n = cells.size();
        assert(pg.size() == n);

        V b(n);
        V dbdp(n);
        V dbdr(n);
        const double* rs = 0;

        props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rs,
                                               b.data(), dbdp.data(), dbdr.data());

        ADB::M dbdp_diag = spdiag(dbdp);
        const int num_blocks = pg.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dbdp_diag * pg.derivative()[block];
        }
        return ADB::function(b, jacs);
    }
    /// Oil viscosity.
    /// \param[in]  po     Array of n oil pressure values.
    /// \param[in]  rs     Array of n gas solution factor values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAd::muOil(const ADB& po,
                               const ADB& rs,
                               const Cells& cells) const
    {
#if 1
        return ADB::constant(muOil(po.value(), rs.value(), cells), po.blockPattern());
#else
        if (!pu_.phase_used[Oil]) {
            THROW("Cannot call muOil(): oil phase not present.");
        }
        const int n = cells.size();
        ASSERT(po.value().size() == n);
        const int np = props_.numPhases();
        Block z = Block::Zero(n, np);
        if (pu_.phase_used[Gas]) {
            // Faking a z with the right ratio:
            //   rs = zg/zo
            z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
            z.col(pu_.phase_pos[Gas]) = rs.value();
        }
        Block mu(n, np);
        Block dmu(n, np);
        props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
        ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil]));
        const int num_blocks = po.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            // For now, we deliberately ignore the derivative with respect to rs,
            // since the BlackoilPropertiesInterface class does not evaluate it.
            // We would add to the next line: + dmu_drs_diag * rs.derivative()[block]
            jacs[block] = dmu_diag * po.derivative()[block];
        }
        return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs);
#endif
    }
    /// Oil formation volume factor.
    /// \param[in]  po     Array of n oil pressure values.
    /// \param[in]  rs     Array of n gas solution factor values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n formation volume factor values.
    ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
                                      const ADB& rs,
                                      const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Oil]) {
            OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
        }
        const int n = cells.size();
        assert(po.size() == n);

        V b(n);
        V dbdp(n);
        V dbdr(n);

        props_[phase_usage_.phase_pos[Oil]]->b(n, po.value().data(), rs.value().data(),
                                               b.data(), dbdp.data(), dbdr.data());

        ADB::M dbdp_diag = spdiag(dbdp);
        ADB::M dbdr_diag = spdiag(dbdr);
        const int num_blocks = po.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block];
        }
        return ADB::function(b, jacs);
    }
Exemple #10
0
    ADB PolymerPropsAd::polymerWaterVelocityRatio(const ADB& c) const
    {

        const int nc = c.size();
        V mc(nc);
        V dmc(nc);

        for (int i = 0; i < nc; ++i) {
            double m = 0;
            double dm = 0;
            polymer_props_.computeMcWithDer(c.value()(i), m, dm);

            mc(i) = m;
            dmc(i) = dm;
        }

        ADB::M dmc_diag(dmc.matrix().asDiagonal());
        const int num_blocks = c.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmc_diag * c.derivative()[block];
        }

        return ADB::function(std::move(mc), std::move(jacs));
    }
    std::vector<ADB> BlackoilPropsAd::capPress(const ADB& sw,
                                               const ADB& so,
                                               const ADB& sg,
                                               const Cells& cells) const

    {
        const int numCells = cells.size();
        const int numActivePhases = numPhases();
        const int numBlocks = so.numBlocks();

        Block activeSat(numCells, numActivePhases);
        if (pu_.phase_used[Water]) {
            assert(sw.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Water]) = sw.value();
        }
        if (pu_.phase_used[Oil]) {
            assert(so.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Oil]) = so.value();
        } else {
            OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
        }
        if (pu_.phase_used[Gas]) {
            assert(sg.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Gas]) = sg.value();
        }

        Block pc(numCells, numActivePhases);
        Block dpc(numCells, numActivePhases*numActivePhases);
        props_.capPress(numCells, activeSat.data(), cells.data(), pc.data(), dpc.data());

        std::vector<ADB> adbCapPressures;
        adbCapPressures.reserve(3);
        const ADB* s[3] = { &sw, &so, &sg };
        for (int phase1 = 0; phase1 < 3; ++phase1) {
            if (pu_.phase_used[phase1]) {
                const int phase1_pos = pu_.phase_pos[phase1];
                std::vector<ADB::M> jacs(numBlocks);
                for (int block = 0; block < numBlocks; ++block) {
                    jacs[block] = ADB::M(numCells, s[phase1]->derivative()[block].cols());
                }
                for (int phase2 = 0; phase2 < 3; ++phase2) {
                    if (!pu_.phase_used[phase2])
                        continue;
                    const int phase2_pos = pu_.phase_pos[phase2];
                    // Assemble dpc1/ds2.
                    const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm()
                    ADB::M dpc1_ds2_diag = spdiag(dpc.col(column));
                    for (int block = 0; block < numBlocks; ++block) {
                        jacs[block] += dpc1_ds2_diag * s[phase2]->derivative()[block];
                    }
                }
                adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs));
            } else {
                adbCapPressures.emplace_back(ADB::null());
            }
        }
        return adbCapPressures;
    }
 /// Relative permeabilities for all phases.
 /// \param[in]  sw     Array of n water saturation values.
 /// \param[in]  so     Array of n oil saturation values.
 /// \param[in]  sg     Array of n gas saturation values.
 /// \param[in]  cells  Array of n cell indices to be associated with the saturation values.
 /// \return            An std::vector with 3 elements, each an array of n relperm values,
 ///                    containing krw, kro, krg. Use PhaseIndex for indexing into the result.
 std::vector<ADB> BlackoilPropsAd::relperm(const ADB& sw,
                                           const ADB& so,
                                           const ADB& sg,
                                           const Cells& cells) const
 {
     const int n = cells.size();
     const int np = props_.numPhases();
     Block s_all(n, np);
     if (pu_.phase_used[Water]) {
         assert(sw.value().size() == n);
         s_all.col(pu_.phase_pos[Water]) = sw.value();
     }
     if (pu_.phase_used[Oil]) {
         assert(so.value().size() == n);
         s_all.col(pu_.phase_pos[Oil]) = so.value();
     } else {
         OPM_THROW(std::runtime_error, "BlackoilPropsAd::relperm() assumes oil phase is active.");
     }
     if (pu_.phase_used[Gas]) {
         assert(sg.value().size() == n);
         s_all.col(pu_.phase_pos[Gas]) = sg.value();
     }
     Block kr(n, np);
     Block dkr(n, np*np);
     props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
     const int num_blocks = so.numBlocks();
     std::vector<ADB> relperms;
     relperms.reserve(3);
     typedef const ADB* ADBPtr;
     ADBPtr s[3] = { &sw, &so, &sg };
     for (int phase1 = 0; phase1 < 3; ++phase1) {
         if (pu_.phase_used[phase1]) {
             const int phase1_pos = pu_.phase_pos[phase1];
             std::vector<ADB::M> jacs(num_blocks);
             for (int block = 0; block < num_blocks; ++block) {
                 jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
             }
             for (int phase2 = 0; phase2 < 3; ++phase2) {
                 if (!pu_.phase_used[phase2]) {
                     continue;
                 }
                 const int phase2_pos = pu_.phase_pos[phase2];
                 // Assemble dkr1/ds2.
                 const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
                 ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
                 for (int block = 0; block < num_blocks; ++block) {
                     jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
                 }
             }
             relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
         } else {
             relperms.emplace_back(ADB::null());
         }
     }
     return relperms;
 }
 /// Bubble point curve for Rs as function of oil pressure.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n bubble point values for Rs.
 ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
                                    const Cells& cells) const
 {
     if (!phase_usage_.phase_used[Oil]) {
         OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present.");
     }
     const int n = cells.size();
     assert(po.size() == n);
     V rbub(n);
     V drbubdp(n);
     props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data());
     ADB::M drbubdp_diag = spdiag(drbubdp);
     const int num_blocks = po.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = drbubdp_diag * po.derivative()[block];
     }
     return ADB::function(rbub, jacs);
 }
Exemple #14
0
    ADB PolymerPropsAd::effectiveInvWaterVisc(const ADB& c,
	                    				      const double* visc) const
    {
	    const int nc = c.size();
    	V inv_mu_w_eff(nc);
    	V dinv_mu_w_eff(nc);
    	for (int i = 0; i < nc; ++i) {
    	    double im = 0, dim = 0;
    	    polymer_props_.effectiveInvViscWithDer(c.value()(i), visc, im, dim);
    	    inv_mu_w_eff(i) = im;
    	    dinv_mu_w_eff(i) = dim;
    	}
        ADB::M dim_diag = spdiag(dinv_mu_w_eff);
        const int num_blocks = c.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dim_diag * c.derivative()[block];
        }
        return ADB::function(std::move(inv_mu_w_eff), std::move(jacs));
    }
Exemple #15
0
    ADB
    PolymerPropsAd::viscMult(const ADB& c) const
    {
        const int nc = c.size();
        V visc_mult(nc);
        V dvisc_mult(nc);

        for (int i = 0; i < nc; ++i) {
            double im = 0, dim = 0;
            im = polymer_props_.viscMultWithDer(c.value()(i), &dim);
            visc_mult(i) = im;
            dvisc_mult(i) = dim;
        }

        ADB::M dim_diag(dvisc_mult.matrix().asDiagonal());
        const int num_blocks = c.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dim_diag * c.derivative()[block];
        }
        return ADB::function(std::move(visc_mult), std::move(jacs));
    }
ADB SolventPropsAdFromDeck::makeADBfromTables(const ADB& X_AD,
                                              const Cells& cells,
                                              const std::vector<int>& regionIdx,
                                              const std::vector<NonuniformTableLinear<double>>& tables) const {
    const int n = cells.size();
    assert(X_AD.value().size() == n);
    V x(n);
    V dx(n);
    for (int i = 0; i < n; ++i) {
        const double& X_i = X_AD.value()[i];
        x[i] = tables[regionIdx[cells[i]]](X_i);
        dx[i] = tables[regionIdx[cells[i]]].derivative(X_i);
    }

    ADB::M dx_diag(dx.matrix().asDiagonal());
    const int num_blocks = X_AD.numBlocks();
    std::vector<ADB::M> jacs(num_blocks);
    for (int block = 0; block < num_blocks; ++block) {
        fastSparseProduct(dx_diag, X_AD.derivative()[block], jacs[block]);
    }
    return ADB::function(std::move(x), std::move(jacs));
}
 /// Gas formation volume factor.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bGas(const ADB& pg,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         THROW("Cannot call muGas(): gas phase not present.");
     }
     const int n = cells.size();
     ASSERT(pg.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Gas];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = pg.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = db_diag * pg.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
 /// Water formation volume factor.
 /// \param[in]  pw     Array of n water pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bWat(const ADB& pw,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Water]) {
         OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
     }
     const int n = cells.size();
     assert(pw.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Water];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = pw.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = db_diag * pw.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
    /// Water viscosity.
    /// \param[in]  pw     Array of n water pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
                                       const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Water]) {
            OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
        }
        const int n = cells.size();
        assert(pw.size() == n);
        V mu(n);
        V dmudp(n);
        V dmudr(n);
        const double* rs = 0;

        props_[phase_usage_.phase_pos[Water]]->mu(n, pw.value().data(), rs,
                                                  mu.data(), dmudp.data(), dmudr.data());
        ADB::M dmudp_diag = spdiag(dmudp);
        const int num_blocks = pw.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmudp_diag * pw.derivative()[block];
        }
        return ADB::function(mu, jacs);
    }
Exemple #20
0
    ADB PolymerPropsAd::effectiveInvPolymerVisc(const ADB& c, const V& mu_w) const
    {
        assert(c.size() == mu_w.size());
        const int nc = c.size();
        V inv_mu_p_eff(nc);
        V dinv_mu_p_eff(nc);
        for (int i = 0; i < nc; ++i) {
            double im = 0;
            double dim = 0;
            polymer_props_.effectiveInvPolyViscWithDer(c.value()(i), mu_w(i), im, dim);
            inv_mu_p_eff(i) = im;
            dinv_mu_p_eff(i) = dim;
        }

        ADB::M dim_diag(dinv_mu_p_eff.matrix().asDiagonal());
        const int num_blocks = c.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);

        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dim_diag * c.derivative()[block];
        }
        return ADB::function(std::move(inv_mu_p_eff), std::move(jacs));
    }
Exemple #21
0
    ADB PolymerPropsAd::adsorption(const ADB& c, const ADB& cmax_cells) const
    {
        const int nc = c.value().size();

        V ads(nc);
        V dads(nc);

        for (int i = 0; i < nc; ++i) {
            double c_ads = 0;
            double dc_ads = 0;
            polymer_props_.adsorptionWithDer(c.value()(i), cmax_cells.value()(i), c_ads, dc_ads);
            ads(i) = c_ads;
            dads(i) = dc_ads;
        }

        ADB::M dads_diag(dads.matrix().asDiagonal());
        int num_blocks = c.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dads_diag * c.derivative()[block];
        }

        return ADB::function(std::move(ads), std::move(jacs));
    }
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
                                              const ADB& aqua,
                                              const ADB& liquid,
                                              const ADB& vapour,
                                              const ADB& thp_arg,
                                              const ADB& alq) const {
    const int nw = thp_arg.size();

    std::vector<int> block_pattern = detail::commonBlockPattern(aqua, liquid, vapour, thp_arg, alq);

    assert(static_cast<int>(table_id.size()) == nw);
    assert(aqua.size()     == nw);
    assert(liquid.size()   == nw);
    assert(vapour.size()   == nw);
    assert(thp_arg.size()      == nw);
    assert(alq.size()      == nw);

    //Allocate data for bhp's and partial derivatives
    ADB::V value = ADB::V::Zero(nw);
    ADB::V dthp = ADB::V::Zero(nw);
    ADB::V dwfr = ADB::V::Zero(nw);
    ADB::V dgfr = ADB::V::Zero(nw);
    ADB::V dalq = ADB::V::Zero(nw);
    ADB::V dflo = ADB::V::Zero(nw);

    //Get the table for each well
    std::vector<const VFPProdTable*> well_tables(nw, nullptr);
    for (int i=0; i<nw; ++i) {
        if (table_id[i] >= 0) {
            well_tables[i] = detail::getTable(m_tables, table_id[i]);
        }
    }

    //Get the right FLO/GFR/WFR variable for each well as a single ADB
    const ADB flo = detail::combineADBVars<VFPProdTable::FLO_TYPE>(well_tables, aqua, liquid, vapour);
    const ADB wfr = detail::combineADBVars<VFPProdTable::WFR_TYPE>(well_tables, aqua, liquid, vapour);
    const ADB gfr = detail::combineADBVars<VFPProdTable::GFR_TYPE>(well_tables, aqua, liquid, vapour);

    //Compute the BHP for each well independently
    for (int i=0; i<nw; ++i) {
        const VFPProdTable* table = well_tables[i];
        if (table != nullptr) {
            //First, find the values to interpolate between
            //Value of FLO is negative in OPM for producers, but positive in VFP table
            auto flo_i = detail::findInterpData(-flo.value()[i], table->getFloAxis());
            auto thp_i = detail::findInterpData( thp_arg.value()[i], table->getTHPAxis());
            auto wfr_i = detail::findInterpData( wfr.value()[i], table->getWFRAxis());
            auto gfr_i = detail::findInterpData( gfr.value()[i], table->getGFRAxis());
            auto alq_i = detail::findInterpData( alq.value()[i], table->getALQAxis());

            detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);

            value[i] = bhp_val.value;
            dthp[i] = bhp_val.dthp;
            dwfr[i] = bhp_val.dwfr;
            dgfr[i] = bhp_val.dgfr;
            dalq[i] = bhp_val.dalq;
            dflo[i] = bhp_val.dflo;
        }
        else {
            value[i] = -1e100; //Signal that this value has not been calculated properly, due to "missing" table
        }
    }

    //Create diagonal matrices from ADB::Vs
    ADB::M dthp_diag(dthp.matrix().asDiagonal());
    ADB::M dwfr_diag(dwfr.matrix().asDiagonal());
    ADB::M dgfr_diag(dgfr.matrix().asDiagonal());
    ADB::M dalq_diag(dalq.matrix().asDiagonal());
    ADB::M dflo_diag(dflo.matrix().asDiagonal());

    //Calculate the Jacobians
    const int num_blocks = block_pattern.size();
    std::vector<ADB::M> jacs(num_blocks);
    for (int block = 0; block < num_blocks; ++block) {
        //Could have used fastSparseProduct and temporary variables
        //but may not save too much on that.
        jacs[block] = ADB::M(nw, block_pattern[block]);

        if (!thp_arg.derivative().empty()) {
            jacs[block] += dthp_diag * thp_arg.derivative()[block];
        }
        if (!wfr.derivative().empty()) {
            jacs[block] += dwfr_diag * wfr.derivative()[block];
        }
        if (!gfr.derivative().empty()) {
            jacs[block] += dgfr_diag * gfr.derivative()[block];
        }
        if (!alq.derivative().empty()) {
            jacs[block] += dalq_diag * alq.derivative()[block];
        }
        if (!flo.derivative().empty()) {
            jacs[block] -= dflo_diag * flo.derivative()[block];
        }
    }

    ADB retval = ADB::function(std::move(value), std::move(jacs));
    return retval;
}