Exemple #1
0
int jerasure_make_decoding_matrix(int k, int m, int w, int *matrix, int *erased, int *decoding_matrix, int *dm_ids)
{
  int i, j;
  int tmpmat[k*k];

  j = 0;
  for (i = 0; j < k; i++) {
    if (erased[i] == 0) {
      dm_ids[j] = i;
      j++;
    }
  }

  for (i = 0; i < k; i++) {
    if (dm_ids[i] < k) {
      for (j = 0; j < k; j++) tmpmat[i*k+j] = 0;
      tmpmat[i*k+dm_ids[i]] = 1;
    } else {
      for (j = 0; j < k; j++) {
        tmpmat[i*k+j] = matrix[(dm_ids[i]-k)*k+j];
      }
    }
  }

  i = jerasure_invert_matrix(tmpmat, decoding_matrix, k, w);
  return i;
}
int repair_decode_MSR_product_matrix(char **input, size_t input_size, char *output, size_t output_size, int to_device_ID, int* helpers, struct coding_info *info)
{
	int i,counter;
	int d = info->req.d;	
	int k = info->req.k;
	int w = info->req.w;
	int subpacket_size = input_size;
	char** coding_ptrs = malloc(sizeof(void*)*(d-k+1));
	int *repair_matrix = malloc(sizeof(int)*d*d);
	int *repair_matrix_inv = malloc(sizeof(int)*d*d);
	int *combination_matrix = malloc(sizeof(int)*(d-k+1)*d);

	for(i=0,counter=0;i<d&&helpers[i]>=0;i++,counter++)
		memcpy(repair_matrix+d*i,info->matrix+d*helpers[i],sizeof(int)*d);
	if(counter<d){
		printf("Insufficient number of helpers.\n");
		return(-1);
	}
	jerasure_invert_matrix(repair_matrix,repair_matrix_inv,d,w);
	memset(combination_matrix,0,sizeof(int)*(d-k+1)*d);
	for(i=0;i<k-1;i++){
		*(combination_matrix+(d*i)+i) = to_device_ID;
		*(combination_matrix+(d*i)+i+k-1) = 1;
	}
	for(i=k-1;i<d-k+1;i++)
		*(combination_matrix+(d*i)+i+k-1) = 1;

	int *coding_matrix = jerasure_matrix_multiply(combination_matrix,repair_matrix_inv,d-k+1,d,d,d,w);
		
	for(i=0; i<d-k+1 ;i++)
		coding_ptrs[i] = output + i*subpacket_size;
	int *coding_bitmatrix = jerasure_matrix_to_bitmatrix(d,d-k+1,w,coding_matrix);
	jerasure_bitmatrix_encode(d,d-k+1,w,coding_bitmatrix,(char**)input,coding_ptrs,subpacket_size,ALIGNMENT);

	free(coding_ptrs);
	free(coding_matrix);
	free(repair_matrix);
	free(repair_matrix_inv);
	free(combination_matrix);
	free(coding_bitmatrix);
	return(1);
}
int decode_MSR_product_matrix_no_output(char **input, size_t input_size, int* erasures, struct coding_info *info)
{
	clock_t clk, tclk;
	int i, j,c1,c2,tdone,inv;
	int n = info->req.n;
	int d = info->req.d;
	int k = info->req.k;
	int w = info->req.w;
	int subpacket_size = input_size/(d-k+1);
	int num_of_long = subpacket_size/sizeof(long);	
	long *src_pos,*des_pos;
	int *vector_A=NULL;
 	char **ptrs;
	int **decode_schedule=NULL;
	int *erased = NULL;	
	int *bitmatrix_temp = malloc(sizeof(int)*(k-1)*(k-1)*w*w*4);
	char *data_transformed = malloc(input_size*k);    // this is the buffer for tranformed data, i.e., matrix M. The output is the systematic part of 
							  // codingmatrix*M, and 
					                  // we will regenerate the erased data from M using the encoding matrix, which will be written to *output.
	int *pseudo_erasures = malloc(sizeof(int)*(n*2));  // in order to recompute M, we view it as a systematic MDS code, 
							  // sometimes (n+k,k), sometimes (n+d-k+1,d-k+1), thus we over allocate
	char **M_ptrs = malloc(sizeof(void*)*d*(d-k+1));  // this is the pointer matrix to elements in M.		
	char **data_ptrs = malloc(sizeof(void*)*n);
	char **coding_ptrs = malloc(sizeof(void*)*n);
	int* remaining = malloc(sizeof(int)*k);           // not erased devices
	char *buffer1 = malloc(subpacket_size*k*(k-1)*2);  // need subpacketsize*k>=(max(4,k-1)+k-1)*sizeof(int), thus put factor of 2 to guarentee it
	int *buffer1_int = (int*)buffer1;                  // alternative pointer for buffer1
	char *buffer2 = malloc(subpacket_size*k*(k-1));

	if(data_transformed==NULL||pseudo_erasures==NULL||data_ptrs==NULL
		||coding_ptrs==NULL||buffer1==NULL||buffer2==NULL||M_ptrs==NULL||remaining==NULL){
		printf("Can not allocate memory\n");
		jerasure_free_schedule(decode_schedule);
		if(data_ptrs!=NULL)free(data_ptrs);
		if(coding_ptrs!=NULL)free(coding_ptrs);
		if(pseudo_erasures!=NULL)free(pseudo_erasures);
		if(data_transformed!=NULL)free(data_transformed);
		if(M_ptrs!=NULL)free(M_ptrs);	
		if(buffer1!=NULL)free(buffer1);
		if(buffer2!=NULL)free(buffer2);
		if(remaining!=NULL)free(remaining);
		return(-1);
	}
	//set up pointers for matrix M
	// first k-1 rows, only have S1
	for(i=0,c2=0;i<k-1;i++){
		c1 = i*(d-k+1);
		for(j=i;j<k-1;j++,c2++)
			M_ptrs[c1+j] = data_transformed + subpacket_size*c2;
		for(j=k-1;j<d-k+1;j++)
			M_ptrs[c1+j] = NULL;			
		for(j=0;j<i;j++)
			M_ptrs[c1+j] = M_ptrs[j*(d-k+1)+i]; // symmetric matrix, thus there is (i,j) and (j,i) point to the same pointer.
	}
	// next k-1 rows
	for(i=0;i<k-1;i++){
		c1 = (k-1+i)*(d-k+1);
		for(j=i;j<d-k+1;j++,c2++)
			M_ptrs[c1+j] = data_transformed + subpacket_size*c2;
		for(j=0;j<i;j++)
			M_ptrs[c1+j] = M_ptrs[(j+k-1)*(d-k+1)+i];		
	}
	// next 1 and (d-2k+1) rows, may not exist
	if(d>2*k-2)
	{
		c1 = (2*k-2)*(d-k+1);
		for(j=k-1;j<d-k+1;j++,c2++)
			M_ptrs[c1+j] = data_transformed + subpacket_size*c2;
		for(j=0;j<i;j++)
			M_ptrs[c1+j] = M_ptrs[(j+k-1)*(d-k+1)+k-1];			
		for(i=2*k-1;i<d;i++){
			c1 = i*(d-k+1);
			for(j=0;j<k;j++)
				M_ptrs[c1+j] = M_ptrs[(j+k-1)*(d-k+1)+i-k+1];
			for(j=k;j<d-k+1;j++)
				M_ptrs[c1+j] = NULL;
		}
	}
	
        // first decode the last d-2k+1 columns of T and Z: view it as an (n+k,k) MDS code. Note strictly speaking this might 
	// not be a real (n+k,k) MDS code, but it hardly matters.
	// before decoding operation, prepare for the pseudoerasure location array
	if(d>2*k-2){ // only when d>2k-2, T and Z exist
		for(i=0;i<k;i++)
			pseudo_erasures[i] = i;
		for(i=0;i<n;i++){
			if(erasures[i]==-1){
				pseudo_erasures[i+k] = -1;
				break;
			}
			pseudo_erasures[i+k] = erasures[i] + k;		
		}

		// make the decoding schedule: we can save the trouble of manually generate this schedule, at the expense of
		// more computation
		decode_schedule = jerasure_generate_decoding_schedule(k, n, w, info->subbitmatrix_array[0], pseudo_erasures, 1);

		for(i=0;i<d-2*k+1;i++){
			for(j=0;j<k;j++)
				data_ptrs[j] = M_ptrs[i+k+(d-k+1)*(k-1+j)];		
			for(j=0;j<n;j++)
				coding_ptrs[j] = input[j]+subpacket_size*(k+i);
			ptrs = set_up_ptrs_for_scheduled_decoding(k, n, pseudo_erasures, data_ptrs,coding_ptrs);
		  	if (ptrs == NULL){
				printf("Can not allocate memory\n");
				goto complete;
			}
			// assume packetsize = ALIGNMENT
			for (tdone = 0; tdone < subpacket_size; tdone += ALIGNMENT*w) {
				jerasure_do_scheduled_operations(ptrs, decode_schedule, ALIGNMENT);
				for (c1 = 0; c1 < k+n; c1++) ptrs[c1] += (ALIGNMENT*w);
			}
			free(ptrs);
		} 
		//next decode the first column of T and Z: we view this as an (n+d-k+1,d-k+1) erasure codes
		// first setup the pseudo erasure location vector	
		for(i=0;i<k;i++)
			pseudo_erasures[i] = i; // in the first columne of the Z matrix, the last d-2k+1 elements are known, but the first k elements are not
		for(i=0;i<n;i++)
		{
			if(erasures[i]==-1){
				pseudo_erasures[i+k] = -1;
				break;
			}
			pseudo_erasures[i+k] = erasures[i]+d-k+1;		
		}
		for(j=0;j<d-k+1;j++)
			data_ptrs[j] = M_ptrs[(d-k+1)*(k-1+j)+k-1];
		for(j=0;j<n;j++)
			coding_ptrs[j] = input[j]+subpacket_size*(k-1);
		jerasure_schedule_decode_lazy(d-k+1,n,w,
					info->subbitmatrix_array[1],pseudo_erasures,data_ptrs,
					coding_ptrs,subpacket_size,ALIGNMENT,0);
	}
	//clk = clock();

	// now this is the hard part: to decode S1 and S2. The algorithm used here is slightly different from that in the paper:
	// instead of right multiply \Phi_{DC}', we only right multiply the sub-matrix of \Phi_{DC}' without of the last row

	// setting up remaining device array to facilitate decoding
	erased = jerasure_erasures_to_erased(k, n-k, erasures);
	for(i=0,c1=0;i<n&&c1<k;i++){
		if(erased[i]==0){
			remaining[c1] = i;
			c1++;
		}	
	}	
	//compute C_{DC}-\Delta_{DC}*T'
	for(i=0;i<k-1;i++){ // has k-1 columns
		for(j=0;j<d-2*k+2;j++)
			data_ptrs[j] = M_ptrs[(2*k-2+j)*(d-k+1)+i];
		for(j=0;j<k;j++)
			coding_ptrs[j] = buffer1+(j*(k-1)+i)*subpacket_size;
		for(j=0;j<k;j++){
			jerasure_bitmatrix_dotprod(d-2*k+2, w, info->subbitmatrix_array[2]+remaining[j]*(d-2*k+2)*w*w, NULL, j+d-2*k+2,
        	                data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);
			src_pos = (long*)(input[remaining[j]]+i*subpacket_size);
			des_pos	= (long*)(coding_ptrs[j]);
			for(c2=0;c2<num_of_long;c2++)	
				des_pos[c2] ^= src_pos[c2];
		}	
	}
	
	// right multiply \Phi_{DC}': this will be P. 
	// result is in buffer2
	for(j=0;j<k;j++){ //j-th row
		for(i=0;i<k-1;i++)
			data_ptrs[i] = buffer1+(j*(k-1)+i)*subpacket_size;
		for(i=0;i<k-1;i++)
			coding_ptrs[i] = buffer2 +(j*(k-1)+i)*subpacket_size;
		for(i=0;i<k-1;i++){
			jerasure_bitmatrix_dotprod(k-1, w, info->subbitmatrix_array[3]+remaining[i]*(k-1)*w*w, NULL, i+k-1,
        	                data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);
		}
	}
	// now solve for the off-diagonal terms
	for(i=0;i<k-1;i++){
		for(j=i+1;j<k-1;j++){
			// solve for S1 tilde off-diagonal 
			// here we directly use the fact that Lambda = [0 1 2 3 ....];	
			int** temp_schedule;			
			inv = galois_single_divide(1,remaining[i]^remaining[j],w);					
			buffer1_int[0] = buffer1_int[1] = inv;			
			data_ptrs[0] = buffer2+(i*(k-1)+j)*subpacket_size;
			data_ptrs[1] = buffer2+(j*(k-1)+i)*subpacket_size;
			coding_ptrs[0] = M_ptrs[i*(d-k+1)+j];
			jerasure_matrix_to_bitmatrix_noallocate(2,1,w,buffer1_int,bitmatrix_temp);
			temp_schedule = jerasure_smart_bitmatrix_to_schedule(2, 1, w, bitmatrix_temp);
			jerasure_schedule_encode(2, 1, w, temp_schedule, data_ptrs, coding_ptrs,subpacket_size, ALIGNMENT);	
			if(temp_schedule!=NULL){
				jerasure_free_schedule(temp_schedule);
				temp_schedule = NULL;
			}			
			// solve for S2 tilde off-diagonal
			buffer1_int[0] = galois_single_multiply(remaining[j],inv,w);
			buffer1_int[1] = galois_single_multiply(remaining[i],inv,w);
			coding_ptrs[0] = M_ptrs[(i+k-1)*(d-k+1)+j];
			jerasure_matrix_to_bitmatrix_noallocate(2,1,w,buffer1_int,bitmatrix_temp);
			temp_schedule = jerasure_smart_bitmatrix_to_schedule(2, 1, w, bitmatrix_temp);
			jerasure_schedule_encode(2, 1, w, temp_schedule, data_ptrs, coding_ptrs,subpacket_size, ALIGNMENT);	
			if(temp_schedule!=NULL){
				jerasure_free_schedule(temp_schedule);
				temp_schedule = NULL;
			}			
		}	
	}
	//tclk = clock()-clk;
	//printf("~S1 and ~S2 off-diagonal decoded %.3e clocks \n", (double)tclk);	
	//clk = clock();
	// compute the A vector: A*\Phi_{DC1} = \Phi_{DC2}, note this is always possible because \Phi_{DC1} is alway full rank by construction
	// we first reuse buffer1 here to form \Phi_{DC1} matrix and then the compute its inverse
	for(i=0;i<k-1;i++){
		memcpy(buffer1_int+(k-1)*(k-1+i),(void*)(info->matrix+remaining[i]*d+k-1),(k-1)*sizeof(int));
	}

	jerasure_invert_matrix(buffer1_int+(k-1)*(k-1),buffer1_int,k-1,w);	
	vector_A = jerasure_matrix_multiply(info->matrix+remaining[k-1]*d+k-1,buffer1_int,1,k-1,k-1,k-1,w);	
	if(vector_A==NULL)
		goto complete;	
	
	for(i=0;i<k-1;i++){
		buffer1_int[i+(k-1)*(k-1)] = galois_single_multiply(vector_A[i],remaining[k-1],w);		
		buffer1_int[i+k*(k-1)] = vector_A[i];
	}		

	for(i=0;i<k-1;i++){
		memset(buffer1_int+(k-1)*(k+1),0,sizeof(int)*2*(k-1));
		buffer1_int[(k-1)*(k+1)+i] = remaining[i];
		buffer1_int[(k-1)*(k+2)+i] = 1;

		pseudo_erasures[0] = i;
		pseudo_erasures[1] = k-1+i;
		pseudo_erasures[2] = -1;
		for(j=0;j<2*k-2;j++)
			data_ptrs[j] = M_ptrs[i+j*(d-k+1)];
		coding_ptrs[0] = buffer2+((k-1)*(k-1)+i)*subpacket_size;
		coding_ptrs[1] = buffer2+(i*(k-1)+i)*subpacket_size;

		jerasure_matrix_to_bitmatrix_noallocate(2*k-2,2,w,buffer1_int+(k-1)*(k-1),bitmatrix_temp);				
		jerasure_schedule_decode_lazy(2*k-2,2,w,bitmatrix_temp,pseudo_erasures,data_ptrs,coding_ptrs,subpacket_size,ALIGNMENT,0);
      	}
	//tclk = clock()-clk;
	//printf("~S1 and ~S2 decoded %.3e clocks \n", (double)tclk);	
	// now we have both \tilde{S_1} and \tilde{S_2} in M_ptrs, need to recover S1 and S2 from them
	// this is done by multiply \tilde{S_1} left and right by inv(\Phi_{DC1}).
	// right-multiply for S1 
	int* bitmatrix_inv = jerasure_matrix_to_bitmatrix(k-1,k-1,w,buffer1_int);
	int** inv_schedule = jerasure_smart_bitmatrix_to_schedule(k-1, k-1, w, bitmatrix_inv);

	// right-multiply for S1
	for(i=0;i<k-1;i++){
		for(j=0;j<k-1;j++)
			data_ptrs[j] = M_ptrs[i*(d-k+1)+j];		
		for(j=0;j<k-1;j++)
			coding_ptrs[j] = buffer2+(i*(k-1)+j)*subpacket_size;	
		jerasure_schedule_encode(k-1, k-1, w, inv_schedule, data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);	
	}
	// left-multiply for S1 
	for(j=0;j<k-1;j++){
		for(i=0;i<k-1;i++)
			data_ptrs[i] = buffer2+(i*(k-1)+j)*subpacket_size;
		for(i=0;i<k-1;i++)
			coding_ptrs[i] = M_ptrs[i*(d-k+1)+j];

		jerasure_schedule_encode(k-1, k-1, w, inv_schedule, data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);

	}
	// right-multiply for S2
	for(i=0;i<k-1;i++){
		for(j=0;j<k-1;j++)
			data_ptrs[j] = M_ptrs[(i+k-1)*(d-k+1)+j];
		for(j=0;j<k-1;j++)
			coding_ptrs[j] = buffer2+(i*(k-1)+j)*subpacket_size;

		jerasure_schedule_encode(k-1, k-1, w, inv_schedule, data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);
	}
	// left-multiply for S2 
	for(j=0;j<k-1;j++){
		for(i=0;i<k-1;i++)
			data_ptrs[i] = buffer2+(i*(k-1)+j)*subpacket_size;
		//for(i=j;i<k-1;i++)
		for(i=0;i<k-1;i++)
			coding_ptrs[i] = M_ptrs[(i+k-1)*(d-k+1)+j];

		jerasure_schedule_encode(k-1, k-1, w, inv_schedule, data_ptrs, coding_ptrs, subpacket_size, ALIGNMENT);
	}
	// having S1,S2,T, now can also fill the first k-1 column of the output		
	for(i=0;i<k-1;i++){
		for(j=0;j<d;j++)
			data_ptrs[j] = M_ptrs[j*(d-k+1)+i];
		for(j=0;j<n;j++)
			coding_ptrs[j] = input[j]+i*subpacket_size;
		for(j=0;j<n;j++){
			if(erased[j]==1)
				jerasure_bitmatrix_encode(d,1,w,info->bitmatrix+(j*d*w*w),data_ptrs,coding_ptrs+j,subpacket_size,ALIGNMENT);
		}
	}

	// clean up
complete:
	if(decode_schedule)
		jerasure_free_schedule(decode_schedule);
	if(inv_schedule)
		jerasure_free_schedule(inv_schedule);
	free(data_ptrs);
	free(coding_ptrs);
	if(erased)free(erased);
	free(pseudo_erasures);
	free(data_transformed);
	free(M_ptrs);	
	free(buffer1);
	free(buffer2);
	free(remaining);
	free(bitmatrix_temp);
	if(vector_A!=NULL)free(vector_A);
	return(1);
}