void KCPermeability<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
  std::size_t numCells = workset.numCells;

  if (is_constant) {
    for (std::size_t cell=0; cell < numCells; ++cell) {
      for (std::size_t qp=0; qp < numQPs; ++qp) {
    	  kcPermeability(cell,qp) = constant_value;
      }
    }
  }
  else {
    for (std::size_t cell=0; cell < numCells; ++cell) {
      for (std::size_t qp=0; qp < numQPs; ++qp) {
	Teuchos::Array<MeshScalarT> point(numDims);
	for (std::size_t i=0; i<numDims; i++)
	  point[i] = Sacado::ScalarValue<MeshScalarT>::eval(coordVec(cell,qp,i));
		  kcPermeability(cell,qp) = exp_rf_kl->evaluate(point, rv);
      }
    }
  }
  if (isPoroElastic) {
    for (std::size_t cell=0; cell < numCells; ++cell) {
      for (std::size_t qp=0; qp < numQPs; ++qp) {
    	  // Cozeny Karman permeability equation
    	  kcPermeability(cell,qp) = constant_value*porosity(cell,qp)*porosity(cell,qp)*porosity(cell,qp)/
    			                    (1-porosity(cell,qp)*porosity(cell,qp));
      }
    }
  }
}
  void TLPoroPlasticityResidMass<EvalT, Traits>::
  evaluateFields(typename Traits::EvalData workset)
  {
    bool print = false;
    //if (typeid(ScalarT) == typeid(RealType)) print = true;

    typedef Intrepid::FunctionSpaceTools FST;
    typedef Intrepid::RealSpaceTools<ScalarT> RST;

    // Use previous time step for Backward Euler Integration
    Albany::MDArray porePressureold
      = (*workset.stateArrayPtr)[porePressureName];

    Albany::MDArray Jold;
    if (haveMechanics) {
      Jold = (*workset.stateArrayPtr)[JName];
    } 

    // Pore-fluid diffusion coupling.
    for (std::size_t cell=0; cell < workset.numCells; ++cell) {
      for (std::size_t node=0; node < numNodes; ++node) {
        TResidual(cell,node)=0.0;
        for (std::size_t qp=0; qp < numQPs; ++qp) {

          // Volumetric Constraint Term
          if (haveMechanics)  {
            TResidual(cell,node) -= biotCoefficient(cell, qp)
              * (std::log(J(cell,qp)/Jold(cell,qp)))
              * wBF(cell, node, qp) ;
          }

          // Pore-fluid Resistance Term
          TResidual(cell,node) -=  ( porePressure(cell,qp)-porePressureold(cell, qp) )
            / biotModulus(cell, qp)*wBF(cell, node, qp);

        }
      }
    }
    // Pore-Fluid Diffusion Term

    ScalarT dt = deltaTime(0);

    if (haveMechanics) {
      RST::inverse(F_inv, defgrad);
      RST::transpose(F_invT, F_inv);
      FST::scalarMultiplyDataData<ScalarT>(JF_invT, J, F_invT);
      FST::scalarMultiplyDataData<ScalarT>(KJF_invT, kcPermeability, JF_invT);
      FST::tensorMultiplyDataData<ScalarT>(Kref, F_inv, KJF_invT);
      FST::tensorMultiplyDataData<ScalarT> (flux, Kref, TGrad); // flux_i = k I_ij p_j
    } else {
      FST::scalarMultiplyDataData<ScalarT> (flux, kcPermeability, TGrad); // flux_i = kc p_i
    }

    for (std::size_t cell=0; cell < workset.numCells; ++cell){
      for (std::size_t qp=0; qp < numQPs; ++qp) {
        for (std::size_t dim=0; dim <numDims; ++dim){
          fluxdt(cell, qp, dim) = -flux(cell,qp,dim)*dt;
        }
      }
    }
    FST::integrate<ScalarT>(TResidual, fluxdt,
                            wGradBF, Intrepid::COMP_CPP, true); // "true" sums into

    //---------------------------------------------------------------------------//
    // Stabilization Term

    for (std::size_t cell=0; cell < workset.numCells; ++cell){

      porePbar = 0.0;
      vol = 0.0;
      for (std::size_t qp=0; qp < numQPs; ++qp) {
        porePbar += weights(cell,qp)
          * (porePressure(cell,qp)-porePressureold(cell, qp) );
        vol  += weights(cell,qp);
      }
      porePbar /= vol;
      for (std::size_t qp=0; qp < numQPs; ++qp) {
        pterm(cell,qp) = porePbar;
      }

      for (std::size_t node=0; node < numNodes; ++node) {
        trialPbar = 0.0;
        for (std::size_t qp=0; qp < numQPs; ++qp) {
          trialPbar += wBF(cell,node,qp);
        }
        trialPbar /= vol;
        for (std::size_t qp=0; qp < numQPs; ++qp) {
          tpterm(cell,node,qp) = trialPbar;
        }

      }

    }
    ScalarT temp(0);

    for (std::size_t cell=0; cell < workset.numCells; ++cell) {

      for (std::size_t node=0; node < numNodes; ++node) {
        for (std::size_t qp=0; qp < numQPs; ++qp) {

          temp = 3.0 - 12.0*kcPermeability(cell,qp)*dt
            /(elementLength(cell,qp)*elementLength(cell,qp));

          //if ((temp > 0) & stabParameter(cell,qp) > 0) {
          if ((temp > 0) & stab_param_ > 0) {

            TResidual(cell,node) -= 
              ( porePressure(cell,qp)-porePressureold(cell, qp) )
              //* stabParameter(cell, qp)
              * stab_param_
              * std::abs(temp) // should be 1 but use 0.5 for safety
              * (0.5 + 0.5*std::tanh( (temp-1)/kcPermeability(cell,qp)  ))
              / biotModulus(cell, qp)
              * ( wBF(cell, node, qp)
                // -tpterm(cell,node,qp)
                );
            TResidual(cell,node) += pterm(cell,qp)
              //* stabParameter(cell, qp)
              * stab_param_
              * std::abs(temp) // should be 1 but use 0.5 for safety
              * (0.5 + 0.5*std::tanh( (temp-1)/kcPermeability(cell,qp)  ))
              / biotModulus(cell, qp)
              * ( wBF(cell, node, qp) );
          }
        }
      }
    }
  }