static KmerOccurence *findKmerOccurenceInSortedTable(Kmer * kmer,
						     KmerOccurenceTable *
						     table)
{
	KmerOccurence *array = table->kmerTable;
	KmerKey key = keyInAccelerationTable(kmer, table);
	Coordinate leftIndex, rightIndex, middleIndex;

	if (table->accelerationTable != NULL) {
		leftIndex = table->accelerationTable[key];
		rightIndex = table->accelerationTable[key + 1];
	} else {
		leftIndex = 0;
		rightIndex = table->kmerTableSize;
	}

	while (true) {
		middleIndex = (rightIndex + leftIndex) / 2;

		if (leftIndex >= rightIndex)
			return NULL;
		else if (compareKmers(&(array[middleIndex]).kmer, kmer) == 0) 
			return &(array[middleIndex]);
		else if (leftIndex == middleIndex)
			return NULL;
		else if (compareKmers(&(array[middleIndex]).kmer, kmer) > 0)
			rightIndex = middleIndex;
		else
			leftIndex = middleIndex;
	}
}
void sortKmerOccurenceTable(KmerOccurenceTable * table) {
	KmerKey lastHeader = 0;
	KmerKey header;
	IDnum *accelPtr = NULL;
	IDnum kmerOccurenceIndex;

	velvetLog("Sorting kmer occurence table ... \n");

	qsort(table->kmerTable, table->kmerTableSize, sizeof(KmerOccurence),
	      compareKmerOccurences);

	velvetLog("Sorting done.\n");

	// Fill up acceleration table
	if (table->accelerationTable != NULL) {
		accelPtr = table->accelerationTable;
		*accelPtr = (IDnum) 0;
		for (kmerOccurenceIndex = 0;
		     kmerOccurenceIndex < table->kmerTableSize;
		     kmerOccurenceIndex++) {
			header =
			    keyInAccelerationTable(&table->kmerTable
						   [kmerOccurenceIndex].
						   kmer, table);
			while (lastHeader < header) {
				lastHeader++;
				accelPtr++;
				*accelPtr = kmerOccurenceIndex;
			}
		}

		while (lastHeader < (KmerKey) 1 << table->accelerationBits) {
			lastHeader++;
			accelPtr++;
			*accelPtr = table->kmerTableSize;
		}
	}

}
KmerOccurence *findKmerInKmerOccurenceTable(Kmer * kmer,
						     KmerOccurenceTable *
						     table)
{
	KmerOccurence *array = table->kmerTable;
	KmerKey key = keyInAccelerationTable(kmer, table);
	Coordinate leftIndex, rightIndex, middleIndex;
	int diff;

	if (table->accelerationTable != NULL) {
		leftIndex = table->accelerationTable[key];
		rightIndex = table->accelerationTable[key + 1];
	} else {
		leftIndex = 0;
		rightIndex = table->kmerTableSize;
	}

	while (true) {
		middleIndex = (rightIndex + leftIndex) / 2;

		if (leftIndex >= rightIndex)
			return NULL;

		diff = compareKmers(&(array[middleIndex].kmer), kmer);

		if (diff == 0) {
			while (middleIndex > 0 && compareKmers(&(array[middleIndex - 1].kmer), kmer) == 0)
				middleIndex--;
			return &(array[middleIndex]);
		} else if (leftIndex == middleIndex)
			return NULL;
		else if (diff > 0)
			rightIndex = middleIndex;
		else
			leftIndex = middleIndex;
	}
}
static KmerOccurenceTable *referenceGraphKmers(char *preGraphFilename,
					       short int accelerationBits, Graph * graph, boolean double_strand)
{
	FILE *file = fopen(preGraphFilename, "r");
	const int maxline = MAXLINE;
	char line[MAXLINE];
	char c;
	int wordLength;
	Coordinate lineLength, kmerCount;
	Kmer word;
	Kmer antiWord;
	KmerOccurenceTable *kmerTable = NULL;
	KmerOccurence *kmerOccurences, *kmerOccurencePtr;
	Coordinate kmerOccurenceIndex;
	IDnum index;
	IDnum nodeID = 0;
	IDnum *accelPtr = NULL;
	KmerKey lastHeader = 0;
	KmerKey header;
	Nucleotide nucleotide;

	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	// Count kmers
	printf("Scanning pre-graph file %s for k-mers\n",
	       preGraphFilename);

	// First  line
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	sscanf(line, "%*i\t%*i\t%i\n", &wordLength);

	// Initialize kmer occurence table:
	kmerTable = mallocOrExit(1, KmerOccurenceTable);
	if (accelerationBits > 2 * wordLength)
		accelerationBits = 2 * wordLength;

	if (accelerationBits > 32)
		accelerationBits = 32;

	if (accelerationBits > 0) {
		kmerTable->accelerationBits = accelerationBits;
		kmerTable->accelerationTable =
		    callocOrExit((((size_t) 1) << accelerationBits) + 1,
			   IDnum);
		accelPtr = kmerTable->accelerationTable;
		kmerTable->accelerationShift =
		    (short int) 2 *wordLength - accelerationBits;
	} else {
		kmerTable->accelerationBits = 0;
		kmerTable->accelerationTable = NULL;
		kmerTable->accelerationShift = 0;
	}

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	kmerCount = 0;
	while (line[0] == 'N') {
		lineLength = 0;
		while ((c = getc(file)) != EOF && c != '\n')
			lineLength++;
		kmerCount += lineLength - wordLength + 1;
		if (fgets(line, maxline, file) == NULL)
			break;
	}
	fclose(file);

	// Create table
	printf("%li kmers found\n", (long) kmerCount);
	kmerOccurences = callocOrExit(kmerCount, KmerOccurence);
	kmerOccurencePtr = kmerOccurences;
	kmerOccurenceIndex = 0;
	kmerTable->kmerTable = kmerOccurences;
	kmerTable->kmerTableSize = kmerCount;

	// Fill table
	file = fopen(preGraphFilename, "r");
	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	while (line[0] == 'N') {
		nodeID++;

		// Fill in the initial word : 
		clearKmer(&word);
		clearKmer(&antiWord);

		for (index = 0; index < wordLength - 1; index++) {
			c = getc(file);
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else if (c == '\n')
				exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
			else
				nucleotide = ADENINE;
				

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}
		}

		// Scan through node
		index = 0;
		while((c = getc(file)) != '\n' && c != EOF) {
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else
				nucleotide = ADENINE;

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}

			if (!double_strand || compareKmers(&word, &antiWord) <= 0) {
				copyKmers(&kmerOccurencePtr->kmer, &word);
				kmerOccurencePtr->nodeID = nodeID;
				kmerOccurencePtr->position =
				    index;
			} else {
				copyKmers(&kmerOccurencePtr->kmer, &antiWord);
				kmerOccurencePtr->nodeID = -nodeID;
				kmerOccurencePtr->position =
				    getNodeLength(getNodeInGraph(graph, nodeID)) - 1 - index;
			}

			kmerOccurencePtr++;
			kmerOccurenceIndex++;
			index++;
		}

		if (fgets(line, maxline, file) == NULL)
			break;
	}

	fclose(file);

	// Sort table
	qsort(kmerOccurences, kmerCount, sizeof(KmerOccurence),
	      compareKmerOccurences);

	// Fill up acceleration table
	if (kmerTable->accelerationTable != NULL) {
		*accelPtr = (IDnum) 0;
		for (kmerOccurenceIndex = 0;
		     kmerOccurenceIndex < kmerCount;
		     kmerOccurenceIndex++) {
			header =
			    keyInAccelerationTable(&kmerOccurences
						   [kmerOccurenceIndex].
						   kmer, kmerTable);
			while (lastHeader < header) {
				lastHeader++;
				accelPtr++;
				*accelPtr = kmerOccurenceIndex;
			}
		}

		while (lastHeader < (KmerKey) 1 << accelerationBits) {
			lastHeader++;
			accelPtr++;
			*accelPtr = kmerCount;
		}
	}

	return kmerTable;
}