Exemple #1
0
int main(int argc, const char * argv[]) {
	sm_set_program_name(argv[0]);
/*	
	struct csm_option* ops = csm_options_allocate(3);
	csm_options_double(ops, "scale_deg", &p.scale_deg, 0.0, "Scale factor (degrees) ");
	csm_options_int(ops, "neighbours", &p.neighbours, 1, "How many neighbours to consider (regardless of scale).");
		
	if(!csm_options_parse_args(ops, argc, argv)) {
		fprintf(stderr, "A simple program for smoothing a sensor scan.\n\nUsage:\n");
		csm_options_print_help(ops, stderr);
		return -1;
	}
*/	
/* jj_set_stream(open_file_for_writing("ld_cluster_curv.txt")); */

	int errors = 0;
	int count = -1;
	LDP ld;
	while( (ld = ld_read_smart(stdin)) ) {
		count++;
		if(!ld_valid_fields(ld))  {
			sm_error("Invalid laser data (#%d in file)\n", count);
			return -1;
		}
		
		ld_cluster_curv(ld);

		ld_write_as_json(ld, stdout);

		ld_free(ld);
	}
	
	return errors;
}
Exemple #2
0
// free layer data list
static void ld_list_free(struct LayerData *list) {
  struct LayerData *p = list;

  while (p) {
    list = list->next;
    ld_free(p);
    p = list;
  }
}
Exemple #3
0
int main(int argc, const char * argv[]) {
	sm_set_program_name(argv[0]);
	
	
	options_banner("ld_purify: Makes sure that the file format is valid. \n * Sets valid=0 if reading is outside interval ");
	
	struct ld_purify_params p;
	
	struct option* ops = options_allocate(20);
	options_double(ops, "threshold_min", &p.threshold_min, 0.01, 
		"Sets valid=0 if readings are less than this threshold.");
	options_double(ops, "threshold_max", &p.threshold_max, 79.0, 
		"Sets valid=0 if readings are more than this threshold.");
	
	options_string(ops, "in", &p.file_input, "stdin", "Input file ");
	options_string(ops, "out", &p.file_output, "stdout", "Output file ");
		
		
	if(!options_parse_args(ops, argc, argv)) {
		options_print_help(ops, stderr);
		return -1;
	}

	FILE * in = open_file_for_reading(p.file_input);
	if(!in) return -3;

	FILE * out = open_file_for_writing(p.file_output);
	if(!out) return -2;



	LDP ld; int count = -1;
	while( (ld = ld_from_json_stream(in))) {
		
		purify(ld, p.threshold_min, p.threshold_max);
		
		if(!ld_valid_fields(ld))  {
			sm_error("Wait, we didn't purify enough  (#%d in file)\n", count);
			continue;
		}
		
		ld_write_as_json(ld, out);
		ld_free(ld);
	}
	
	return 0;
}
Exemple #4
0
int main(int argc, const char * argv[]) {
	sm_set_program_name(argv[0]);
	
	int errors = 0;
	int count = -1;
	LDP ld;
	while( (ld = ld_read_smart(stdin)) ) {
		count++;
		if(!ld_valid_fields(ld))  {
			sm_error("Invalid laser data (#%d in file)\n", count);
			errors++;
			continue;
		}
		
		ld_linearize(ld);

		ld_write_as_json(ld, stdout);

		ld_free(ld);
	}
	
	return errors;
}
Exemple #5
0
int main(int argc, const char * argv[]) {
	sm_set_program_name(argv[0]);
	
	csm_options_banner("ld_noise: Adds noise to readings in a scan");
	
	struct ld_noise_params p;
	
	struct csm_option* ops = csm_options_allocate(20);
	csm_options_double(ops, "discretization", &p.discretization, 0.0, 
		"Size of discretization (disabled if 0)");
	csm_options_double(ops, "sigma", &p.sigma, 0.0, 
		"Std deviation of gaussian noise (disabled if 0)");
	csm_options_int(ops, "lambertian", &p.lambertian, 0, 
		"Use lambertian model cov = sigma^2 / cos(beta^2) where beta is the incidence. Need have alpha or true_alpha.");
	csm_options_int(ops, "seed", &p.seed, 0, 
		"Seed for random number generator (if 0, use GSL_RNG_SEED env. variable).");
	csm_options_string(ops, "in", &p.file_input, "stdin", "Input file ");
	csm_options_string(ops, "out", &p.file_output, "stdout", "Output file ");
		
		
	if(!csm_options_parse_args(ops, argc, argv)) {
		fprintf(stderr, "A simple program for adding noise to sensor scans.\n\nUsage:\n");
		csm_options_print_help(ops, stderr);
		return -1;
	}

	FILE * in = open_file_for_reading(p.file_input);
	if(!in) return -3;

	FILE * out = open_file_for_writing(p.file_output);
	if(!out) return -2;


	gsl_rng_env_setup();
	gsl_rng * rng = gsl_rng_alloc (gsl_rng_ranlxs0);
	if(p.seed != 0)
	gsl_rng_set(rng, (unsigned int) p.seed);

	LDP ld; int count = 0;
	while( (ld = ld_from_json_stream(in))) {
		if(!ld_valid_fields(ld))  {
			sm_error("Invalid laser data (#%d in file)\n", count);
			continue;
		}
		
		int i;
		for(i=0;i<ld->nrays;i++) {
			if(!ld->valid[i]) continue;
			
			double * reading = ld->readings + i;
			if(p.sigma > 0) {
				double add_sigma = p.sigma;
				
				if(p.lambertian) {

					int have_alpha = 0;
					double alpha = 0;
					if(!is_nan(ld->true_alpha[i])) {
						alpha = ld->true_alpha[i];
						have_alpha = 1;
					} else if(ld->alpha_valid[i]) {
						alpha = ld->alpha[i];;
						have_alpha = 1;
					} else have_alpha = 0;

					if(have_alpha) {
						/* Recall that alpha points outside the surface */
						double beta = (alpha+M_PI) - ld->theta[i];
					    add_sigma = p.sigma / cos(beta);
					} else {
						sm_error("Because lambertian is active, I need either true_alpha[] or alpha[]");
						ld_write_as_json(ld, stderr);
						return -1;
					}
					
				} 
				
			   *reading += gsl_ran_gaussian(rng, add_sigma);
				
				if(is_nan(ld->readings_sigma[i])) {
					ld->readings_sigma[i] = add_sigma;
				} else {
					ld->readings_sigma[i] = sqrt(square(add_sigma) + square(ld->readings_sigma[i]));
				}
			}
			if(p.discretization > 0)
				*reading -= fmod(*reading , p.discretization);
		}
	
		ld_write_as_json(ld, out);
		ld_free(ld);
	}
	
	return 0;
}
void PSMpositionNode::getMotion_can(const sensor_msgs::LaserScan& scan,  std::vector <depthPoint> *depthLine)//*********************************************getMotion_can()
{
    ROS_DEBUG("Received scan");


    // **** if this is the first scan, initialize and leave the function here

    if (!initialized_can)
    {
        initialized_can = initializeCan(scan);
        if (initialized_can) ROS_INFO("Matcher initialized");
        return;
    }

    // **** attmempt to match the two scans

    // CSM is used in the following way:
    // The reference scan (prevLDPcan_) always has a pose of 0
    // The new scan (currLDPScan) has a pose equal to the movement
    // of the laser in the world frame since the last scan (btTransform change)
    // The computed correction is then propagated using the tf machinery

    prevLDPScan_->odometry[0] = 0;
    prevLDPScan_->odometry[1] = 0;
    prevLDPScan_->odometry[2] = 0;

    prevLDPScan_->estimate[0] = 0;
    prevLDPScan_->estimate[1] = 0;
    prevLDPScan_->estimate[2] = 0;

    prevLDPScan_->true_pose[0] = 0;
    prevLDPScan_->true_pose[1] = 0;
    prevLDPScan_->true_pose[2] = 0;

    btTransform currWorldToBase;
    btTransform change;
    change.setIdentity();

    // what odometry model to use
    if (useTfOdometry_)
    {
        // get the current position of the base in the world frame
        // if no transofrm is available, we'll use the last known transform

        getCurrentEstimatedPose(currWorldToBase, scan);
        change = laserToBase_ * prevWorldToBase_.inverse() * currWorldToBase * baseToLaser_;
    }
    else if (useImuOdometry_)
    {
        imuMutex_.lock();
        double dTheta = currImuAngle_ - prevImuAngle_;
        prevImuAngle_ = currImuAngle_;
        change.getRotation().setRPY(0.0, 0.0, dTheta);
        imuMutex_.unlock();
    }

    geometry_msgs::Pose2D p;
    tfToPose2D(change, p);
    LDP currLDPScan = rosToLDPScan(scan, p);

    input_.laser_ref  = prevLDPScan_;
    input_.laser_sens = currLDPScan;
    input_.first_guess[0] = 0;
    input_.first_guess[1] = 0;
    input_.first_guess[2] = 0;

    sm_icp(&input_, &output_);

    if (!output_.valid)
    {
        ROS_WARN("Error in scan matching");
        ld_free(prevLDPScan_);
        prevLDPScan_ = currLDPScan;
        return;
    }

    // **** calculate change in position

    double dx = output_.x[0];
    double dy = output_.x[1];
    double da = output_.x[2];

    // change = scan match result for how much laser moved between scans,
    // in the world frame
    change.setOrigin(btVector3(dx, dy, 0.0));
    btQuaternion q;
    q.setRPY(0, 0, da);
    change.setRotation(q);

    frameP_ = worldFrame_;
    heightLine = ransac(depthLine);
    // **** publish the new estimated pose as a tf

    if(take_vicon == true) {
        prevWorldToBase_.setOrigin(btVector3(pos_vicon[0],pos_vicon[1], pos_vicon[2]));
        btQuaternion vicon_q(quat_vicon.x(),quat_vicon.y(),quat_vicon.z(),quat_vicon.w());
        prevWorldToBase_.setRotation(vicon_q);
    }

    currWorldToBase = prevWorldToBase_ * baseToLaser_ * change * laserToBase_;

    if (publishTf_  ) publishTf  (currWorldToBase, scan.header.stamp);
    if (publishPose_) publishPose(currWorldToBase, scan.header.stamp, frameP_, heightLine);

    // **** swap old and new

    ld_free(prevLDPScan_);
    prevLDPScan_ = currLDPScan;
    prevWorldToBase_ = currWorldToBase;

    // **** timing information - needed for profiling only

}
Exemple #7
0
int main(int argc, const char ** argv) {
	sm_set_program_name(argv[0]);
	
	struct ld_exp_tro1_params p;
	
	options_banner(banner);
	
	struct option* ops = options_allocate(10);
	options_double(ops, "max_xy_error", &p.max_xy_error, 10.0, "Maximum error for x,y (m)");
	options_double(ops, "max_theta_error_deg", &p.max_theta_error_deg, 10.0, "Maximum error for orientation (deg)");
	options_int   (ops, "seed", &p.seed, 0, "Seed for random number generator (if 0, use GSL_RNG_SEED env. variable).");

	options_int(ops, "num_per_scan", &p.num_per_scan, 10, "Number of trials for each scan.");

	options_string(ops, "in", &p.file_input, "stdin", "Input file ");
	options_string(ops, "out1", &p.file_output1, "stdout", "Output file for first scan");
	options_string(ops, "out2", &p.file_output2, "stdout", "Output file for second scan");
	
	options_int(ops, "debug", &p.debug, 0, "Shows debug information");
	
	if(!options_parse_args(ops, argc, argv)) {
		options_print_help(ops, stderr);
		return -1;
	}
	
	sm_debug_write(p.debug);

	gsl_rng_env_setup();
	gsl_rng * rng = gsl_rng_alloc (gsl_rng_ranlxs0);
	if(p.seed != 0)
	gsl_rng_set(rng, (unsigned int) p.seed);
	
	/* Open the two output files (possibly the same one) */
	
	FILE * in = open_file_for_reading(p.file_input);
	if(!in) return -3;

	FILE * out1 = open_file_for_writing(p.file_output1);
	if(!out1) return -2;
	
	FILE * out2;
	if(!strcmp(p.file_output1, p.file_output2)) {
		out1 = out2;
	} else {
		out2 = open_file_for_writing(p.file_output2);
		if(!out2) return -2;
	}

	/* Read laser data from input file */
	LDP ld; int count=0;
	while( (ld = ld_read_smart(in))) {
		count++;
		if(!ld_valid_fields(ld))  {
			sm_error("Invalid laser data (#%d in file)\n", count);
			continue;
		}
		
		for(int n=0; n < p.num_per_scan; n++) {					
			ld->true_pose[0] = 0;
			ld->true_pose[1] = 0;
			ld->true_pose[2] = 0;
			
			ld->odometry[0] = 0;
			ld->odometry[1] = 0;
			ld->odometry[2] = 0;
			
			ld_write_as_json(ld, out1);

			ld->odometry[0] = 2*(gsl_rng_uniform(rng)-0.5) * p.max_xy_error;
			ld->odometry[1] = 2*(gsl_rng_uniform(rng)-0.5) * p.max_xy_error;
			ld->odometry[2] = 2*(gsl_rng_uniform(rng)-0.5) * deg2rad(p.max_theta_error_deg);
			
			ld_write_as_json(ld, out2);
		}

		ld_free(ld);
	}
	
	return 0;
}
Exemple #8
0
int main(int argc, const char * argv[]) {
	sm_set_program_name(argv[0]);

	const char *in_filename;
	const char *ref_filename;
	const char *out_filename;
	const char *ref_field_string; ld_reference ref_field;
	const char *out_field_string; ld_reference out_field;

	struct option* ops = options_allocate(15);
	options_string(ops, "in", &in_filename, "stdin", "scan matching log");
	options_string(ops, "ref", &ref_filename, "ref.log", "slam log");
	options_string(ops, "out", &out_filename, "stdout", "output file");

	options_string(ops, "ref_field", &ref_field_string, "estimate", "What field to find in ref.");
	options_string(ops, "out_field", &out_field_string, "true_pose", "What field to copy to.");
		
	if(!options_parse_args(ops, argc, argv)) {
		fprintf(stderr, " This program works on two logs: A and B. "
		"For each scan in A, the program searches for the scan in B having the same timestamp. "
		"Then, the true_pose field in B is copied to the scan form A, and it is written to the output.\n");
		options_print_help(ops, stderr);
		return -1;
	}
	
	ref_field = ld_string_to_reference(ref_field_string);
	out_field = ld_string_to_reference(out_field_string);
	
	
	FILE * in_stream  = open_file_for_reading(in_filename);
	FILE * ref_stream = open_file_for_reading(ref_filename);
	FILE * out_stream = open_file_for_writing(out_filename);
	
	if(!in_stream || !ref_stream || !out_stream) return -1;

	LDP ld_in;
	while((ld_in = ld_read_smart(in_stream))) {
		int matched = 0;
		while(1) {
			LDP ld_ref = ld_read_smart(ref_stream);
			if(!ld_ref) break;
			if(same_scan(ld_in, ld_ref)) {
				matched = 1;
				const double *ref_pose = ld_get_reference_pose(ld_ref, ref_field);
				double *out_pose = ld_get_reference_pose_silent(ld_in, out_field);
				copy_d(ref_pose, 3, out_pose);
				ld_write_as_json(ld_in, out_stream);
				fputs("\n", out_stream);
				break;
			}
			ld_free(ld_ref);
		}

		if(!matched) {
			sm_error("Could not match %s. \n", short_desc(ld_in));
			if(feof(ref_stream)) {
				sm_error("..because ref stream has ended.\n");
				break;
			}
			continue;
		}
	
		ld_free(ld_in);
	}
	
	return 0;
}
Exemple #9
0
int main(int argc, const char*argv[]) {
	sm_set_program_name(argv[0]);
	
	struct sm_params params;
	struct sm_result result;
	
	struct option* ops = options_allocate(100);
	options_string(ops, "in", &p.file_in, "stdin", "Input file ");
	options_string(ops, "out", &p.file_out, "stdout", "Output file ");
	options_string(ops, "out_stats", &p.file_out_stats, "", "Output file (stats) ");
	options_string(ops, "file_jj", &p.file_jj, "",
		"File for journaling -- if left empty, journal not open.");
	options_int(ops, "algo", &p.algo, 0, "Which algorithm to use (0:(pl)ICP 1:gpm-stripped 2:HSM) ");
	
	options_int(ops, "debug", &p.debug, 0, "Shows debug information");
	options_int(ops, "recover_from_error", &p.recover_from_error, 0, "If true, tries to recover from an ICP matching error");
	
	
	p.format = 0;
/*	options_int(ops, "format", &p.format, 0,
		"Output format (0: log in JSON format, 1: log in Carmen format (not implemented))");*/
	
	sm_options(&params, ops);
	if(!options_parse_args(ops, argc, argv)) {
		fprintf(stderr, "\n\nUsage:\n");
		options_print_help(ops, stderr);
		return -1;
	}

	sm_debug_write(p.debug);

	/* Open input and output files */
	
	FILE * file_in = open_file_for_reading(p.file_in);
	if(!file_in) return -1;
	FILE * file_out = open_file_for_writing(p.file_out);
	if(!file_out) return -1;
	
	if(strcmp(p.file_jj, "")) {
		FILE * jj = open_file_for_writing(p.file_jj);
		if(!jj) return -1;
		jj_set_stream(jj);
	}
	
	FILE * file_out_stats = 0;
	if(strcmp(p.file_out_stats, "")) {
		file_out_stats = open_file_for_writing(p.file_out_stats);
		if(!file_out_stats) return -1;
	}
	
	/* Read first scan */
	LDP laser_ref;
	if(!(laser_ref = ld_read_smart(file_in))) {
		sm_error("Could not read first scan.\n");
		return -1;
	}
	if(!ld_valid_fields(laser_ref))  {
		sm_error("Invalid laser data in first scan.\n");
		return -2;
	}
	
	
	/* For the first scan, set estimate = odometry */
	copy_d(laser_ref->odometry, 3, laser_ref->estimate);
	
	spit(laser_ref, file_out);
	int count=-1;
	LDP laser_sens;
	while( (laser_sens = ld_read_smart(file_in)) ) {
		
		count++;
		if(!ld_valid_fields(laser_sens))  {
			sm_error("Invalid laser data in (#%d in file).\n", count);
			return -(count+2);
		}
		
		params.laser_ref  = laser_ref;
		params.laser_sens = laser_sens;

		/* Set first guess as the difference in odometry */
		
		if(	any_nan(params.laser_ref->odometry,3) ||  
			any_nan(params.laser_sens->odometry,3) ) {
				sm_error("The 'odometry' field is set to NaN so I don't know how to get an initial guess. I usually use the difference in the odometry fields to obtain the initial guess.\n");
				sm_error("  laser_ref->odometry = %s \n",  friendly_pose(params.laser_ref->odometry) );
				sm_error("  laser_sens->odometry = %s \n", friendly_pose(params.laser_sens->odometry) );
				sm_error(" I will quit it here. \n");
				return -3;
		}
		
		double odometry[3];
		pose_diff_d(laser_sens->odometry, laser_ref->odometry, odometry);
		double ominus_laser[3], temp[3];
		ominus_d(params.laser, ominus_laser);
		oplus_d(ominus_laser, odometry, temp);
		oplus_d(temp, params.laser, params.first_guess);
		
		/* Do the actual work */
		switch(p.algo) {
			case(0):
				sm_icp(&params, &result); break;
			case(1):
				sm_gpm(&params, &result); break;
			case(2):
				sm_hsm(&params, &result); break;
			default:
				sm_error("Unknown algorithm to run: %d.\n",p.algo);
				return -1;
		}
		
		if(!result.valid){
			if(p.recover_from_error) {
				sm_info("One ICP matching failed. Because you passed  -recover_from_error, I will try to recover."
				" Note, however, that this might not be good in some cases. \n");
				sm_info("The recover is that the displacement is set to 0. No result stats is output. \n");
				
				/* For the first scan, set estimate = odometry */
				copy_d(laser_ref->estimate, 3, laser_sens->estimate);
				
				ld_free(laser_ref); laser_ref = laser_sens;
				
			} else {
				sm_error("One ICP matching failed. Because I process recursively, I will stop here.\n");
				sm_error("Use the option -recover_from_error if you want to try to recover.\n");
				ld_free(laser_ref);
				return 2;
			}
		} else {
		
			/* Add the result to the previous estimate */
			oplus_d(laser_ref->estimate, result.x, laser_sens->estimate);

			/* Write the corrected log */
			spit(laser_sens, file_out);

			/* Write the statistics (if required) */
			if(file_out_stats) {
				JO jo = result_to_json(&params, &result);
				fputs(jo_to_string(jo), file_out_stats);
				fputs("\n", file_out_stats);
				jo_free(jo);
			}

			ld_free(laser_ref); laser_ref = laser_sens;
		}
	}
	ld_free(laser_ref);
	
	return 0;
}
Exemple #10
0
void rb_sm_cleanup() {
	if(rb_sm_params.laser_ref)
	ld_free(rb_sm_params.laser_ref);
	if(rb_sm_params.laser_sens)
	ld_free(rb_sm_params.laser_sens);
}
void LaserScanMatcher::processScan(LDP& curr_ldp_scan, const ros::Time& time)
{
  ros::WallTime start = ros::WallTime::now();

  // CSM is used in the following way:
  // The scans are always in the laser frame
  // The reference scan (prevLDPcan_) has a pose of [0, 0, 0]
  // The new scan (currLDPScan) has a pose equal to the movement
  // of the laser in the laser frame since the last scan 
  // The computed correction is then propagated using the tf machinery

  prev_ldp_scan_->odometry[0] = 0.0;
  prev_ldp_scan_->odometry[1] = 0.0;
  prev_ldp_scan_->odometry[2] = 0.0;

  prev_ldp_scan_->estimate[0] = 0.0;
  prev_ldp_scan_->estimate[1] = 0.0;
  prev_ldp_scan_->estimate[2] = 0.0;

  prev_ldp_scan_->true_pose[0] = 0.0;
  prev_ldp_scan_->true_pose[1] = 0.0;
  prev_ldp_scan_->true_pose[2] = 0.0;

  input_.laser_ref  = prev_ldp_scan_;
  input_.laser_sens = curr_ldp_scan;

  // **** estimated change since last scan

  double dt = (time - last_icp_time_).toSec();
  double pr_ch_x, pr_ch_y, pr_ch_a;
  getPrediction(pr_ch_x, pr_ch_y, pr_ch_a, dt);

  // the predicted change of the laser's position, in the fixed frame  

  tf::Transform pr_ch;
  createTfFromXYTheta(pr_ch_x, pr_ch_y, pr_ch_a, pr_ch);

  // account for the change since the last kf, in the fixed frame

  pr_ch = pr_ch * (f2b_ * f2b_kf_.inverse());

  // the predicted change of the laser's position, in the laser frame

  tf::Transform pr_ch_l;
  pr_ch_l = laser_to_base_ * f2b_.inverse() * pr_ch * f2b_ * base_to_laser_ ;
  
  input_.first_guess[0] = pr_ch_l.getOrigin().getX();
  input_.first_guess[1] = pr_ch_l.getOrigin().getY();
  input_.first_guess[2] = tf::getYaw(pr_ch_l.getRotation());

  // *** scan match - using point to line icp from CSM

  sm_icp(&input_, &output_);
  tf::Transform corr_ch;

  if (output_.valid) 
  {
    // the correction of the laser's position, in the laser frame
    tf::Transform corr_ch_l;
    createTfFromXYTheta(output_.x[0], output_.x[1], output_.x[2], corr_ch_l);

    // the correction of the base's position, in the base frame
    corr_ch = base_to_laser_ * corr_ch_l * laser_to_base_;

    // update the pose in the world frame
    f2b_ = f2b_kf_ * corr_ch;

    // **** publish

    if (publish_pose_) 
    {
      // unstamped Pose2D message
      geometry_msgs::Pose2D::Ptr pose_msg;
      pose_msg = boost::make_shared<geometry_msgs::Pose2D>();
      pose_msg->x = f2b_.getOrigin().getX();
      pose_msg->y = f2b_.getOrigin().getY();
      pose_msg->theta = tf::getYaw(f2b_.getRotation());
      pose_publisher_.publish(pose_msg);
    }
    if (publish_pose_stamped_)
    {
      // stamped Pose message
      geometry_msgs::PoseStamped::Ptr pose_stamped_msg;
      pose_stamped_msg = boost::make_shared<geometry_msgs::PoseStamped>();

      pose_stamped_msg->header.stamp    = time;
      pose_stamped_msg->header.frame_id = fixed_frame_;     
            
      tf::poseTFToMsg(f2b_, pose_stamped_msg->pose);

      pose_stamped_publisher_.publish(pose_stamped_msg);
    }
    if (publish_tf_)
    {
      tf::StampedTransform transform_msg (f2b_, time, fixed_frame_, base_frame_);
      tf_broadcaster_.sendTransform (transform_msg);
    }
  }
  else
  {
    corr_ch.setIdentity();
    ROS_WARN("Error in scan matching");
  }

  // **** swap old and new

  if (newKeyframeNeeded(corr_ch))
  {
    // generate a keyframe
    ld_free(prev_ldp_scan_);
    prev_ldp_scan_ = curr_ldp_scan;
    f2b_kf_ = f2b_;
  }
  else
  {
    ld_free(curr_ldp_scan);
  }

  last_icp_time_ = time;

  // **** statistics

  double dur = (ros::WallTime::now() - start).toSec() * 1e3;
  ROS_DEBUG("Scan matcher total duration: %.1f ms", dur);
}