Exemple #1
0
//--------------------------------------------------------------------------------------------------
void le_mem_DeleteSubPool
(
    le_mem_PoolRef_t    subPool     ///< [IN] The sub-pool to be deleted.
)
{
    LE_ASSERT(subPool != NULL);

    Lock();

    // Make sure all sub-pool objects are free.
    le_mem_PoolRef_t superPool = subPool->superPoolPtr;

    LE_FATAL_IF(subPool->numBlocksInUse != 0,
                "Subpool '%s' deleted while %zu blocks remain allocated.",
                subPool->name,
                subPool->numBlocksInUse);

    size_t numBlocks = subPool->totalBlocks;

    // Move the blocks from the subPool back to the superpool.
    MoveBlocks(superPool, subPool, numBlocks);

    // Update the superPool's block use count.
    superPool->numBlocksInUse -= numBlocks;

    // Remove the sub-pool from the list of sub-pools.
    ListOfPoolsChgCnt++;
    le_dls_Remove(&ListOfPools, &(subPool->poolLink));

    Unlock();

    // Release the sub-pool.
    le_mem_Release(subPool);
}
Exemple #2
0
//--------------------------------------------------------------------------------------------------
static void DeleteFdMonitor
(
    FdMonitor_t*            fdMonitorPtr        ///< [in] Pointer to the FD Monitor to be deleted.
)
//--------------------------------------------------------------------------------------------------
{
    event_PerThreadRec_t*   perThreadRecPtr = thread_GetEventRecPtr();

    LE_ASSERT(perThreadRecPtr == fdMonitorPtr->threadRecPtr);

    // Remove the FD Monitor from the thread's FD Monitor List.
    le_dls_Remove(&perThreadRecPtr->fdMonitorList, &fdMonitorPtr->link);

    LOCK

    // Delete the Safe References used for the FD Monitor and any of its Handler objects.
    le_ref_DeleteRef(FdMonitorRefMap, fdMonitorPtr->safeRef);

    UNLOCK

    // Tell epoll(7) to stop monitoring this fd.
    StopMonitoringFd(fdMonitorPtr);

    // Release the object back to it's pool.
    le_mem_Release(fdMonitorPtr);
}
//--------------------------------------------------------------------------------------------------
void le_msg_RemoveServiceHandler
(
    le_msg_SessionEventHandlerRef_t handlerRef   ///< [in] Reference to a previously call of
                                                 ///       le_msg_AddServiceCloseHandler()
)
//--------------------------------------------------------------------------------------------------
{
    le_dls_Link_t* linkPtr = le_ref_Lookup(HandlersRefMap, handlerRef);

    if ( linkPtr == NULL )
    {
        LE_ERROR("Invalid data request reference");
    }
    else
    {
        SessionEventHandler_t* eventPtr = CONTAINER_OF(linkPtr, SessionEventHandler_t, link);

        /* Remove the link from the close handlers dls */
        le_dls_Remove(eventPtr->listPtr, linkPtr);

        /* Release memory */
        le_mem_Release(eventPtr);

        /* Delete the reference */
        le_ref_DeleteRef(HandlersRefMap, handlerRef);
    }
}
Exemple #4
0
//--------------------------------------------------------------------------------------------------
static void DeleteFdMonitor
(
    FdMonitor_t*            fdMonitorPtr        ///< [in] Pointer to the FD Monitor to be deleted.
)
//--------------------------------------------------------------------------------------------------
{
    int i;
    event_PerThreadRec_t*   perThreadRecPtr = thread_GetEventRecPtr();

    LE_ASSERT(perThreadRecPtr == fdMonitorPtr->threadRecPtr);

    // Remove the FD Monitor from the thread's FD Monitor List.
    le_dls_Remove(&perThreadRecPtr->fdMonitorList, &fdMonitorPtr->link);

    LOCK

    // Delete the Safe References used for the FD Monitor and any of its Handler objects.
    le_ref_DeleteRef(FdMonitorRefMap, fdMonitorPtr->safeRef);
    for (i = 0; i < LE_EVENT_NUM_FD_EVENT_TYPES; i++)
    {
        void* safeRef = fdMonitorPtr->handlerArray[i].safeRef;
        if (safeRef != NULL)
        {
            le_ref_DeleteRef(HandlerRefMap, safeRef);
        }
    }

    UNLOCK

    // Tell epoll(7) to stop monitoring this fd.
    StopMonitoringFd(fdMonitorPtr);

    // Release the object back to it's pool.
    le_mem_Release(fdMonitorPtr);
}
//--------------------------------------------------------------------------------------------------
void msgService_RemoveSession
(
    le_msg_ServiceRef_t serviceRef,
    le_msg_SessionRef_t sessionRef
)
//--------------------------------------------------------------------------------------------------
{
    le_dls_Remove(&serviceRef->sessionList, msgSession_GetListLink(sessionRef));

    // The Session object no longer holds a reference to the Service object.
    msgService_Release(serviceRef);
}
Exemple #6
0
//--------------------------------------------------------------------------------------------------
static void RemoveFromWaitingList
(
    Semaphore_t*        semaphorePtr,
    sem_ThreadRec_t*    perThreadRecPtr
)
//--------------------------------------------------------------------------------------------------
{
    LOCK_WAITING_LIST(semaphorePtr);

    le_dls_Remove(&semaphorePtr->waitingList, &perThreadRecPtr->waitingListLink);

    UNLOCK_WAITING_LIST(semaphorePtr);
}
Exemple #7
0
//------------------------------------------------------------------------------------------------------------
le_dls_Link_t* le_dls_PopTail
(
    le_dls_List_t* listPtr             ///< [IN] The list to remove from.
)
{
    if (listPtr->headLinkPtr == NULL)
    {
        // List is empty.
        return NULL;
    }

    le_dls_Link_t* linkToPopPtr = listPtr->headLinkPtr->prevPtr;

    le_dls_Remove(listPtr, linkToPopPtr);

    return linkToPopPtr;
}
Exemple #8
0
//--------------------------------------------------------------------------------------------------
le_result_t le_mcc_Delete
(
    le_mcc_CallRef_t callRef   ///< [IN] The call object to free.
)
{
    le_mcc_Call_t* callPtr = le_ref_Lookup(MccCallRefMap, callRef);

    if (callPtr == NULL)
    {
        LE_ERROR("Invalid reference (%p) provided!", callRef);
        return LE_NOT_FOUND;
    }

    if (callPtr->inProgress)
    {
        return LE_FAULT;
    }
    else
    {
        SessionRefNode_t* sessionRefNodePtr;
        le_dls_Link_t* linkPtr;

        callPtr->refCount--;
        LE_DEBUG("refcount %d", callPtr->refCount);

        // Remove corresponding node from the sessionRefList
        linkPtr = le_dls_Peek(&(callPtr->sessionRefList));

        while (linkPtr != NULL)
        {
            sessionRefNodePtr = CONTAINER_OF(linkPtr, SessionRefNode_t, link);
            linkPtr = le_dls_PeekNext(&(callPtr->sessionRefList), linkPtr);

            if ( sessionRefNodePtr->sessionRef == le_mcc_GetClientSessionRef() )
            {
                le_dls_Remove(  &(callPtr->sessionRefList),
                                &(sessionRefNodePtr->link));

                le_mem_Release(sessionRefNodePtr);
            }
        }

        le_mem_Release(callPtr);
        return LE_OK;
    }
}
Exemple #9
0
//------------------------------------------------------------------------------------------------------------
le_dls_Link_t* le_dls_Pop
(
    le_dls_List_t* listPtr             ///< [IN] The list to remove from.
)
{
    // Check parameters.
    if (listPtr->headLinkPtr == NULL)
    {
        // List is empty.
        return NULL;
    }

    le_dls_Link_t* linkToPopPtr = listPtr->headLinkPtr;

    le_dls_Remove(listPtr, linkToPopPtr);

    return linkToPopPtr;
}
Exemple #10
0
//--------------------------------------------------------------------------------------------------
static void CloseSessionEventHandler
(
    le_msg_SessionRef_t sessionRef,
    void*               contextPtr
)
{
    le_mcc_Call_t* callPtr = NULL;
    SessionRefNode_t* sessionRefNodePtr;
    le_dls_Link_t* linkPtr;

    le_ref_IterRef_t iterRef = le_ref_GetIterator(MccCallRefMap);

    while (le_ref_NextNode(iterRef) == LE_OK)
    {
        callPtr = (le_mcc_Call_t*) le_ref_GetValue(iterRef);

        // Remove corresponding node from the sessionRefList
        linkPtr = le_dls_Peek(&(callPtr->sessionRefList));

        while (linkPtr != NULL)
        {
            sessionRefNodePtr = CONTAINER_OF(linkPtr, SessionRefNode_t, link);

            linkPtr = le_dls_PeekNext(&(callPtr->sessionRefList), linkPtr);

            // Remove corresponding node from the sessionRefList
            if ( sessionRefNodePtr->sessionRef == sessionRef )
            {
                le_dls_Remove(&(callPtr->sessionRefList),
                    &(sessionRefNodePtr->link));

                le_mem_Release(sessionRefNodePtr);

                callPtr->refCount--;
                le_mem_Release(callPtr);
            }
        }
    }
}
Exemple #11
0
//--------------------------------------------------------------------------------------------------
void le_sem_Delete
(
    le_sem_Ref_t    semaphorePtr   ///< [IN] Pointer to the semaphore
)
{
    // TODO: Implement traceable semaphore deletion.

    // Remove the Semaphore object from the Semaphore List.
    LOCK_SEMAPHORE_LIST();
    le_dls_Remove(&SemaphoreList, &semaphorePtr->semaphoreListLink);
    UNLOCK_SEMAPHORE_LIST();

    LOCK_WAITING_LIST(semaphorePtr);
    if ( le_dls_Peek(&semaphorePtr->waitingList)==NULL ) {
        UNLOCK_WAITING_LIST(semaphorePtr);
        if (pthread_mutex_destroy(&semaphorePtr->waitingListMutex) != 0)
        {
            LE_FATAL(   "Semaphore '%s' could not destroy internal mutex!",
                        semaphorePtr->nameStr);
        }
            // Destroy the semaphore.
        if (sem_destroy(&semaphorePtr->semaphore) != 0)
        {
            LE_FATAL(   "Semaphore '%s' is not a valid semaphore!",
                        semaphorePtr->nameStr);
        }
    } else {
        UNLOCK_WAITING_LIST(semaphorePtr);
        // TODO print more information
        LE_FATAL("Semaphore '%s' deleted while threads are still waiting for it!",
                 semaphorePtr->nameStr);
    }


    // Release the semaphore object back to the Semaphore Pool.
    le_mem_Release(semaphorePtr);
}
Exemple #12
0
//--------------------------------------------------------------------------------------------------
void le_sig_SetEventHandler
(
    int sigNum,                                 ///< The signal to set the event handler for.  See
                                                ///  parameter documentation in comments above.
    le_sig_EventHandlerFunc_t sigEventHandler   ///< The event handler to call when a signal is
                                                ///  received.
)
{
    // Check parameters.
    if ( (sigNum == SIGKILL) || (sigNum == SIGSTOP) || (sigNum == SIGFPE) || (sigNum == SIGILL) ||
         (sigNum == SIGSEGV) || (sigNum == SIGBUS) || (sigNum == SIGABRT) || (sigNum == SIGIOT) ||
         (sigNum == SIGTRAP) || (sigNum == SIGSYS) )
    {
        LE_FATAL("Signal event handler for %s is not allowed.", strsignal(sigNum));
    }

    // Get the monitor object for this thread.
    MonitorObj_t* monitorObjPtr = pthread_getspecific(SigMonKey);

    if (monitorObjPtr == NULL)
    {
        if (sigEventHandler == NULL)
        {
            // Event handler already does not exist so we don't need to do anything, just return.
            return;
        }
        else
        {
            // Create the monitor object
            monitorObjPtr = le_mem_ForceAlloc(MonitorObjPool);
            monitorObjPtr->handlerObjList = LE_DLS_LIST_INIT;
            monitorObjPtr->fd = -1;
            monitorObjPtr->monitorRef = NULL;

            // Add it to the thread's local data.
            LE_ASSERT(pthread_setspecific(SigMonKey, monitorObjPtr) == 0);
        }
    }

    // See if a handler for this signal already exists.
    HandlerObj_t* handlerObjPtr = FindHandlerObj(sigNum, &(monitorObjPtr->handlerObjList));

    if (handlerObjPtr == NULL)
    {
        if (sigEventHandler == NULL)
        {
            // Event handler already does not exist so we don't need to do anything, just return.
            return;
        }
        else
        {
            // Create the handler object.
            handlerObjPtr = le_mem_ForceAlloc(HandlerObjPool);

            // Set the handler.
            handlerObjPtr->link = LE_DLS_LINK_INIT;
            handlerObjPtr->handler = sigEventHandler;
            handlerObjPtr->sigNum = sigNum;

            // Add the handler object to the list.
            le_dls_Queue(&(monitorObjPtr->handlerObjList), &(handlerObjPtr->link));
        }
    }
    else
    {
        if (sigEventHandler == NULL)
        {
            // Remove the handler object from the list.
            le_dls_Remove(&(monitorObjPtr->handlerObjList), &(handlerObjPtr->link));
        }
        else
        {
            // Just update the handler.
            handlerObjPtr->handler = sigEventHandler;
        }
    }

    // Recreate the signal mask.
    sigset_t sigSet;
    LE_ASSERT(sigemptyset(&sigSet) == 0);

    le_dls_Link_t* handlerLinkPtr = le_dls_Peek(&(monitorObjPtr->handlerObjList));
    while (handlerLinkPtr != NULL)
    {
        HandlerObj_t* handlerObjPtr = CONTAINER_OF(handlerLinkPtr, HandlerObj_t, link);

        LE_ASSERT(sigaddset(&sigSet, handlerObjPtr->sigNum) == 0);

        handlerLinkPtr = le_dls_PeekNext(&(monitorObjPtr->handlerObjList), handlerLinkPtr);
    }

    // Update or create the signal fd.
    monitorObjPtr->fd = signalfd(monitorObjPtr->fd, &sigSet, SFD_NONBLOCK);

    if (monitorObjPtr->fd == -1)
    {
        LE_FATAL("Could not set signal event handler: %m");
    }

    // Create a monitor fd if it doesn't already exist.
    if (monitorObjPtr->monitorRef == NULL)
    {
        // Create the monitor name using SIG_STR + thread name.
        char monitorName[LIMIT_MAX_THREAD_NAME_BYTES + sizeof(SIG_STR)] = SIG_STR;

        LE_ASSERT(le_utf8_Copy(monitorName + sizeof(SIG_STR),
                               le_thread_GetMyName(),
                               LIMIT_MAX_THREAD_NAME_BYTES + sizeof(SIG_STR),
                               NULL) == LE_OK);

        // Create the monitor.
        monitorObjPtr->monitorRef = le_fdMonitor_Create(monitorName,
                                                        monitorObjPtr->fd,
                                                        OurSigHandler,
                                                        POLLIN);
    }
}
Exemple #13
0
static le_result_t TestDoublyLinkLists(size_t maxListSize)
{
    // Node definition.
    typedef struct
    {
        le_dls_Link_t link;
        uint32_t id;  
    }
    idRecord_t;

    int i;
    le_dls_List_t list0, list1;
    le_dls_Link_t* removedLinksPtr0[REMOVE_SIZE] = {NULL};
    le_dls_Link_t* removedLinksPtr1[REMOVE_SIZE] = {NULL};

    printf("\n");
    printf("*** Unit Test for le_doublyLinkedList module. ***\n");

    //
    // Multiple list creation
    //
    // Initialize the lists
    list0 = LE_DLS_LIST_INIT;
    list1 = LE_DLS_LIST_INIT;
    printf("Two doubly linked lists were successfully created.\n");


    //
    // Attempt to query empty list
    //
    if ( (le_dls_Peek(&list0) != NULL) || (le_dls_PeekTail(&list0) != NULL) ||
         (le_dls_Pop(&list0) != NULL) || (le_dls_PopTail(&list0) != NULL) )
    {
        printf("Query of empty list failed: %d", __LINE__);
        return LE_FAULT;
    }
    printf("Query of empty list correct.\n");


    //
    // Node insertions
    //
    {
        idRecord_t* newNodePtr;
        
        // Insert to the tail
        for (i = 0; i < maxListSize; i++)
        {
            // Create the new node
            newNodePtr = (idRecord_t*)malloc(sizeof(idRecord_t));
            newNodePtr->id = i;
            
            // Initialize the link.
            newNodePtr->link = LE_DLS_LINK_INIT;

            // Insert the new node to the tail.
            le_dls_Queue(&list0, &(newNodePtr->link));
        }
        printf("%zu nodes were added to the tail of list0.\n", maxListSize);
        
        // Insert to the head
        for (i = 0; i < maxListSize; i++)
        {
            // Create the new node
            newNodePtr = (idRecord_t*)malloc(sizeof(idRecord_t));
            newNodePtr->id = i;
            
            // Initialize the link.
            newNodePtr->link = LE_DLS_LINK_INIT;

            // Insert the new node to the tail.
            le_dls_Stack(&list1, &(newNodePtr->link));
        }
        printf("%zu nodes were added to the head of list1.\n", maxListSize);
    }

    //
    // Check that all the nodes have been added properly
    //
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_Peek(&list0);
        le_dls_Link_t* link1Ptr = le_dls_PeekTail(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }

            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }

            // Move to the next node.
            link0Ptr = le_dls_PeekNext(&list0, link0Ptr);
            link1Ptr = le_dls_PeekPrev(&list1, link1Ptr);
            i++;

        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes added to the head and tails are all correct.\n");
    

    //
    // Remove random nodes
    //

    //seed the random number generator with the clock
    srand((unsigned int)clock());
    
    {
        // Start at the end of the lists and randomly remove links.
        le_dls_Link_t* linkToRemovePtr;
        le_dls_Link_t* link0Ptr = le_dls_PeekTail(&list0);
        le_dls_Link_t* link1Ptr = le_dls_Peek(&list1);
        
        int r0 = 0;
        int r1 = 0;
        do
        {
            // For list 0
            if ( (rand() < REMOVE_THRESHOLD) && (r0 < REMOVE_SIZE) )
            {
                // Mark this node for removal.
                linkToRemovePtr = link0Ptr;
                
                // Move to the next node.
                link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
                
                // Remove the node.
                le_dls_Remove(&list0, linkToRemovePtr);
                
                // Store the removed node for later use.
                removedLinksPtr0[r0++] = linkToRemovePtr;
            }
            else
            {
                // Just move one
                link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
            }
            
            
            // For list 1
            if ( (rand() < REMOVE_THRESHOLD) && (r1 < REMOVE_SIZE) )
            {
                // Mark this node for removal.
                linkToRemovePtr = link1Ptr;
                
                // Move to the next node.
                link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
                
                // Remove the node.
                le_dls_Remove(&list1, linkToRemovePtr);
                
                // Store the removed node for later use.
                removedLinksPtr1[r1++] = linkToRemovePtr;
            }
            else
            {
                // Just move to the next node
                link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
            }
        } while (link0Ptr != NULL);
        
        printf("Randomly removed %d nodes from list0.\n", r0);
        printf("Randomly removed %d nodes from list1.\n", r1);
    }


    //
    // Check that the proper nodes were removed
    //
    {
        int numNodesRemoved = 0;
        
        // For list 0.
        // Check that the nodes in the removed nodes are indeed not in the list.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr0[i] == NULL)
            {
                break;
            }
            
            if (le_dls_IsInList(&list0, removedLinksPtr0[i]))
            {
                printf("Node removal incorrect: %d", __LINE__);
                return LE_FAULT;
            }
            
            numNodesRemoved++;
        }
        
        // Compare the list count.
        if ( (numNodesRemoved != maxListSize - le_dls_NumLinks(&list0)) || (le_dls_NumLinks(&list0) == maxListSize) )
        {
            printf("Node removal incorrect: %d", __LINE__);
            return LE_FAULT;
        }
        
        // For list 1.
        // Check that the nodes in the removed nodes are indeed not in the list.
        numNodesRemoved = 0;
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr1[i] == NULL)
            {
                break;
            }
            
            if (le_dls_IsInList(&list1, removedLinksPtr1[i]))
            {
                printf("Node removal incorrect: %d", __LINE__);
                return LE_FAULT;
            }
            
            numNodesRemoved++;
        }
        
        // Compare the list count.
        if ( (numNodesRemoved != maxListSize - le_dls_NumLinks(&list1)) || (le_dls_NumLinks(&list1) == maxListSize) )
        {
            printf("Node removal incorrect: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that nodes were removed correctly.\n");
    
    
    //
    // Add the randomly removed nodes back in.
    //
    {        
        idRecord_t *nodePtr, *removedNodePtr;
        le_dls_Link_t* linkPtr;
     
        // For list 0.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr0[i] == NULL)
            {
                break;
            }
            
            removedNodePtr = CONTAINER_OF(removedLinksPtr0[i], idRecord_t, link);
            
            if (removedNodePtr->id == maxListSize-1)
            {
                le_dls_Queue(&list0, removedLinksPtr0[i]);
            }
            else
            {            
                // Search the list for the place to insert this.            
                linkPtr = le_dls_PeekTail(&list0);
                do
                {
                    // Get the node
                    nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
                    
                    // Find the id that is just before this one.
                    if (nodePtr->id == removedNodePtr->id + 1)
                    {
                        le_dls_AddBefore(&list0, linkPtr, removedLinksPtr0[i]);
                        break;
                    }
                    
                    linkPtr = le_dls_PeekPrev(&list0, linkPtr);
                    
                } while (linkPtr != NULL);
            }
        }
        
        
        // For list 1.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr1[i] == NULL)
            {
                break;
            }
            
            removedNodePtr = CONTAINER_OF(removedLinksPtr1[i], idRecord_t, link);
            
            if (removedNodePtr->id == maxListSize-1)
            {
                le_dls_Stack(&list1, removedLinksPtr1[i]);
            }
            else
            {            
                // Search the list for the place to insert this.            
                linkPtr = le_dls_Peek(&list1);
                do
                {
                    // Get the node
                    nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
                    
                    // Find the id that is just before this one.
                    if (nodePtr->id == removedNodePtr->id + 1)
                    {
                        le_dls_AddAfter(&list1, linkPtr, removedLinksPtr1[i]);
                        break;
                    }
                    
                    linkPtr = le_dls_PeekNext(&list1, linkPtr);
                    
                } while (linkPtr != NULL);
            }
        }
    }
    
    printf("Added all randomly removed nodes back in.\n");
    
    //Check that the list is correct.
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_Peek(&list0);
        le_dls_Link_t* link1Ptr = le_dls_PeekTail(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }        
            
            // Move to the next node.
            link0Ptr = le_dls_PeekNext(&list0, link0Ptr);
            link1Ptr = le_dls_PeekPrev(&list1, link1Ptr);
            i++;
            
        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes are now added back in in the correct order.\n");
    
    
    //
    // Swap nodes.
    //
    {
        //Swap all the nodes in the list so the list is in reverse order.
        le_dls_Link_t* linkPtr, *tmpLinkPtr;
        le_dls_Link_t* otherlinkPtr;    
        idRecord_t* nodePtr, *otherNodePtr;

        // For list 0.
        linkPtr = le_dls_Peek(&list0);
        otherlinkPtr = le_dls_PeekTail(&list0);    
        for (i = 0; i < (le_dls_NumLinks(&list0) / 2); i++)
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            otherNodePtr = CONTAINER_OF(otherlinkPtr, idRecord_t, link);
            
            if (nodePtr->id < otherNodePtr->id) 
            {
                le_dls_Swap(&list0, linkPtr, otherlinkPtr);
            }
            else
            {
                break;
            }
            
            // switch the pointers back but not the links.
            tmpLinkPtr = linkPtr;
            linkPtr = otherlinkPtr;
            otherlinkPtr = tmpLinkPtr;
            
            linkPtr = le_dls_PeekNext(&list0, linkPtr);
            otherlinkPtr = le_dls_PeekPrev(&list0, otherlinkPtr);
        }


        // For list 1.
        linkPtr = le_dls_Peek(&list1);
        otherlinkPtr = le_dls_PeekTail(&list1);    
        for (i = 0; i < (le_dls_NumLinks(&list1) / 2); i++)
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            otherNodePtr = CONTAINER_OF(otherlinkPtr, idRecord_t, link);
            
            if (nodePtr->id > otherNodePtr->id) 
            {
                le_dls_Swap(&list1, linkPtr, otherlinkPtr);
            }
            else
            {
                break;
            }
            
            // switch the pointers back but not the links.
            tmpLinkPtr = linkPtr;
            linkPtr = otherlinkPtr;
            otherlinkPtr = tmpLinkPtr;
            
            linkPtr = le_dls_PeekNext(&list1, linkPtr);
            otherlinkPtr = le_dls_PeekPrev(&list1, otherlinkPtr);
        }
    }
    
    printf("Reversed the order of both lists using swap.\n");
    
    //Check that the list is correct.
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_PeekTail(&list0);
        le_dls_Link_t* link1Ptr = le_dls_Peek(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }        

            // Move to the next node.
            link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
            link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
            i++;
            
        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes are now correctly in the reverse order.\n");
    

    //
    // Pop nodes.
    //
    {
        //pop all of list0 except for one node.  Save the first node using swap before the pop.
        for (i = maxListSize; i > 1; i--)
        {
            // get the first two links.
            le_dls_Link_t* linkPtr = le_dls_Peek(&list0);
            le_dls_Link_t* otherlinkPtr = le_dls_PeekNext(&list0, linkPtr);

            // swap the first two links.
            le_dls_Swap(&list0, linkPtr, otherlinkPtr);

            // pop the first link.
            le_dls_Pop(&list0);
        }
        
        
        //pop half the list.
        for (i = 0; i < (maxListSize / 2); i++)
        {
            le_dls_PopTail(&list1);
        }
    }
    
    printf("Popped all the nodes except one from the head of list0.\n");
    printf("Popped half the nodes from the tail of list1.\n");
    
    // Check that the list is still in tact.
    {
        idRecord_t* nodePtr;
        
        // For list 0.
        le_dls_Link_t* linkPtr = le_dls_Peek(&list0); 
        nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);

        if (nodePtr->id != maxListSize-1)
        {
            printf("Link error: %d", __LINE__);
        }

        // Check that the number of links left is correct.
        if (le_dls_NumLinks(&list0) != 1)
        {
            printf("Wrong number of links: %d", __LINE__);
            return LE_FAULT;
        }
        
        // For list1.
        linkPtr = le_dls_Peek(&list1); 
        i = 0;
        do
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            
            if (nodePtr->id != i++)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            linkPtr = le_dls_PeekNext(&list1, linkPtr);
        } while(linkPtr != NULL);
        
        // Check that the number of links left is correct.
        if (i != maxListSize - (maxListSize / 2))
        {
            printf("Wrong number of links: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes were properly popped from the lists.\n");


    //
    // Check for list corruption.
    //
    {
        le_dls_Link_t* linkPtr;
        
        if (le_dls_IsListCorrupted(&list1))
        {
            printf("List1 is corrupt but shouldn't be: %d", __LINE__);
            return LE_FAULT;
        }

        // Access one of the links directly.  This should corrupt the list.
        linkPtr = le_dls_PeekTail(&list1);
        linkPtr = le_dls_PeekPrev(&list1, linkPtr);
        linkPtr->prevPtr = linkPtr;

        if (!le_dls_IsListCorrupted(&list1))
        {
            printf("List1 is not corrupted but should be: %d", __LINE__);
            return LE_FAULT;
        }
    }

    printf("Checked lists for corruption.\n");

    
    printf("*** Unit Test for le_doublyLinkedList module passed. ***\n");
    printf("\n");
    return LE_OK;
}