void collocationInterpolators(const std::vector<double> & tau_root, std::vector< std::vector<double> > &C, std::vector< double > &D) { // Find the degree of the interpolation int deg = tau_root.size()-1; // Allocate storage space for resulting coefficients C.resize(deg+1); for (int i=0;i<deg+1;++i) { C[i].resize(deg+1); } D.resize(deg+1); // Collocation point SX tau = SX::sym("tau"); // For all collocation points for (int j=0; j<deg+1; ++j) { // Construct Lagrange polynomials to get the polynomial basis at the collocation point SX L = 1; for (int j2=0; j2<deg+1; ++j2) { if (j2 != j) { L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2]); } } Function lfcn("lfcn", {tau}, {L}); // Evaluate the polynomial at the final time to get the // coefficients of the continuity equation D[j] = lfcn(vector<DM>{1.}).at(0)->front(); // Evaluate the time derivative of the polynomial at all collocation points to // get the coefficients of the continuity equation Function tfcn = lfcn.tangent(); for (int j2=0; j2<deg+1; ++j2) { C[j2][j] = tfcn(vector<DM>{tau_root[j2]}).at(0)->front(); } } }
void DirectCollocationInternal::init(){ // Initialize the base classes OCPSolverInternal::init(); // Free parameters currently not supported casadi_assert_message(np_==0, "Not implemented"); // Legendre collocation points double legendre_points[][6] = { {0}, {0,0.500000}, {0,0.211325,0.788675}, {0,0.112702,0.500000,0.887298}, {0,0.069432,0.330009,0.669991,0.930568}, {0,0.046910,0.230765,0.500000,0.769235,0.953090}}; // Radau collocation points double radau_points[][6] = { {0}, {0,1.000000}, {0,0.333333,1.000000}, {0,0.155051,0.644949,1.000000}, {0,0.088588,0.409467,0.787659,1.000000}, {0,0.057104,0.276843,0.583590,0.860240,1.000000}}; // Read options bool use_radau; if(getOption("collocation_scheme")=="radau"){ use_radau = true; } else if(getOption("collocation_scheme")=="legendre"){ use_radau = false; } // Interpolation order deg_ = getOption("interpolation_order"); // All collocation time points double* tau_root = use_radau ? radau_points[deg_] : legendre_points[deg_]; // Size of the finite elements double h = tf_/nk_; // Coefficients of the collocation equation vector<vector<MX> > C(deg_+1,vector<MX>(deg_+1)); // Coefficients of the collocation equation as DMatrix DMatrix C_num = DMatrix(deg_+1,deg_+1,0); // Coefficients of the continuity equation vector<MX> D(deg_+1); // Coefficients of the collocation equation as DMatrix DMatrix D_num = DMatrix(deg_+1,1,0); // Collocation point SXMatrix tau = ssym("tau"); // For all collocation points for(int j=0; j<deg_+1; ++j){ // Construct Lagrange polynomials to get the polynomial basis at the collocation point SXMatrix L = 1; for(int j2=0; j2<deg_+1; ++j2){ if(j2 != j){ L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2]); } } SXFunction lfcn(tau,L); lfcn.init(); // Evaluate the polynomial at the final time to get the coefficients of the continuity equation lfcn.setInput(1.0); lfcn.evaluate(); D[j] = lfcn.output(); D_num(j) = lfcn.output(); // Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation for(int j2=0; j2<deg_+1; ++j2){ lfcn.setInput(tau_root[j2]); lfcn.setFwdSeed(1.0); lfcn.evaluate(1,0); C[j][j2] = lfcn.fwdSens(); C_num(j,j2) = lfcn.fwdSens(); } } C_num(std::vector<int>(1,0),ALL) = 0; C_num(0,0) = 1; // All collocation time points vector<vector<double> > T(nk_); for(int k=0; k<nk_; ++k){ T[k].resize(deg_+1); for(int j=0; j<=deg_; ++j){ T[k][j] = h*(k + tau_root[j]); } } // Total number of variables int nlp_nx = 0; nlp_nx += nk_*(deg_+1)*nx_; // Collocated states nlp_nx += nk_*nu_; // Parametrized controls nlp_nx += nx_; // Final state // NLP variable vector MX nlp_x = msym("x",nlp_nx); int offset = 0; // Get collocated states and parametrized control vector<vector<MX> > X(nk_+1); vector<MX> U(nk_); for(int k=0; k<nk_; ++k){ // Collocated states X[k].resize(deg_+1); for(int j=0; j<=deg_; ++j){ // Get the expression for the state vector X[k][j] = nlp_x[Slice(offset,offset+nx_)]; offset += nx_; } // Parametrized controls U[k] = nlp_x[Slice(offset,offset+nu_)]; offset += nu_; } // State at end time X[nk_].resize(1); X[nk_][0] = nlp_x[Slice(offset,offset+nx_)]; offset += nx_; casadi_assert(offset==nlp_nx); // Constraint function for the NLP vector<MX> nlp_g; // Objective function MX nlp_j = 0; // For all finite elements for(int k=0; k<nk_; ++k){ // For all collocation points for(int j=1; j<=deg_; ++j){ // Get an expression for the state derivative at the collocation point MX xp_jk = 0; for(int r=0; r<=deg_; ++r){ xp_jk += C[r][j]*X[k][r]; } // Add collocation equations to the NLP MX fk = ffcn_.call(daeIn("x",X[k][j],"p",U[k]))[DAE_ODE]; nlp_g.push_back(h*fk - xp_jk); } // Get an expression for the state at the end of the finite element MX xf_k = 0; for(int r=0; r<=deg_; ++r){ xf_k += D[r]*X[k][r]; } // Add continuity equation to NLP nlp_g.push_back(X[k+1][0] - xf_k); // Add path constraints if(nh_>0){ MX pk = cfcn_.call(daeIn("x",X[k+1][0],"p",U[k])).at(0); nlp_g.push_back(pk); } // Add integral objective function term // [Jk] = lfcn.call([X[k+1,0], U[k]]) // nlp_j += Jk } // Add end cost MX Jk = mfcn_.call(mayerIn("x",X[nk_][0])).at(0); nlp_j += Jk; // Objective function of the NLP F_ = MXFunction(nlp_x, nlp_j); // Nonlinear constraint function G_ = MXFunction(nlp_x, vertcat(nlp_g)); // Get the NLP creator function NLPSolverCreator nlp_solver_creator = getOption("nlp_solver"); // Allocate an NLP solver nlp_solver_ = nlp_solver_creator(F_,G_,FX(),FX()); // Pass options if(hasSetOption("nlp_solver_options")){ const Dictionary& nlp_solver_options = getOption("nlp_solver_options"); nlp_solver_.setOption(nlp_solver_options); } // Initialize the solver nlp_solver_.init(); }
void NLPSolverInternal::init(){ // Read options verbose_ = getOption("verbose"); gauss_newton_ = getOption("gauss_newton"); // Initialize the functions casadi_assert_message(!F_.isNull(),"No objective function"); if(!F_.isInit()){ F_.init(); log("Objective function initialized"); } if(!G_.isNull() && !G_.isInit()){ G_.init(); log("Constraint function initialized"); } // Get dimensions n_ = F_.input(0).numel(); m_ = G_.isNull() ? 0 : G_.output(0).numel(); parametric_ = getOption("parametric"); if (parametric_) { casadi_assert_message(F_.getNumInputs()==2, "Wrong number of input arguments to F for parametric NLP. Must be 2, but got " << F_.getNumInputs()); } else { casadi_assert_message(F_.getNumInputs()==1, "Wrong number of input arguments to F for non-parametric NLP. Must be 1, but got " << F_.getNumInputs() << " instead. Do you perhaps intend to use fixed parameters? Then use the 'parametric' option."); } // Basic sanity checks casadi_assert_message(F_.getNumInputs()==1 || F_.getNumInputs()==2, "Wrong number of input arguments to F. Must be 1 or 2"); if (F_.getNumInputs()==2) parametric_=true; casadi_assert_message(getOption("ignore_check_vec") || gauss_newton_ || F_.input().size2()==1, "To avoid confusion, the input argument to F must be vector. You supplied " << F_.input().dimString() << endl << " We suggest you make the following changes:" << endl << " - F is an SXFunction: SXFunction([X],[rhs]) -> SXFunction([vec(X)],[rhs])" << endl << " or F - -> F = vec(F) " << " - F is an MXFunction: MXFunction([X],[rhs]) -> " << endl << " X_vec = MX(\"X\",vec(X.sparsity())) " << endl << " F_vec = MXFunction([X_flat],[F.call([X_flat.reshape(X.sparsity())])[0]]) " << endl << " or F - -> F = vec(F) " << " You may ignore this warning by setting the 'ignore_check_vec' option to true." << endl ); casadi_assert_message(F_.getNumOutputs()>=1, "Wrong number of output arguments to F"); casadi_assert_message(gauss_newton_ || F_.output().scalar(), "Output argument of F not scalar."); casadi_assert_message(F_.output().dense(), "Output argument of F not dense."); casadi_assert_message(F_.input().dense(), "Input argument of F must be dense. You supplied " << F_.input().dimString()); if(!G_.isNull()) { if (parametric_) { casadi_assert_message(G_.getNumInputs()==2, "Wrong number of input arguments to G for parametric NLP. Must be 2, but got " << G_.getNumInputs()); } else { casadi_assert_message(G_.getNumInputs()==1, "Wrong number of input arguments to G for non-parametric NLP. Must be 1, but got " << G_.getNumInputs() << " instead. Do you perhaps intend to use fixed parameters? Then use the 'parametric' option."); } casadi_assert_message(G_.getNumOutputs()>=1, "Wrong number of output arguments to G"); casadi_assert_message(G_.input().numel()==n_, "Inconsistent dimensions"); casadi_assert_message(G_.input().sparsity()==F_.input().sparsity(), "F and G input dimension must match. F " << F_.input().dimString() << ". G " << G_.input().dimString()); } // Find out if we are to expand the objective function in terms of scalar operations bool expand_f = getOption("expand_f"); if(expand_f){ log("Expanding objective function"); // Cast to MXFunction MXFunction F_mx = shared_cast<MXFunction>(F_); if(F_mx.isNull()){ casadi_warning("Cannot expand objective function as it is not an MXFunction"); } else { // Take use the input scheme of G if possible (it might be an SXFunction) vector<SXMatrix> inputv; if(!G_.isNull() && F_.getNumInputs()==G_.getNumInputs()){ inputv = G_.symbolicInputSX(); } else { inputv = F_.symbolicInputSX(); } // Try to expand the MXFunction F_ = F_mx.expand(inputv); F_.setOption("number_of_fwd_dir",F_mx.getOption("number_of_fwd_dir")); F_.setOption("number_of_adj_dir",F_mx.getOption("number_of_adj_dir")); F_.init(); } } // Find out if we are to expand the constraint function in terms of scalar operations bool expand_g = getOption("expand_g"); if(expand_g){ log("Expanding constraint function"); // Cast to MXFunction MXFunction G_mx = shared_cast<MXFunction>(G_); if(G_mx.isNull()){ casadi_warning("Cannot expand constraint function as it is not an MXFunction"); } else { // Take use the input scheme of F if possible (it might be an SXFunction) vector<SXMatrix> inputv; if(F_.getNumInputs()==G_.getNumInputs()){ inputv = F_.symbolicInputSX(); } else { inputv = G_.symbolicInputSX(); } // Try to expand the MXFunction G_ = G_mx.expand(inputv); G_.setOption("number_of_fwd_dir",G_mx.getOption("number_of_fwd_dir")); G_.setOption("number_of_adj_dir",G_mx.getOption("number_of_adj_dir")); G_.init(); } } // Find out if we are to expand the constraint function in terms of scalar operations bool generate_hessian = getOption("generate_hessian"); if(generate_hessian && H_.isNull()){ casadi_assert_message(!gauss_newton_,"Automatic generation of Gauss-Newton Hessian not yet supported"); log("generating hessian"); // Simple if unconstrained if(G_.isNull()){ // Create Hessian of the objective function FX HF = F_.hessian(); HF.init(); // Symbolic inputs of HF vector<MX> HF_in = F_.symbolicInput(); // Lagrange multipliers MX lam("lam",0); // Objective function scaling MX sigma("sigma"); // Inputs of the Hessian function vector<MX> H_in = HF_in; H_in.insert(H_in.begin()+1, lam); H_in.insert(H_in.begin()+2, sigma); // Get an expression for the Hessian of F MX hf = HF.call(HF_in).at(0); // Create the scaled Hessian function H_ = MXFunction(H_in, sigma*hf); log("Unconstrained Hessian function generated"); } else { // G_.isNull() // Check if the functions are SXFunctions SXFunction F_sx = shared_cast<SXFunction>(F_); SXFunction G_sx = shared_cast<SXFunction>(G_); // Efficient if both functions are SXFunction if(!F_sx.isNull() && !G_sx.isNull()){ // Expression for f and g SXMatrix f = F_sx.outputSX(); SXMatrix g = G_sx.outputSX(); // Numeric hessian bool f_num_hess = F_sx.getOption("numeric_hessian"); bool g_num_hess = G_sx.getOption("numeric_hessian"); // Number of derivative directions int f_num_fwd = F_sx.getOption("number_of_fwd_dir"); int g_num_fwd = G_sx.getOption("number_of_fwd_dir"); int f_num_adj = F_sx.getOption("number_of_adj_dir"); int g_num_adj = G_sx.getOption("number_of_adj_dir"); // Substitute symbolic variables in f if different input variables from g if(!isEqual(F_sx.inputSX(),G_sx.inputSX())){ f = substitute(f,F_sx.inputSX(),G_sx.inputSX()); } // Lagrange multipliers SXMatrix lam = ssym("lambda",g.size1()); // Objective function scaling SXMatrix sigma = ssym("sigma"); // Lagrangian function vector<SXMatrix> lfcn_in(parametric_? 4: 3); lfcn_in[0] = G_sx.inputSX(); lfcn_in[1] = lam; lfcn_in[2] = sigma; if (parametric_) lfcn_in[3] = G_sx.inputSX(1); SXFunction lfcn(lfcn_in, sigma*f + inner_prod(lam,g)); lfcn.setOption("verbose",getOption("verbose")); lfcn.setOption("numeric_hessian",f_num_hess || g_num_hess); lfcn.setOption("number_of_fwd_dir",std::min(f_num_fwd,g_num_fwd)); lfcn.setOption("number_of_adj_dir",std::min(f_num_adj,g_num_adj)); lfcn.init(); // Hessian of the Lagrangian H_ = static_cast<FX&>(lfcn).hessian(); H_.setOption("verbose",getOption("verbose")); log("SX Hessian function generated"); } else { // !F_sx.isNull() && !G_sx.isNull() // Check if the functions are SXFunctions MXFunction F_mx = shared_cast<MXFunction>(F_); MXFunction G_mx = shared_cast<MXFunction>(G_); // If they are, check if the arguments are the same if(!F_mx.isNull() && !G_mx.isNull() && isEqual(F_mx.inputMX(),G_mx.inputMX())){ casadi_warning("Exact Hessian calculation for MX is still experimental"); // Expression for f and g MX f = F_mx.outputMX(); MX g = G_mx.outputMX(); // Lagrange multipliers MX lam("lam",g.size1()); // Objective function scaling MX sigma("sigma"); // Inputs of the Lagrangian function vector<MX> lfcn_in(parametric_? 4:3); lfcn_in[0] = G_mx.inputMX(); lfcn_in[1] = lam; lfcn_in[2] = sigma; if (parametric_) lfcn_in[3] = G_mx.inputMX(1); // Lagrangian function MXFunction lfcn(lfcn_in,sigma*f+ inner_prod(lam,g)); lfcn.init(); log("SX Lagrangian function generated"); /* cout << "countNodes(lfcn.outputMX()) = " << countNodes(lfcn.outputMX()) << endl;*/ bool adjoint_mode = true; if(adjoint_mode){ // Gradient of the lagrangian MX gL = lfcn.grad(); log("MX Lagrangian gradient generated"); MXFunction glfcn(lfcn_in,gL); glfcn.init(); log("MX Lagrangian gradient function initialized"); // cout << "countNodes(glfcn.outputMX()) = " << countNodes(glfcn.outputMX()) << endl; // Get Hessian sparsity CRSSparsity H_sp = glfcn.jacSparsity(); log("MX Lagrangian Hessian sparsity determined"); // Uni-directional coloring (note, the hessian is symmetric) CRSSparsity coloring = H_sp.unidirectionalColoring(H_sp); log("MX Lagrangian Hessian coloring determined"); // Number of colors needed is the number of rows int nfwd_glfcn = coloring.size1(); log("MX Lagrangian gradient function number of sensitivity directions determined"); glfcn.setOption("number_of_fwd_dir",nfwd_glfcn); glfcn.updateNumSens(); log("MX Lagrangian gradient function number of sensitivity directions updated"); // Hessian of the Lagrangian H_ = glfcn.jacobian(); } else { // Hessian of the Lagrangian H_ = lfcn.hessian(); } log("MX Lagrangian Hessian function generated"); } else { casadi_assert_message(0, "Automatic calculation of exact Hessian currently only for F and G both SXFunction or MXFunction "); } } // !F_sx.isNull() && !G_sx.isNull() } // G_.isNull() } // generate_hessian && H_.isNull() if(!H_.isNull() && !H_.isInit()) { H_.init(); log("Hessian function initialized"); } // Create a Jacobian if it does not already exists bool generate_jacobian = getOption("generate_jacobian"); if(generate_jacobian && !G_.isNull() && J_.isNull()){ log("Generating Jacobian"); J_ = G_.jacobian(); // Use live variables if SXFunction if(!shared_cast<SXFunction>(J_).isNull()){ J_.setOption("live_variables",true); } log("Jacobian function generated"); } if(!J_.isNull() && !J_.isInit()){ J_.init(); log("Jacobian function initialized"); } if(!H_.isNull()) { if (parametric_) { casadi_assert_message(H_.getNumInputs()>=2, "Wrong number of input arguments to H for parametric NLP. Must be at least 2, but got " << G_.getNumInputs()); } else { casadi_assert_message(H_.getNumInputs()>=1, "Wrong number of input arguments to H for non-parametric NLP. Must be at least 1, but got " << G_.getNumInputs() << " instead. Do you perhaps intend to use fixed parameters? Then use the 'parametric' option."); } casadi_assert_message(H_.getNumOutputs()>=1, "Wrong number of output arguments to H"); casadi_assert_message(H_.input(0).numel()==n_,"Inconsistent dimensions"); casadi_assert_message(H_.output().size1()==n_,"Inconsistent dimensions"); casadi_assert_message(H_.output().size2()==n_,"Inconsistent dimensions"); } if(!J_.isNull()){ if (parametric_) { casadi_assert_message(J_.getNumInputs()==2, "Wrong number of input arguments to J for parametric NLP. Must be at least 2, but got " << G_.getNumInputs()); } else { casadi_assert_message(J_.getNumInputs()==1, "Wrong number of input arguments to J for non-parametric NLP. Must be at least 1, but got " << G_.getNumInputs() << " instead. Do you perhaps intend to use fixed parameters? Then use the 'parametric' option."); } casadi_assert_message(J_.getNumOutputs()>=1, "Wrong number of output arguments to J"); casadi_assert_message(J_.input().numel()==n_,"Inconsistent dimensions"); casadi_assert_message(J_.output().size2()==n_,"Inconsistent dimensions"); } if (parametric_) { sp_p = F_->input(1).sparsity(); if (!G_.isNull()) casadi_assert_message(sp_p == G_->input(G_->getNumInputs()-1).sparsity(),"Parametric NLP has inconsistent parameter dimensions. F has got " << sp_p.dimString() << " as dimensions, while G has got " << G_->input(G_->getNumInputs()-1).dimString()); if (!H_.isNull()) casadi_assert_message(sp_p == H_->input(H_->getNumInputs()-1).sparsity(),"Parametric NLP has inconsistent parameter dimensions. F has got " << sp_p.dimString() << " as dimensions, while H has got " << H_->input(H_->getNumInputs()-1).dimString()); if (!J_.isNull()) casadi_assert_message(sp_p == J_->input(J_->getNumInputs()-1).sparsity(),"Parametric NLP has inconsistent parameter dimensions. F has got " << sp_p.dimString() << " as dimensions, while J has got " << J_->input(J_->getNumInputs()-1).dimString()); } // Infinity double inf = numeric_limits<double>::infinity(); // Allocate space for inputs input_.resize(NLP_NUM_IN - (parametric_? 0 : 1)); input(NLP_X_INIT) = DMatrix(n_,1,0); input(NLP_LBX) = DMatrix(n_,1,-inf); input(NLP_UBX) = DMatrix(n_,1, inf); input(NLP_LBG) = DMatrix(m_,1,-inf); input(NLP_UBG) = DMatrix(m_,1, inf); input(NLP_LAMBDA_INIT) = DMatrix(m_,1,0); if (parametric_) input(NLP_P) = DMatrix(sp_p,0); // Allocate space for outputs output_.resize(NLP_NUM_OUT); output(NLP_X_OPT) = DMatrix(n_,1,0); output(NLP_COST) = DMatrix(1,1,0); output(NLP_LAMBDA_X) = DMatrix(n_,1,0); output(NLP_LAMBDA_G) = DMatrix(m_,1,0); output(NLP_G) = DMatrix(m_,1,0); if (hasSetOption("iteration_callback")) { callback_ = getOption("iteration_callback"); if (!callback_.isNull()) { if (!callback_.isInit()) callback_.init(); casadi_assert_message(callback_.getNumOutputs()==1, "Callback function should have one output, a scalar that indicates wether to break. 0 = continue"); casadi_assert_message(callback_.output(0).size()==1, "Callback function should have one output, a scalar that indicates wether to break. 0 = continue"); casadi_assert_message(callback_.getNumInputs()==NLP_NUM_OUT, "Callback function should have the output scheme of NLPSolver as input scheme. i.e. " <<NLP_NUM_OUT << " inputs instead of the " << callback_.getNumInputs() << " you provided." ); for (int i=0;i<NLP_NUM_OUT;i++) { casadi_assert_message(callback_.input(i).sparsity()==output(i).sparsity(), "Callback function should have the output scheme of NLPSolver as input scheme. " << "Input #" << i << " (" << getSchemeEntryEnumName(SCHEME_NLPOutput,i) << " aka '" << getSchemeEntryName(SCHEME_NLPOutput,i) << "') was found to be " << callback_.input(i).dimString() << " instead of expected " << output(i).dimString() << "." ); callback_.input(i).setAll(0); } } } callback_step_ = getOption("iteration_callback_step"); // Call the initialization method of the base class FXInternal::init(); }
void DirectCollocationInternal::init(){ // Initialize the base classes OCPSolverInternal::init(); // Free parameters currently not supported casadi_assert_message(np_==0, "Not implemented"); // Interpolation order deg_ = getOption("interpolation_order"); // All collocation time points std::vector<double> tau_root = collocationPoints(deg_,getOption("collocation_scheme")); // Size of the finite elements double h = tf_/nk_; // Coefficients of the collocation equation vector<vector<MX> > C(deg_+1,vector<MX>(deg_+1)); // Coefficients of the collocation equation as DMatrix DMatrix C_num = DMatrix::zeros(deg_+1,deg_+1); // Coefficients of the continuity equation vector<MX> D(deg_+1); // Coefficients of the collocation equation as DMatrix DMatrix D_num = DMatrix::zeros(deg_+1); // Collocation point SX tau = SX::sym("tau"); // For all collocation points for(int j=0; j<deg_+1; ++j){ // Construct Lagrange polynomials to get the polynomial basis at the collocation point SX L = 1; for(int j2=0; j2<deg_+1; ++j2){ if(j2 != j){ L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2]); } } SXFunction lfcn(tau,L); lfcn.init(); // Evaluate the polynomial at the final time to get the coefficients of the continuity equation lfcn.setInput(1.0); lfcn.evaluate(); D[j] = lfcn.output(); D_num(j) = lfcn.output(); // Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation Function tfcn = lfcn.tangent(); tfcn.init(); for(int j2=0; j2<deg_+1; ++j2){ tfcn.setInput(tau_root[j2]); tfcn.evaluate(); C[j][j2] = tfcn.output(); C_num(j,j2) = tfcn.output(); } } C_num(std::vector<int>(1,0),ALL) = 0; C_num(0,0) = 1; // All collocation time points vector<vector<double> > T(nk_); for(int k=0; k<nk_; ++k){ T[k].resize(deg_+1); for(int j=0; j<=deg_; ++j){ T[k][j] = h*(k + tau_root[j]); } } // Total number of variables int nlp_nx = 0; nlp_nx += nk_*(deg_+1)*nx_; // Collocated states nlp_nx += nk_*nu_; // Parametrized controls nlp_nx += nx_; // Final state // NLP variable vector MX nlp_x = MX::sym("x",nlp_nx); int offset = 0; // Get collocated states and parametrized control vector<vector<MX> > X(nk_+1); vector<MX> U(nk_); for(int k=0; k<nk_; ++k){ // Collocated states X[k].resize(deg_+1); for(int j=0; j<=deg_; ++j){ // Get the expression for the state vector X[k][j] = nlp_x[Slice(offset,offset+nx_)]; offset += nx_; } // Parametrized controls U[k] = nlp_x[Slice(offset,offset+nu_)]; offset += nu_; } // State at end time X[nk_].resize(1); X[nk_][0] = nlp_x[Slice(offset,offset+nx_)]; offset += nx_; casadi_assert(offset==nlp_nx); // Constraint function for the NLP vector<MX> nlp_g; // Objective function MX nlp_j = 0; // For all finite elements for(int k=0; k<nk_; ++k){ // For all collocation points for(int j=1; j<=deg_; ++j){ // Get an expression for the state derivative at the collocation point MX xp_jk = 0; for(int r=0; r<=deg_; ++r){ xp_jk += C[r][j]*X[k][r]; } // Add collocation equations to the NLP MX fk = ffcn_.call(daeIn("x",X[k][j],"p",U[k]))[DAE_ODE]; nlp_g.push_back(h*fk - xp_jk); } // Get an expression for the state at the end of the finite element MX xf_k = 0; for(int r=0; r<=deg_; ++r){ xf_k += D[r]*X[k][r]; } // Add continuity equation to NLP nlp_g.push_back(X[k+1][0] - xf_k); // Add path constraints if(nh_>0){ MX pk = cfcn_.call(daeIn("x",X[k+1][0],"p",U[k])).at(0); nlp_g.push_back(pk); } // Add integral objective function term // [Jk] = lfcn.call([X[k+1,0], U[k]]) // nlp_j += Jk } // Add end cost MX Jk = mfcn_.call(mayerIn("x",X[nk_][0])).at(0); nlp_j += Jk; // Objective function of the NLP nlp_ = MXFunction(nlpIn("x",nlp_x), nlpOut("f",nlp_j,"g",vertcat(nlp_g))); // Get the NLP creator function NLPSolverCreator nlp_solver_creator = getOption("nlp_solver"); // Allocate an NLP solver nlp_solver_ = nlp_solver_creator(nlp_); // Pass options if(hasSetOption("nlp_solver_options")){ const Dictionary& nlp_solver_options = getOption("nlp_solver_options"); nlp_solver_.setOption(nlp_solver_options); } // Initialize the solver nlp_solver_.init(); }
void CollocationIntegratorInternal::init(){ // Call the base class init IntegratorInternal::init(); // Legendre collocation points double legendre_points[][6] = { {0}, {0,0.500000}, {0,0.211325,0.788675}, {0,0.112702,0.500000,0.887298}, {0,0.069432,0.330009,0.669991,0.930568}, {0,0.046910,0.230765,0.500000,0.769235,0.953090}}; // Radau collocation points double radau_points[][6] = { {0}, {0,1.000000}, {0,0.333333,1.000000}, {0,0.155051,0.644949,1.000000}, {0,0.088588,0.409467,0.787659,1.000000}, {0,0.057104,0.276843,0.583590,0.860240,1.000000}}; // Read options bool use_radau; if(getOption("collocation_scheme")=="radau"){ use_radau = true; } else if(getOption("collocation_scheme")=="legendre"){ use_radau = false; } // Hotstart? hotstart_ = getOption("hotstart"); // Number of finite elements int nk = getOption("number_of_finite_elements"); // Interpolation order int deg = getOption("interpolation_order"); // Assume explicit ODE bool explicit_ode = f_.input(DAE_XDOT).size()==0; // All collocation time points double* tau_root = use_radau ? radau_points[deg] : legendre_points[deg]; // Size of the finite elements double h = (tf_-t0_)/nk; // MX version of the same MX h_mx = h; // Coefficients of the collocation equation vector<vector<MX> > C(deg+1,vector<MX>(deg+1)); // Coefficients of the continuity equation vector<MX> D(deg+1); // Collocation point SXMatrix tau = ssym("tau"); // For all collocation points for(int j=0; j<deg+1; ++j){ // Construct Lagrange polynomials to get the polynomial basis at the collocation point SXMatrix L = 1; for(int j2=0; j2<deg+1; ++j2){ if(j2 != j){ L *= (tau-tau_root[j2])/(tau_root[j]-tau_root[j2]); } } SXFunction lfcn(tau,L); lfcn.init(); // Evaluate the polynomial at the final time to get the coefficients of the continuity equation lfcn.setInput(1.0); lfcn.evaluate(); D[j] = lfcn.output(); // Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation for(int j2=0; j2<deg+1; ++j2){ lfcn.setInput(tau_root[j2]); lfcn.setFwdSeed(1.0); lfcn.evaluate(1,0); C[j][j2] = lfcn.fwdSens(); } } // Initial state MX X0("X0",nx_); // Parameters MX P("P",np_); // Backward state MX RX0("RX0",nrx_); // Backward parameters MX RP("RP",nrp_); // Collocated differential states and algebraic variables int nX = (nk*(deg+1)+1)*(nx_+nrx_); int nZ = nk*deg*(nz_+nrz_); // Unknowns MX V("V",nX+nZ); int offset = 0; // Get collocated states, algebraic variables and times vector<vector<MX> > X(nk+1); vector<vector<MX> > RX(nk+1); vector<vector<MX> > Z(nk); vector<vector<MX> > RZ(nk); coll_time_.resize(nk+1); for(int k=0; k<nk+1; ++k){ // Number of time points int nj = k==nk ? 1 : deg+1; // Allocate differential states expressions at the time points X[k].resize(nj); RX[k].resize(nj); coll_time_[k].resize(nj); // Allocate algebraic variable expressions at the collocation points if(k!=nk){ Z[k].resize(nj-1); RZ[k].resize(nj-1); } // For all time points for(int j=0; j<nj; ++j){ // Get expressions for the differential state X[k][j] = V[range(offset,offset+nx_)]; offset += nx_; RX[k][j] = V[range(offset,offset+nrx_)]; offset += nrx_; // Get the local time coll_time_[k][j] = h*(k + tau_root[j]); // Get expressions for the algebraic variables if(j>0){ Z[k][j-1] = V[range(offset,offset+nz_)]; offset += nz_; RZ[k][j-1] = V[range(offset,offset+nrz_)]; offset += nrz_; } } } // Check offset for consistency casadi_assert(offset==V.size()); // Constraints vector<MX> g; g.reserve(2*(nk+1)); // Quadrature expressions MX QF = MX::zeros(nq_); MX RQF = MX::zeros(nrq_); // Counter int jk = 0; // Add initial condition g.push_back(X[0][0]-X0); // For all finite elements for(int k=0; k<nk; ++k, ++jk){ // For all collocation points for(int j=1; j<deg+1; ++j, ++jk){ // Get the time MX tkj = coll_time_[k][j]; // Get an expression for the state derivative at the collocation point MX xp_jk = 0; for(int j2=0; j2<deg+1; ++j2){ xp_jk += C[j2][j]*X[k][j2]; } // Add collocation equations to the NLP vector<MX> f_in(DAE_NUM_IN); f_in[DAE_T] = tkj; f_in[DAE_P] = P; f_in[DAE_X] = X[k][j]; f_in[DAE_Z] = Z[k][j-1]; vector<MX> f_out; if(explicit_ode){ // Assume equation of the form ydot = f(t,y,p) f_out = f_.call(f_in); g.push_back(h_mx*f_out[DAE_ODE] - xp_jk); } else { // Assume equation of the form 0 = f(t,y,ydot,p) f_in[DAE_XDOT] = xp_jk/h_mx; f_out = f_.call(f_in); g.push_back(f_out[DAE_ODE]); } // Add the algebraic conditions if(nz_>0){ g.push_back(f_out[DAE_ALG]); } // Add the quadrature if(nq_>0){ QF += D[j]*h_mx*f_out[DAE_QUAD]; } // Now for the backward problem if(nrx_>0){ // Get an expression for the state derivative at the collocation point MX rxp_jk = 0; for(int j2=0; j2<deg+1; ++j2){ rxp_jk += C[j2][j]*RX[k][j2]; } // Add collocation equations to the NLP vector<MX> g_in(RDAE_NUM_IN); g_in[RDAE_T] = tkj; g_in[RDAE_X] = X[k][j]; g_in[RDAE_Z] = Z[k][j-1]; g_in[RDAE_P] = P; g_in[RDAE_RP] = RP; g_in[RDAE_RX] = RX[k][j]; g_in[RDAE_RZ] = RZ[k][j-1]; vector<MX> g_out; if(explicit_ode){ // Assume equation of the form xdot = f(t,x,p) g_out = g_.call(g_in); g.push_back(h_mx*g_out[RDAE_ODE] - rxp_jk); } else { // Assume equation of the form 0 = f(t,x,xdot,p) g_in[RDAE_XDOT] = xp_jk/h_mx; g_in[RDAE_RXDOT] = rxp_jk/h_mx; g_out = g_.call(g_in); g.push_back(g_out[RDAE_ODE]); } // Add the algebraic conditions if(nrz_>0){ g.push_back(g_out[RDAE_ALG]); } // Add the backward quadrature if(nrq_>0){ RQF += D[j]*h_mx*g_out[RDAE_QUAD]; } } } // Get an expression for the state at the end of the finite element MX xf_k = 0; for(int j=0; j<deg+1; ++j){ xf_k += D[j]*X[k][j]; } // Add continuity equation to NLP g.push_back(X[k+1][0] - xf_k); if(nrx_>0){ // Get an expression for the state at the end of the finite element MX rxf_k = 0; for(int j=0; j<deg+1; ++j){ rxf_k += D[j]*RX[k][j]; } // Add continuity equation to NLP g.push_back(RX[k+1][0] - rxf_k); } } // Add initial condition for the backward integration if(nrx_>0){ g.push_back(RX[nk][0]-RX0); } // Constraint expression MX gv = vertcat(g); // Make sure that the dimension is consistent with the number of unknowns casadi_assert_message(gv.size()==V.size(),"Implicit function unknowns and equations do not match"); // Nonlinear constraint function input vector<MX> gfcn_in(1+INTEGRATOR_NUM_IN); gfcn_in[0] = V; gfcn_in[1+INTEGRATOR_X0] = X0; gfcn_in[1+INTEGRATOR_P] = P; gfcn_in[1+INTEGRATOR_RX0] = RX0; gfcn_in[1+INTEGRATOR_RP] = RP; vector<MX> gfcn_out(1+INTEGRATOR_NUM_OUT); gfcn_out[0] = gv; gfcn_out[1+INTEGRATOR_XF] = X[nk][0]; gfcn_out[1+INTEGRATOR_QF] = QF; gfcn_out[1+INTEGRATOR_RXF] = RX[0][0]; gfcn_out[1+INTEGRATOR_RQF] = RQF; // Nonlinear constraint function FX gfcn = MXFunction(gfcn_in,gfcn_out); // Expand f? bool expand_f = getOption("expand_f"); if(expand_f){ gfcn.init(); gfcn = SXFunction(shared_cast<MXFunction>(gfcn)); } // Get the NLP creator function implicitFunctionCreator implicit_function_creator = getOption("implicit_solver"); // Allocate an NLP solver implicit_solver_ = implicit_function_creator(gfcn); // Pass options if(hasSetOption("implicit_solver_options")){ const Dictionary& implicit_solver_options = getOption("implicit_solver_options"); implicit_solver_.setOption(implicit_solver_options); } // Initialize the solver implicit_solver_.init(); if(hasSetOption("startup_integrator")){ // Create the linear solver integratorCreator startup_integrator_creator = getOption("startup_integrator"); // Allocate an NLP solver startup_integrator_ = startup_integrator_creator(f_,g_); // Pass options startup_integrator_.setOption("number_of_fwd_dir",0); // not needed startup_integrator_.setOption("number_of_adj_dir",0); // not needed startup_integrator_.setOption("t0",coll_time_.front().front()); startup_integrator_.setOption("tf",coll_time_.back().back()); if(hasSetOption("startup_integrator_options")){ const Dictionary& startup_integrator_options = getOption("startup_integrator_options"); startup_integrator_.setOption(startup_integrator_options); } // Initialize the startup integrator startup_integrator_.init(); } // Mark the system not yet integrated integrated_once_ = false; }