void pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ mag_flg[MAXSTR], /*magic angle gradient*/ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ stCdec[MAXSTR], /* calls STUD+ waveforms from shapelib */ STUD[MAXSTR]; /* apply automatically calculated STUD decoupling */ int icosel1, /* used to get n and p type */ icosel2, t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ del = getval("del"), /* time delays for CH coupling evolution */ BPdpwrspinlock, /* user-defined upper limit for spinlock(Hz) */ BPpwrlimits, /* =0 for no limit, =1 for limit */ del1 = getval("del1"), del2 = getval("del2"), /* STUD+ waveforms automatically calculated by macro "biocal" */ /* and string parameter stCdec calls them from your shapelib. */ stdmf, /* dmf for STUD decoupling */ studlvl, /* coarse power for STUD+ decoupling */ rf80 = getval("rf80"), /* rf in Hz for 80ppm STUD+ */ bw, ofs, ppm, /* temporary Pbox parameters */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* p_d is used to calculate the isotropic mixing on the Cab region */ spinlock = getval("spinlock"), /* DIPSI-3 spinlock field strength in Hz */ p_d, /* 50 degree pulse for DIPSI-2 at rfd */ rfd, /* fine power for 7 kHz rf for 500MHz magnet */ ncyc = getval("ncyc"), /* no. of cycles of DIPSI-3 */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "ghcch_tocsy" . SLP pulse shapes, "offC10" etc are called */ /* directly from your shapelib. */ pwC10, /* 180 degree selective sinc pulse on CO(174ppm) */ pwZ, /* the largest of pwC10 and 2.0*pwN */ rf10, /* fine power for the pwC10 ("offC10") pulse */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* G/cm to DAC coversion factor*/ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt3 = getval("gt3"), /* other gradients */ gt5 = getval("gt5"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"); getstr("STUD",STUD); getstr("mag_flg",mag_flg); getstr("f1180",f1180); getstr("f2180",f2180); strcpy(stCdec, "stCdec80"); stdmf = getval("dmf80"); studlvl = pwClvl + 20.0*log10(compC*pwC*4.0*rf80); studlvl = (int) (studlvl + 0.5); P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1); P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t6,1,phi6); settable(t5,4,phi5); settable(t10,1,phi10); settable(t11,4,rec); /* INITIALIZE VARIABLES */ if (BPpwrlimits > 0.5) { if (spinlock > BPdpwrspinlock) { spinlock = BPdpwrspinlock; printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)"); psg_abort(1); } } if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; setautocal(); /* activate auto-calibration flags */ if (autocal[0] == 'n') { /* "offC10": 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */ pwC10 = getval("pwC10"); rf10 = (compC*4095.0*pwC*2.0*1.65)/pwC10; /* needs 1.65 times more */ rf10 = (int) (rf10 + 0.5); /* power than a square pulse */ if( pwC > (24.0e-6*600.0/sfrq) ) { printf("Increase pwClvl so that pwC < 24*600/sfrq"); psg_abort(1); } } else /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */ { if(FIRST_FID) /* call Pbox */ { ppm = getval("dfrq"); bw = 118.0*ppm; ofs = 139.0*ppm; offC10 = pbox_make("offC10", "sinc180n", bw, ofs, compC*pwC, pwClvl); if(dm3[B] == 'y') H2ofs = 3.2; ofs_check(H1ofs, C13ofs, N15ofs, H2ofs); } rf10 = offC10.pwrf; pwC10 = offC10.pw; } /* dipsi-3 decoupling on CbCa */ p_d = (5.0)/(9.0*4.0*spinlock); /* DIPSI-3 Field Strength */ rfd = (compC*4095.0*pwC*5.0)/(p_d*9.0); rfd = (int) (rfd + 0.5); ncyc = (int) (ncyc + 0.5); /* CHECK VALIDITY OF PARAMETER RANGES */ if( gt1 > 0.5*del - 1.0e-4) { printf(" gt1 is too big. Make gt1 less than %f.\n", (0.5*del - 1.0e-4)); psg_abort(1); } if( dm[A] == 'y' ) { printf("incorrect dec1 decoupler flag! Should be 'nny' or 'nnn' "); psg_abort(1); } if((dm2[A] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if((dm3[A] == 'y' || dm3[C] == 'y')) { printf("incorrect dec3 decoupler flags! Should be 'nnn' or 'nyn' "); psg_abort(1); } if( dpwr > 52 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( pw > 50.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 100.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ icosel1 = -1; icosel2 = -1; if (phase1 == 2) { tsadd(t6,2,4); icosel1 = -1*icosel1; } if (phase2 == 2) { tsadd(t10,2,4); icosel2 = -1*icosel2; tsadd(t6,2,4); } /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t11,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t5,2,4); tsadd(t11,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); if ( dm3[B] == 'y' ) lk_sample(); if ((ni/sw1-d2)>0) delay(ni/sw1-d2); /*decreases as t1 increases for const.heating*/ if ((ni2/sw2-d3)>0) delay(ni2/sw2-d3); /*decreases as t2 increases for const.heating*/ delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(t3); delay(1.0e-5); decrgpulse(pwC, zero, 0.0, 0.0); /*destroy C13 magnetization*/ zgradpulse(gzlvl1, 0.5e-3); delay(1.0e-4); decrgpulse(pwC, one, 0.0, 0.0); zgradpulse(0.7*gzlvl1, 0.5e-3); delay(5.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pw, t3, 0.0, 0.0); /* 1H pulse excitation */ decphase(zero); delay(0.5*del + tau1 - 2.0*pwC); decrgpulse(2.0*pwC, zero, 0.0, 0.0); txphase(zero); delay(tau1); rgpulse(2.0*pw, zero, 0.0, 0.0); if (mag_flg[A] == 'y') { magradpulse(icosel1*gzcal*gzlvl1,0.1*gt1); } else { zgradpulse(icosel1*gzlvl1, 0.1*gt1); } decphase(t5); delay(0.5*del - 0.1*gt1); simpulse(pw, pwC, zero, t5, 0.0, 0.0); zgradpulse(gzlvl3, gt3); decphase(zero); delay(0.5*del2 - gt3); simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl3, gt3); txphase(t6); decphase(one); delay(0.5*del2 - gt3); simpulse(pw, pwC, t6, one, 0.0, 0.0); zgradpulse(gzlvl4, gt3); txphase(zero); decphase(zero); delay(0.5*del1 - gt3); simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt3); delay(0.5*del1 - gt3); decrgpulse(pwC, zero, 0.0, 0.0); decpwrf(rfd); delay(2.0e-6); initval(ncyc, v2); starthardloop(v2); decrgpulse(4.9*p_d,zero,0.0,0.0); decrgpulse(7.9*p_d,two,0.0,0.0); decrgpulse(5.0*p_d,zero,0.0,0.0); decrgpulse(5.5*p_d,two,0.0,0.0); decrgpulse(0.6*p_d,zero,0.0,0.0); decrgpulse(4.6*p_d,two,0.0,0.0); decrgpulse(7.2*p_d,zero,0.0,0.0); decrgpulse(4.9*p_d,two,0.0,0.0); decrgpulse(7.4*p_d,zero,0.0,0.0); decrgpulse(6.8*p_d,two,0.0,0.0); decrgpulse(7.0*p_d,zero,0.0,0.0); decrgpulse(5.2*p_d,two,0.0,0.0); decrgpulse(5.4*p_d,zero,0.0,0.0); decrgpulse(0.6*p_d,two,0.0,0.0); decrgpulse(4.5*p_d,zero,0.0,0.0); decrgpulse(7.3*p_d,two,0.0,0.0); decrgpulse(5.1*p_d,zero,0.0,0.0); decrgpulse(7.9*p_d,two,0.0,0.0); decrgpulse(4.9*p_d,two,0.0,0.0); decrgpulse(7.9*p_d,zero,0.0,0.0); decrgpulse(5.0*p_d,two,0.0,0.0); decrgpulse(5.5*p_d,zero,0.0,0.0); decrgpulse(0.6*p_d,two,0.0,0.0); decrgpulse(4.6*p_d,zero,0.0,0.0); decrgpulse(7.2*p_d,two,0.0,0.0); decrgpulse(4.9*p_d,zero,0.0,0.0); decrgpulse(7.4*p_d,two,0.0,0.0); decrgpulse(6.8*p_d,zero,0.0,0.0); decrgpulse(7.0*p_d,two,0.0,0.0); decrgpulse(5.2*p_d,zero,0.0,0.0); decrgpulse(5.4*p_d,two,0.0,0.0); decrgpulse(0.6*p_d,zero,0.0,0.0); decrgpulse(4.5*p_d,two,0.0,0.0); decrgpulse(7.3*p_d,zero,0.0,0.0); decrgpulse(5.1*p_d,two,0.0,0.0); decrgpulse(7.9*p_d,zero,0.0,0.0); decrgpulse(4.9*p_d,two,0.0,0.0); decrgpulse(7.9*p_d,zero,0.0,0.0); decrgpulse(5.0*p_d,two,0.0,0.0); decrgpulse(5.5*p_d,zero,0.0,0.0); decrgpulse(0.6*p_d,two,0.0,0.0); decrgpulse(4.6*p_d,zero,0.0,0.0); decrgpulse(7.2*p_d,two,0.0,0.0); decrgpulse(4.9*p_d,zero,0.0,0.0); decrgpulse(7.4*p_d,two,0.0,0.0); decrgpulse(6.8*p_d,zero,0.0,0.0); decrgpulse(7.0*p_d,two,0.0,0.0); decrgpulse(5.2*p_d,zero,0.0,0.0); decrgpulse(5.4*p_d,two,0.0,0.0); decrgpulse(0.6*p_d,zero,0.0,0.0); decrgpulse(4.5*p_d,two,0.0,0.0); decrgpulse(7.3*p_d,zero,0.0,0.0); decrgpulse(5.1*p_d,two,0.0,0.0); decrgpulse(7.9*p_d,zero,0.0,0.0); decrgpulse(4.9*p_d,zero,0.0,0.0); decrgpulse(7.9*p_d,two,0.0,0.0); decrgpulse(5.0*p_d,zero,0.0,0.0); decrgpulse(5.5*p_d,two,0.0,0.0); decrgpulse(0.6*p_d,zero,0.0,0.0); decrgpulse(4.6*p_d,two,0.0,0.0); decrgpulse(7.2*p_d,zero,0.0,0.0); decrgpulse(4.9*p_d,two,0.0,0.0); decrgpulse(7.4*p_d,zero,0.0,0.0); decrgpulse(6.8*p_d,two,0.0,0.0); decrgpulse(7.0*p_d,zero,0.0,0.0); decrgpulse(5.2*p_d,two,0.0,0.0); decrgpulse(5.4*p_d,zero,0.0,0.0); decrgpulse(0.6*p_d,two,0.0,0.0); decrgpulse(4.5*p_d,zero,0.0,0.0); decrgpulse(7.3*p_d,two,0.0,0.0); decrgpulse(5.1*p_d,zero,0.0,0.0); decrgpulse(7.9*p_d,two,0.0,0.0); endhardloop(); dec2phase(zero); decphase(zero); txphase(zero); decpwrf(rf10); delay(tau2); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC10", "", 2.0*pw, pwC10, 2.0*pwN, zero, zero, zero, 0.0, 0.0); if(pwC10>2.0*pwN) pwZ=0.0; else pwZ=2.0*pwN - pwC10; delay(tau2); decpwrf(rf0); if (mag_flg[A] == 'y') { magradpulse(-icosel2*gzcal*gzlvl2, 1.8*gt1); } else { zgradpulse(-icosel2*gzlvl2, 1.8*gt1); } delay(2.02e-4); decrgpulse(2.0*pwC, zero, 0.0, 0.0); decpwrf(rf10); if (mag_flg[A] == 'y') { magradpulse(icosel2*gzcal*gzlvl2, 1.8*gt1); } else { zgradpulse(icosel2*gzlvl2, 1.8*gt1); } delay(2.0e-4 + WFG3_START_DELAY + pwZ); decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0); decpwrf(rf0); decrgpulse(pwC, zero, 2.0e-6, 0.0); zgradpulse(gzlvl5, gt5); delay(0.5*del1 - gt5); simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); decphase(t10); delay(0.5*del1 - gt5); simpulse(pw, pwC, one, t10, 0.0, 0.0); zgradpulse(gzlvl6, gt5); txphase(zero); decphase(zero); delay(0.5*del2 - gt5); simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl6, gt5); delay(0.5*del2 - gt5); simpulse(pw, pwC, zero, zero, 0.0, 0.0); delay(0.5*del - 0.5*pwC); simpulse(2.0*pw,2.0*pwC, zero, zero, 0.0, 0.0); if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); rcvron(); if ((STUD[A]=='n') && (dm[C] == 'y')) decpower(dpwr); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { delay(0.5*del-40.0e-6 -gt1 -1/dmf3); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ lk_sample(); if (mag_flg[A] == 'y') statusdelay(C,40.0e-6 - 2.0*VAGRADIENT_DELAY - POWER_DELAY); else statusdelay(C,40.0e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY); } else { delay(0.5*del-40.0e-6 -gt1); if (mag_flg[A] == 'y') statusdelay(C,40.0e-6 - 2.0*VAGRADIENT_DELAY - POWER_DELAY); else statusdelay(C,40.0e-6 - 2.0*GRADIENT_DELAY - POWER_DELAY); } if ((STUD[A]=='y') && (dm[C] == 'y')) {decpower(studlvl); decunblank(); decon(); decprgon(stCdec,1/stdmf, 1.0); startacq(alfa); acquire(np, 1.0/sw); decprgoff(); decoff(); decblank(); } setreceiver(t11); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ H2Opurge[MAXSTR], stCdec[MAXSTR], /* calls STUD+ waveforms from shapelib */ STUD[MAXSTR]; /* apply automatically calculated STUD decoupling */ int t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ BPdpwrspinlock, /* user-defined upper limit for spinlock(Hz) */ BPpwrlimits, /* =0 for no limit, =1 for limit */ tau2, /* t2 delay */ ni = getval("ni"), ni2 = getval("ni2"), stdmf = getval("dmf80"), /* dmf for 80 ppm of STUD decoupling */ rf80 = getval("rf80"), /* rf in Hz for 80ppm STUD+ */ taua = getval("taua"), /* time delays for CH coupling evolution */ taub = getval("taub"), tauc = getval("tauc"), /* string parameter stCdec calls stud decoupling waveform from your shapelib. */ studlvl, /* coarse power for STUD+ decoupling */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* p_d is used to calculate the isotropic mixing on the Cab region */ p_d, /* 50 degree pulse for DIPSI-3 at rfd */ rfd, /* fine power for 9.0 kHz rf at 600MHz */ ncyc = getval("ncyc"), /* no. of cycles of DIPSI-3 */ spinlock = getval("spinlock"), /* DIPSI-3 Field Strength in Hz */ /* the following pulse length for the SLP pulse is automatically calculated */ /* by the macro "hcch_tocsy". The SLP pulse shape,"offC10" is called */ /* directly from your shapelib. */ pwC10 = getval("pwC10"), /* 180 degree selective sinc pulse on CO(174ppm) */ rf7, /* fine power for the pwC10 ("offC10") pulse */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"); getstr("f1180", f1180); getstr("f2180", f2180); getstr("H2Opurge", H2Opurge); getstr("STUD", STUD); /* 80 ppm STUD+ decoupling */ strcpy(stCdec, "stCdec80"); studlvl = pwClvl + 20.0 * log10(compC * pwC * 4.0 * rf80); studlvl = (int) (studlvl + 0.5); P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1); P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1); /* LOAD PHASE TABLE */ settable(t3, 2, phi3); settable(t5, 4, phi5); settable(t9, 8, phi9); settable(t11, 8, rec); /* INITIALIZE VARIABLES */ if (BPpwrlimits > 0.5) { if (spinlock > BPdpwrspinlock) { spinlock = BPdpwrspinlock; printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)"); psg_abort(1); } } if (dpwrf < 4095) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } if ((pwC > (25.0e-6 * 600.0 / sfrq)) && (ncyc > 0.0)) { printf("Increase pwClvl so that pwC < 25*600/sfrq"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */ rf7 = (compC * 4095.0 * pwC * 2.0 * 1.65) / pwC10; /* needs 1.65 times more */ rf7 = (int) (rf7 + 0.5); /* power than a square pulse */ if (spinlock < 1000.0) { printf("Spinlock seems too low. Please check spinlock value ! "); psg_abort(1); } /* dipsi-3 spinlock on CbCa */ p_d = (5.0) / (9.0 * 4.0 * spinlock); /* DIPSI-3 */ rfd = (compC * 4095.0 * pwC * 5.0) / (p_d * 9.0); rfd = (int) (rfd + 0.5); ncyc = (int) (ncyc + 0.5); /*************************For Ultra-High Field Probes***************************/ if (sfrq>590.0) { if (ncyc>2) { if (pwC>15) { if (rfd > 2000) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>14) { if (rfd > 1800) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>13) { if (rfd > 1600) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>12) { if (rfd > 1400) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>11) { if (rfd > 1200) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (rfd > 1000) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } } } } } } else { if (ncyc == 2) { if (pwC>15) { if (rfd > 2200) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>14) { if (rfd > 2000) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>13) { if (rfd > 1800) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>12) { if (rfd > 1600) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>11) { if (rfd > 1400) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (rfd > 1200) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } } } } } } else { if (ncyc == 1) { if (pwC>15) { if (rfd > 2400) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>14) { if (rfd > 2200) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>13) { if (rfd > 2000) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>12) { if (rfd > 1800) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (pwC>11) { if (rfd > 1600) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } else { if (rfd > 1400) { printf("spinlock too large. Lower value for probe protection"); psg_abort(1); } } } } } } } } } } /*********************End: For Ultra-High Field Probes***************************/ /* CHECK VALIDITY OF PARAMETER RANGES */ if ((dm[A] == 'y' || dm[B] == 'y')) { printf("incorrect dec1 decoupler flags! Should be 'nny' or 'nnn' "); psg_abort(1); } if ((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if ((dm3[A] == 'y' || dm3[C] == 'y')) { printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); } if (dpwr > 52) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if (pw > 80.0e-6) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if (pwN > 100.0e-6) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3, 1, 4); if (phase2 == 2) tsadd(t5, 1, 4); /* C13 TIME INCREMENTATION and set up f1180 */ /* Set up f1180 */ tau1 = d2; if (f1180[A] == 'y') { tau1 += (1.0 / (2.0 * sw1)); if (tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1 / 2.0; /* Set up f2180 */ tau2 = d3; if (f2180[A] == 'y') { tau2 += (1.0 / (2.0 * sw2)); if (tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2 / 2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if (ix == 1) d2_init = d2; t1_counter = (int) ((d2 - d2_init) * sw1 + 0.5); if (t1_counter % 2) { tsadd(t3, 2, 4); tsadd(t11, 2, 4); } if (ix == 1) d3_init = d3; t2_counter = (int) ((d3 - d3_init) * sw2 + 0.5); if (t2_counter % 2) { tsadd(t5, 2, 4); tsadd(t11, 2, 4); } /* BEGIN PULSE SEQUENCE */ status(A); if (dm3[B] == 'y') lk_sample(); if ((ni / sw1 - d2) > 0) delay(ni / sw1 - d2); /*decreases as t1 increases for const.heating */ if ((ni2 / sw2 - d3) > 0) delay(ni2 / sw2 - d3); /*decreases as t2 increases for const.heating */ delay(d1); if (dm3[B] == 'y') { lk_hold(); lk_sampling_off(); } /*freezes z0 correction, stops lock pulsing */ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(t3); delay(1.0e-5); decrgpulse(pwC, zero, 0.0, 0.0); /*destroy C13 magnetization */ zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); decrgpulse(pwC, one, 0.0, 0.0); zgradpulse(0.7 * gzlvl0, 0.5e-3); delay(5.0e-4); if (dm3[B] == 'y') /* begins optional 2H decoupling */ { dec3rgpulse(1 / dmf3, one, 10.0e-6, 2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pw, t3, 0.0, 0.0); /* 1H pulse excitation */ zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ decphase(zero); delay(taua + tau1 - gt0 - 2.0 * GRADIENT_DELAY - 2.0 * pwC); decrgpulse(2.0 * pwC, zero, 0.0, 0.0); txphase(zero); delay(tau1); rgpulse(2.0 * pw, zero, 0.0, 0.0); zgradpulse(gzlvl0, gt0); txphase(one); decphase(t5); delay(taua - gt0); rgpulse(pw, one, 0.0, 0.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); decrgpulse(pwC, t5, 0.0, 0.0); delay(tau2); dec2rgpulse(2.0 * pwN, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ decphase(zero); decpwrf(rf7); delay(taub - 2.0 * pwN - gt4 - 2.0 * GRADIENT_DELAY); decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0); txphase(zero); decpwrf(rf0); delay(taub - 2.0 * pw); rgpulse(2.0 * pw, zero, 0.0, 0.0); delay(tau2); decrgpulse(2.0 * pwC, zero, 0.0, 0.0); decpwrf(rf7); delay(taub); decshaped_pulse("offC10", pwC10, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ delay(taub - gt4 - 2.0 * GRADIENT_DELAY); decpwrf(rfd); decrgpulse(1.0e-3, zero, 0.0, 0.0); if (ncyc>0) { initval(ncyc, v2); starthardloop(v2); decrgpulse(4.9 * p_d, one, 0.0, 0.0); decrgpulse(7.9 * p_d, three, 0.0, 0.0); decrgpulse(5.0 * p_d, one, 0.0, 0.0); decrgpulse(5.5 * p_d, three, 0.0, 0.0); decrgpulse(0.6 * p_d, one, 0.0, 0.0); decrgpulse(4.6 * p_d, three, 0.0, 0.0); decrgpulse(7.2 * p_d, one, 0.0, 0.0); decrgpulse(4.9 * p_d, three, 0.0, 0.0); decrgpulse(7.4 * p_d, one, 0.0, 0.0); decrgpulse(6.8 * p_d, three, 0.0, 0.0); decrgpulse(7.0 * p_d, one, 0.0, 0.0); decrgpulse(5.2 * p_d, three, 0.0, 0.0); decrgpulse(5.4 * p_d, one, 0.0, 0.0); decrgpulse(0.6 * p_d, three, 0.0, 0.0); decrgpulse(4.5 * p_d, one, 0.0, 0.0); decrgpulse(7.3 * p_d, three, 0.0, 0.0); decrgpulse(5.1 * p_d, one, 0.0, 0.0); decrgpulse(7.9 * p_d, three, 0.0, 0.0); decrgpulse(4.9 * p_d, three, 0.0, 0.0); decrgpulse(7.9 * p_d, one, 0.0, 0.0); decrgpulse(5.0 * p_d, three, 0.0, 0.0); decrgpulse(5.5 * p_d, one, 0.0, 0.0); decrgpulse(0.6 * p_d, three, 0.0, 0.0); decrgpulse(4.6 * p_d, one, 0.0, 0.0); decrgpulse(7.2 * p_d, three, 0.0, 0.0); decrgpulse(4.9 * p_d, one, 0.0, 0.0); decrgpulse(7.4 * p_d, three, 0.0, 0.0); decrgpulse(6.8 * p_d, one, 0.0, 0.0); decrgpulse(7.0 * p_d, three, 0.0, 0.0); decrgpulse(5.2 * p_d, one, 0.0, 0.0); decrgpulse(5.4 * p_d, three, 0.0, 0.0); decrgpulse(0.6 * p_d, one, 0.0, 0.0); decrgpulse(4.5 * p_d, three, 0.0, 0.0); decrgpulse(7.3 * p_d, one, 0.0, 0.0); decrgpulse(5.1 * p_d, three, 0.0, 0.0); decrgpulse(7.9 * p_d, one, 0.0, 0.0); decrgpulse(4.9 * p_d, three, 0.0, 0.0); decrgpulse(7.9 * p_d, one, 0.0, 0.0); decrgpulse(5.0 * p_d, three, 0.0, 0.0); decrgpulse(5.5 * p_d, one, 0.0, 0.0); decrgpulse(0.6 * p_d, three, 0.0, 0.0); decrgpulse(4.6 * p_d, one, 0.0, 0.0); decrgpulse(7.2 * p_d, three, 0.0, 0.0); decrgpulse(4.9 * p_d, one, 0.0, 0.0); decrgpulse(7.4 * p_d, three, 0.0, 0.0); decrgpulse(6.8 * p_d, one, 0.0, 0.0); decrgpulse(7.0 * p_d, three, 0.0, 0.0); decrgpulse(5.2 * p_d, one, 0.0, 0.0); decrgpulse(5.4 * p_d, three, 0.0, 0.0); decrgpulse(0.6 * p_d, one, 0.0, 0.0); decrgpulse(4.5 * p_d, three, 0.0, 0.0); decrgpulse(7.3 * p_d, one, 0.0, 0.0); decrgpulse(5.1 * p_d, three, 0.0, 0.0); decrgpulse(7.9 * p_d, one, 0.0, 0.0); decrgpulse(4.9 * p_d, one, 0.0, 0.0); decrgpulse(7.9 * p_d, three, 0.0, 0.0); decrgpulse(5.0 * p_d, one, 0.0, 0.0); decrgpulse(5.5 * p_d, three, 0.0, 0.0); decrgpulse(0.6 * p_d, one, 0.0, 0.0); decrgpulse(4.6 * p_d, three, 0.0, 0.0); decrgpulse(7.2 * p_d, one, 0.0, 0.0); decrgpulse(4.9 * p_d, three, 0.0, 0.0); decrgpulse(7.4 * p_d, one, 0.0, 0.0); decrgpulse(6.8 * p_d, three, 0.0, 0.0); decrgpulse(7.0 * p_d, one, 0.0, 0.0); decrgpulse(5.2 * p_d, three, 0.0, 0.0); decrgpulse(5.4 * p_d, one, 0.0, 0.0); decrgpulse(0.6 * p_d, three, 0.0, 0.0); decrgpulse(4.5 * p_d, one, 0.0, 0.0); decrgpulse(7.3 * p_d, three, 0.0, 0.0); decrgpulse(5.1 * p_d, one, 0.0, 0.0); decrgpulse(7.9 * p_d, three, 0.0, 0.0); endhardloop(); } decrgpulse(9.0 * p_d / 5.0, t9, 2.0e-6, 0.0); if (H2Opurge[A] == 'y') { obspwrf(1000); rgpulse(900 * pw, zero, 0.0, 0.0); rgpulse(500 * pw, one, 0.0, 0.0); obspwrf(4095.0); } zgradpulse(gzlvl7, gt7); decpwrf(rf0); delay(50.0e-6); rgpulse(pw, zero, 0.0, 0.0); zgradpulse(gzlvl7, gt7 / 1.6); decrgpulse(pwC, three, 100.0e-6, 0.0); zgradpulse(gzlvl5, gt5); decphase(zero); delay(tauc - gt5); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); delay(tauc - gt5); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl3, gt3); if (dm3[B] == 'y') /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1 / dmf3, three, 2.0e-6, 2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } delay(2.0e-4); rgpulse(pw, zero, 0.0, 0.0); zgradpulse(gzlvl6, gt5); delay(taua - gt5 + rof1); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, rof1); zgradpulse(gzlvl6, gt5); if (STUD[A] == 'y') decpower(studlvl); else decpower(dpwr); dec2power(dpwr2); delay(taua - gt5 - 2.0 * POWER_DELAY); rgpulse(pw, zero, 0.0, rof2); rcvron(); if (dm3[B] == 'y') lk_sample(); setreceiver(t11); if ((STUD[A] == 'y') && (dm[C] == 'y')) { decprgon(stCdec, 1.0 / stdmf, 1.0); decon(); if (dm2[C] == 'y') { setstatus(DEC2ch, TRUE, dmm2[C], FALSE, dmf2); } } else status(C); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ SCT[MAXSTR], /* Semi-constant time flag for N-15 evolution */ CT_c[MAXSTR], /* Constant time flag for C-13 evolution */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ PRexp, /* projection-reconstruction flag */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ tauC = getval("tauC"), /* delay for CO to Ca evolution */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ timeTC = getval("timeTC"), /* constant time for 13C evolution */ t2a=0.0, t2b=0.0, halfT2=0.0, CTdelay=0.0, kappa = 5.4e-3, lambda = 2.4e-3, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 4.7 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 10.5 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "proteincal". SLP pulse shapes, "offC6" etc are called */ /* directly from your shapelib. */ pwC3 = getval("pwC3"), /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */ pwC6 = getval("pwC6"), /* 90 degree selective sinc pulse on CO(174ppm) */ pwC8 = getval("pwC8"), /* 180 degree selective sinc pulse on CO(174ppm) */ pwC9 = getval("pwC9"), /* 180 degree selective sinc pulse on CO(174ppm) */ phshift9, /* phase shift induced on Ca by pwC9 ("offC9") pulse */ pwZ, /* the largest of pwC9 and 2.0*pwN */ pwZ1, /* the larger of pwC8 and 2.0*pwN for 1D experiments */ rf3, /* fine power for the pwC3 ("offC3") pulse */ rf6, /* fine power for the pwC6 ("offC6") pulse */ rf8, /* fine power for the pwC8 ("offC8") pulse */ rf9, /* fine power for the pwC9 ("offC9") pulse */ dofCO, /* channel 2 offset for most CO pulses */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ tpwrsf = getval("tpwrsf"), /* fine power adjustment for flipback */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ csa, sna, pra = M_PI*getval("pra")/180.0, pwHd, /* H1 90 degree pulse length at tpwrd */ tpwrd, /* rf for WALTZ decoupling */ waltzB1 = getval("waltzB1"), /* waltz16 field strength (in Hz) */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gt9 = getval("gt9"), gt10 = getval("gt10"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"), gzlvl8 = getval("gzlvl8"), gzlvl9 = getval("gzlvl9"), gzlvl10 = getval("gzlvl10"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("SCT",SCT); getstr("CT_c",CT_c); getstr("TROSY",TROSY); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,4,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } /* offset during CO pulses, except for t1 evolution period */ dofCO = dof + 118.0*dfrq; /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Ca, null at CO 118ppm away */ pwC1 = sqrt(15.0)/(4.0*118.0*dfrq); rf1 = 4095.0*(compC*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Ca, null at CO 118ppm away */ pwC2 = sqrt(3.0)/(2.0*118.0*dfrq); rf2 = (compC*4095.0*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4095.0 ) { printf("increase pwClvl so that C13 90 < 24us*(600/sfrq)"); psg_abort(1);} /* 180 degree pulse on Ca, null at CO 118ppm away */ rf3 = (compC*4095.0*pwC*2.0)/pwC3; rf3 = (int) (rf3 + 0.5); /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf6 = (compC*4095.0*pwC*1.69)/pwC6; /* needs 1.69 times more */ rf6 = (int) (rf6 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf8 = (compC*4095.0*pwC*2.0*1.65)/pwC8; /* needs 1.65 times more */ rf8 = (int) (rf8 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC8; /* needs 1.65 times more */ rf9 = (int) (rf9 + 0.5); /* power than a square pulse */ /* the pwC9 pulse at the middle of t1 */ if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0; if (pwC8 > 2.0*pwN) pwZ = pwC8; else pwZ = 2.0*pwN; if ((pwC9==0.0) && (pwC8>2.0*pwN)) pwZ1=pwC8-2.0*pwN; else pwZ1=0.0; if ( ni > 1 ) pwC9 = pwC8; if ( pwC9 > 0 ) phshift9 = 140.0; else phshift9 = 0.0; /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ tpwrs = (int) (tpwrs); /* power than a square pulse */ /* power level and pulse time for WALTZ 1H decoupling */ pwHd = 1/(4.0 * waltzB1) ; /* 7.5 kHz rf */ tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw)); tpwrd = (int) (tpwrd + 0.5); /* set up Projection-Reconstruction experiment */ tau1 = d2; tau2 = d3; PRexp=0; csa = 1.0; sna = 0.0; if((pra > 0.0) && (pra < 90.0)) /* PR experiments */ { PRexp = 1; csa = cos(pra); sna = sin(pra); tau1 = d2*csa; tau2 = d2*sna; } /* CHECK VALIDITY OF PARAMETER RANGES */ if(SCT[A] == 'n') { if (PRexp) { if( 0.5*ni*sna/sw1 > timeTN - WFG3_START_DELAY) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw1/sna))); psg_abort(1);} } else { if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} } } if(CT_c[A] == 'y') { if ( 0.5*ni*csa/sw1 > timeTC) { printf(" ni is too big. Make ni less than %d or less.\n", ((int)(timeTC*2.0*sw1/csa - 4e-6 - SAPS_DELAY))); psg_abort(1);} } if ( tauC < (gt7+1.0e-4+0.5*10.933*pwC)) gt7=(tauC-1.0e-4-0.5*10.933*pwC); if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 50 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y') { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* Set up CONSTANT/SEMI-CONSTANT time evolution in N15 */ halfT2 = 0.0; CTdelay = timeTN + pwC8 + WFG_START_DELAY - SAPS_DELAY; if(ni>1) { if(f1180[A] == 'y') /* Set up f1180 */ tau1 += 0.5*csa/sw1; /* if not PRexp then csa = 1.0 */ if(PRexp) { halfT2 = 0.5*(ni-1)/sw1; /* ni2 is not defined */ if(f1180[A] == 'y') { tau2 += 0.5*sna/sw1; halfT2 += 0.25*sna/sw1; } t2b = (double) t1_counter*((halfT2 - CTdelay)/((double)(ni-1))); } } if (ni2>1) { halfT2 = 0.5*(ni2-1)/sw2; if(f2180[A] == 'y') /* Set up f2180 */ { tau2 += 0.5/sw2; halfT2 += 0.25/sw2; } t2b = (double) t2_counter*((halfT2 - CTdelay)/((double)(ni2-1))); } tau1 = tau1/2.0; tau2 = tau2/2.0; if(tau1 < 0.2e-6) tau1 = 0.0; if(tau2 < 0.2e-6) tau2 = 0.0; if(t2b < 0.0) t2b = 0.0; t2a = CTdelay - tau2 + t2b; if(t2a < 0.2e-6) t2a = 0.0; /* uncomment these lines to check t2a and t2b printf("%d: t2a = %.12f", t2_counter,t2a); printf(" ; t2b = %.12f\n", t2b); */ /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); decoffset(dofCO); txphase(zero); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(-gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(-0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw, zero, 0.0, 0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); rgpulse(pw, one, 0.0, 0.0); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); obspower(tpwrs+6.0);} /* increases tpwrs by 6dB, now need */ else obspower(tpwrs); /* tpwrsf to be ~ 2048 for equivalence */ if (TROSY[A]=='y') {txphase(two); shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0); obspower(tpwr); obspwrf(4095.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); delay(0.5*kappa - 2.0*pw); rgpulse(2.0*pw, two, 0.0, 0.0); obspower(tpwrd); /* POWER_DELAY */ decphase(zero); dec2phase(zero); decpwrf(rf8); delay(timeTN -0.5*kappa - POWER_DELAY - WFG3_START_DELAY); } else {txphase(zero); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); obspower(tpwrs+6.0);} /* increases tpwrs by 6dB, now need */ else obspower(tpwrs); /* tpwrsf to be ~ 2048 for equivalence */ shaped_pulse("H2Osinc",pwHs,zero,5.0e-4,0.0); obspower(tpwrd); obspwrf(4095.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); txphase(one); delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); /* PRG_START_DELAY */ xmtron(); decphase(zero); dec2phase(zero); decpwrf(rf8); delay(timeTN - kappa - WFG3_START_DELAY); } /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decphase(zero); decpwrf(rf6); delay(timeTN); dec2rgpulse(pwN, zero, 0.0, 0.0); if (TROSY[A]=='n') {xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0);} zgradpulse(-gzlvl3, gt3); delay(2.0e-4); decshaped_pulse("offC6", pwC6, zero, 0.0, 0.0); zgradpulse(-gzlvl7, gt7); decpwrf(rf0); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0); /* Shaka 6 composite */ decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0); zgradpulse(-gzlvl7, gt7); decpwrf(rf6); decphase(one); txphase(one); delay(tauC - gt7 - 0.5*10.933*pwC - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC6", pwC6, one, 0.0, 0.0); decoffset(dof); zgradpulse(-gzlvl9, gt9); decpwrf(rf1); decphase(t3); delay(2.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); decrgpulse(pwC1, t3, 0.0, 0.0); decphase(zero); /* xxxxxxxxxxxxxxxxxxxxxx 13Ca EVOLUTION xxxxxxxxxxxxxxxxxx */ if (ni==1.0) /* special 1D check of pwC9 phase enabled when ni=1 */ { decpwrf(rf9); delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC9", "", 0.0, pwC9, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1); } else if(CT_c[A] == 'y') /* xxxxxxx 13Ca Constant Time EVOLUTION xxxxxxxx */ { decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -POWER_DELAY > 0.0) { delay(tau1 -2.0*pwC1/PI -POWER_DELAY -WFG_START_DELAY); sim3shaped_pulse("","offC9","",0.0,pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0); } else sim3shaped_pulse("","offC9","",0.0,pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0); delay(timeTC- 2.0e-6 -WFG_STOP_DELAY-POWER_DELAY); decpwrf(rf2); decrgpulse(pwC2, zero, 2.0e-6, 2.0e-6); /* 13Ca 180 degree pulse */ delay(timeTC-tau1- 4.0e-6 -SAPS_DELAY); phshift9 = 230.0; /* = 320-90 - correction for -90 degree phase shift in F1 */ initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ } else /* xxxxxxx 13Ca Conventional EVOLUTION xxxxxxxxx */ { if ((ni>1.0) && (tau1>0.0)) /* total 13C evolution equals d2 exactly */ { /* 2.0*pwC1/PI compensates for evolution at 64% rate during pwC1 */ decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0) { delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ); sim3shaped_pulse("", "offC9", "", 0.0, pwC8, 2.0*pwN, zero, zero, zero, 0.0, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(tau1 - 2.0*pwC1/PI - SAPS_DELAY - 0.5*pwZ - 2.0e-6); } else { initval(180.0, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6); } } else /* 13Ca evolution refocused for 1st increment */ { decpwrf(rf2); delay(10.0e-6); decrgpulse(pwC2, zero, 2.0e-6, 0.0); delay(10.0e-6); } } decphase(t5); decpwrf(rf1); decrgpulse(pwC1, t5, 2.0e-6, 0.0); /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0); decoffset(dofCO); decpwrf(rf6); decphase(one); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } zgradpulse(gzlvl10, gt10); delay(2.0e-4); decshaped_pulse("offC6", pwC6, one, 0.0, 0.0); zgradpulse(gzlvl8, gt7); decpwrf(rf0); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0); /* Shaka 6 composite */ decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0); zgradpulse(gzlvl8, gt7); decpwrf(rf6); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC6", pwC6, zero, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ zgradpulse(gzlvl4, gt4); txphase(one); decphase(zero); decpwrf(rf8); dcplrphase(zero); dec2phase(t8); delay(2.0e-4); if (TROSY[A]=='n') {rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron();} dec2rgpulse(pwN, t8, 0.0, 0.0); /* N15 EVOLUTION BEGINS HERE */ dec2phase(t9); if(SCT[A] == 'y') { delay(t2a); dec2rgpulse(2.0*pwN, t9, 0.0, 0.0); delay(t2b); decshaped_pulse("offC8", pwC8, zero, 0.0, 0.0); /* WFG_START_DELAY */ } else { delay(timeTN - WFG3_START_DELAY - tau2); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC8", "", 0.0, pwC8, 2.0*pwN, zero, zero, t9, 0.0, 0.0); } dec2phase(t10); decpwrf(rf3); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs) { txphase(three); delay(timeTN - pwC3 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); obspower(tpwrs+6.0);} /* increases tpwrs by 6dB, now need */ else obspower(tpwrs); /* tpwrsf to be ~ 2048 for equivalence */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); obspower(tpwr); obspwrf(4095.0); txphase(t4); delay(0.5e-4 - POWER_DELAY); } else if (tau2 > pwHs + 0.5e-4) { txphase(three); delay(timeTN-pwC3-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2 - pwHs - 0.5e-4); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); obspower(tpwrs+6.0);} /* increases tpwrs by 6dB, now need */ else obspower(tpwrs); /* tpwrsf to be ~ 2048 for equivalence */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); obspower(tpwr); obspwrf(4095.0); txphase(t4); delay(0.5e-4 - POWER_DELAY); } else { txphase(three); delay(timeTN - pwC3 - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ if (tpwrsf < 4095.0) {obspwrf(tpwrsf); obspower(tpwrs+6.0);} /* increases tpwrs by 6dB, now need */ else obspower(tpwrs); /* tpwrsf to be ~ 2048 for equivalence */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); obspower(tpwr); obspwrf(4095.0); txphase(t4); delay(0.5e-4 - POWER_DELAY); decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC3 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > (kappa - pwC3 - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(kappa -pwC3 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - tau2 - pwC3 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa-tau2-pwC3-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC3", pwC3, zero, 0.0, 0.0); delay(tau2); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0,rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt1/10.0); else zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }
void pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ PRexp, /* projection-reconstruction flag */ ni = getval("ni"), ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ tauCH = getval("tauCH"), /* 1/4J delay for CH */ zeta = getval("zeta"), /* zeta delay, 0.006 for 1D, 0.011 for 2D*/ timeTN = getval("timeTN"), /* constant time for 15N evolution */ timeCH = 1.1e-3, /* other delays */ timeAB = 3.3e-3, kappa = 5.4e-3, lambda = 2.4e-3, csa, sna, pra = M_PI*getval("pra")/180.0, bw, ofs, ppm, /* temporary Pbox parameters */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Cab(46ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 5.1 kHz rf for 600MHz magnet */ /* 180 degree pulse at Cab(46ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 11.4 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "biocal". SLP pulse shapes, "offC7" etc are called */ /* directly from your shapelib. */ pwC7, /* 180 degree selective sinc pulse on CO(174ppm) */ rf7, /* fine power for the pwC7 ("offC7") pulse */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwH, /* H1 90 degree pulse length at tpwr1 */ tpwr1, /* 9.2 kHz rf magnet for DIPSI-2 */ DIPSI2time, /* total length of DIPSI-2 decoupling */ ncyc_dec, waltzB1=getval("waltzB1"), pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("TROSY",TROSY); csa = cos(pra); sna = sin(pra); /* LOAD PHASE TABLE */ settable(t3,1,phx); settable(t4,1,phx); if (TROSY[A]=='y') {settable(t8,2,phi8T); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,2,recT);} else {settable(t8,2,phi8); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } /* set zeta to 6ms for 1D spectral check, otherwise it will be the */ /* value in the dg2 parameter set (about 11ms) for 2D/13C and 3D work */ if (ni>1) zeta = zeta; else zeta = 0.006; /* maximum fine power for pwC pulses */ rf0 = 4095.0; setautocal(); /* activate auto-calibration flags */ if (autocal[0] == 'n') { /* 90 degree pulse on Cab, null at CO 128ppm away */ pwC1 = sqrt(15.0)/(4.0*128.0*dfrq); rf1 = 4095.0*(compC*pwC/pwC1); rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Cab, null at CO 128ppm away */ pwC2 = sqrt(3.0)/(2.0*128.0*dfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4295 ) { printf("increase pwClvl"); psg_abort(1);} if(( rf2 < 4296 ) && (rf2>4095)) rf2=4095; /* 180 degree one-lobe sinc pulse on CO, null at Ca 118m away */ pwC7 = getval("pwC7"); rf7 = (compC*4095.0*pwC*2.0*1.65)/pwC7; /* needs 1.65 times more */ rf7 = (int) (rf7 + 0.5); /* power than a square pulse */ } else /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */ { if(FIRST_FID) /* call Pbox */ { ppm = getval("dfrq"); bw = 128.0*ppm; ofs = bw; offC1 = pbox_Rcal("square90n", bw, compC*pwC, pwClvl); offC2 = pbox_Rcal("square180n", bw, compC*pwC, pwClvl); bw = 118.0*ppm; offC7 = pbox_make("offC7", "sinc180n", bw, ofs, compC*pwC, pwClvl); if (dm3[B] == 'y') H2ofs = 3.2; ofs_check(H1ofs, C13ofs, N15ofs, H2ofs); } pwC1 = offC1.pw; rf1 = offC1.pwrf; pwC2 = offC2.pw; rf2 = offC2.pwrf; pwC7 = offC7.pw; rf7 = offC7.pwrf; /* Example of semi-automatic calibration - use parameters, if they exist : if ((autocal[0] == 's') || (autocal[1] == 's')) { if (find("pwC1") > 0) pwC1 = getval("pwC1"); if (find("rf1") > 0) rf1 = getval("rf1"); } */ } /* power level and pulse times for DIPSI 1H decoupling */ DIPSI2time = 2.0*zeta + 2.0*timeTN - 5.4e-3 + pwC1 + 5.0*pwN + gt3 + 5.0e-5 + 2.0*GRADIENT_DELAY + 3.0*POWER_DELAY; pwH=1.0/(4.0*waltzB1); ncyc_dec = (DIPSI2time*90.0)/(pwH*2590.0*4.0); ncyc_dec = (int) (ncyc_dec +0.5); pwH = (DIPSI2time*90.0)/(ncyc_dec*2590.0*4.0); /* adjust pwH */ tpwr1 = 4095.0*(compH*pw/pwH); tpwr1 = (int) (2.0*tpwr1 + 0.5); /* x2 because obs atten will be reduced by 6dB */ /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni*1/(sw1) > timeAB - gt4 - WFG_START_DELAY - pwC7 ) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeAB - gt4 - WFG_START_DELAY - pwC7)*2.0*sw1))); psg_abort(1);} PRexp = 0; if((pra > 0.0) && (pra < 90.0)) PRexp = 1; if (PRexp) { if( 0.5*ni*sna/sw1 > timeTN - WFG3_START_DELAY) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw1/sna))); psg_abort(1);} } else { if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} } if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 50 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y') { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Set up f1180 */ if(PRexp) /* set up Projection-Reconstruction experiment */ tau1 = d2*csa; else tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Set up f2180 */ if(PRexp) tau2 = d2*sna; else { tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(zero); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw,zero,0.0,0.0); /* 1H pulse excitation */ decphase(zero); zgradpulse(gzlvl0, gt0); delay(tauCH - gt0); simpulse(2.0*pw, 2.0*pwC, zero, zero, 0.0, 0.0); txphase(one); decphase(t3); zgradpulse(gzlvl0, gt0); delay(tauCH - gt0); rgpulse(pw, one, 0.0, 0.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { gt4=0.0; /* no gradients during 2H decoupling */ dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } decrgpulse(pwC, t3, 0.0, 0.0); /* point a */ txphase(zero); decphase(zero); decpwrf(rf7); delay(tau1); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); decpwrf(rf2); if ( pwC7 > 2.0*pwN) {delay(timeCH - pwC7 - gt4 - WFG3_START_DELAY - 2.0*pw);} else {delay(timeCH - 2.0*pwN - gt4 - WFG3_START_DELAY - 2.0*pw);} rgpulse(2.0*pw,zero,0.0,0.0); delay(timeAB - timeCH); decrgpulse(pwC2, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); decpwrf(rf7); delay(timeAB - tau1 - gt4 - WFG_START_DELAY - pwC7 - 2.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); decpwrf(rf1); /* point b */ decrgpulse(pwC1, zero, 2.0e-6, 0.0); obspwrf(tpwr1); obspower(tpwr-6); /* POWER_DELAY */ obsprgon("dipsi2", pwH, 5.0); /* PRG_START_DELAY */ xmtron(); /* point c */ dec2phase(zero); decpwrf(rf2); delay(zeta - POWER_DELAY - PRG_START_DELAY); sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decpwrf(rf1); dec2phase(t8); delay(zeta); /* point d */ decrgpulse(pwC1, zero, 0.0, 0.0); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ zgradpulse(gzlvl3, gt3); if (TROSY[A]=='y') { xmtroff(); obsprgoff(); } delay(2.0e-4); dec2rgpulse(pwN, t8, 0.0, 0.0); /* point e */ decpwrf(rf2); decphase(zero); dec2phase(t9); delay(timeTN - WFG3_START_DELAY - tau2); /* WFG3_START_DELAY */ sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0); dec2phase(t10); decpwrf(rf7); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { txphase(t4); delay(timeTN - pwC7 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else { txphase(t4); delay(timeTN -pwC7 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC7 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else if (tau2 > (kappa - pwC7 - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(kappa -pwC7 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa - tau2 - pwC7 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa-tau2-pwC7-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC7", pwC7, zero, 0.0, 0.0); delay(tau2); } } /* point f */ /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt1/10.0); else zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ TROSY[MAXSTR], /* do TROSY on N15 and H1 */ h1dec[MAXSTR], /* Flag to waltz-decouple of H1 for t1*/ CT_c[MAXSTR]; /* Flag to constant time evolution for C13*/ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ timeTC = getval("timeTC"), /* constant time for 13C evolution */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ kappa = 5.4e-3, lambda = 2.4e-3, taud = 1.7e-3, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 4.7 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 10.5 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "BPcal". SLP pulse shapes, "offC9" etc are called */ /* directly from your shapelib. */ pwC9 = getval("pwC9"), /*180 degree pulse at CO(174ppm) null at Ca(56ppm) */ pwC9a = getval("pwC9a"), /* pwC9a=pwC9, but not set to zero when pwC9=0 */ phshift9, /* phase shift induced on Ca by pwC9 ("offC9") pulse */ pwZ, /* the largest of pwC9 and 2.0*pwN */ pwZ1, /* the larger of pwC9a and 2.0*pwN for 1D experiments */ rf9, /* fine power for the pwC9 ("offC9") pulse */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ pwHd, /* H1 90 degree pulse length at tpwrd */ tpwrd, /* rf for WALTZ decoupling */ waltzB1 = getval("waltzB1"), /* waltz16 field strength (in Hz) */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("TROSY",TROSY); getstr("h1dec",h1dec); getstr("CT_c",CT_c); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,4,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Ca, null at CO 118ppm away */ pwC1 = sqrt(15.0)/(4.0*118.0*dfrq); rf1 = (compC*4095.0*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Ca, null at CO 118ppm away */ pwC2 = sqrt(3.0)/(2.0*118.0*dfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4095.0 ) {printf("increase pwClvl so that C13 90 < 24us*(600/sfrq)"); psg_abort(1);} /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC9a; /* needs 1.65 times more */ rf9 = (int) (rf9 + 0.5); /* power than a square pulse */ /* the pwC9 pulse at the middle of t1 */ if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0; if (pwC9a > 2.0*pwN) pwZ = pwC9a; else pwZ = 2.0*pwN; if ((pwC9==0.0) && (pwC9a>2.0*pwN)) pwZ1=pwC9a-2.0*pwN; else pwZ1=0.0; if (ni > 1) pwC9 = pwC9a; if ( pwC9 > 0 ) phshift9 = 320.0; else phshift9 = 0.0; /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ tpwrs = (int) (tpwrs); /* power than a square pulse */ /* power level and pulse time for WALTZ 1H decoupling */ pwHd = 1/(4.0 * waltzB1) ; tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw)); tpwrd = (int) (tpwrd + 0.5); /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni*1/(sw1) > timeTC) { printf(" ni is too big. Make ni less than %d . Check by using dps and make sure no ? appears for d2=t1max (ni/sw1).\n", ((int)((timeTC)*2.0*sw1-7))); psg_abort(1); } if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 46 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y') { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(zero); delay(1.0e-5); dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw,zero,0.0,0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); rgpulse(pw, one, 0.0, 0.0); if (TROSY[A]=='y') { txphase(two); obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,5.0e-4,0.0); obspower(tpwr); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); delay(0.5*kappa - 2.0*pw); rgpulse(2.0*pw, two, 0.0, 0.0); dec2phase(zero); decpwrf(rf2); delay(timeTN - 0.5*kappa); } else { txphase(zero); obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,5.0e-4,0.0); obspower(tpwrd); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); txphase(one); delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); /* PRG_START_DELAY */ xmtron(); decphase(zero); dec2phase(zero); decpwrf(rf2); delay(timeTN - kappa); } sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decphase(t3); decpwrf(rf1); delay(timeTN); dec2rgpulse(pwN, zero, 0.0, 0.0); if (TROSY[A]=='n') { xmtroff(); obsprgoff(); if (h1dec[0]=='y') rgpulse(pwHd,three,2.0e-6,0.0); else rgpulse(pwHd,one,2.0e-6,0.0); } zgradpulse(gzlvl3, gt3); txphase(one); delay(2.0e-4); if(h1dec[0]=='y') { obspower(tpwrd); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); } if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } decrgpulse(pwC1,t3,0.0,0.0); decphase(zero); /* xxxxxxxxxxxxxxxxxxxxxx 13Ca EVOLUTION xxxxxxxxxxxxxxxxxx */ if (CT_c[0]=='n') { if ((ni>1.0) && (tau1>0.0)) /* total 13C evolution equals d2 exactly */ { /* 2.0*pwC1/PI compensates for evolution at 64% rate duting pwC1 */ decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0) { delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC9", "", 0.0, pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(tau1 - 2.0*pwC1/PI - SAPS_DELAY - 0.5*pwZ - 2.0e-6); } else { initval(180.0, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6); } } else if (ni==1.0) /* special 1D check of pwC9 phase enabled when ni=1 */ { decpwrf(rf9); delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC9", "", 0.0, pwC9, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1); } else /* 13Ca evolution refocused for 1st increment */ { decpwrf(rf2); decrgpulse(pwC2, zero, 2.0e-6, 0.0); } } else { /* %%%%%%%%%%STARTING 13Ca Constant Time EVOLUTION %%%%%%%%%%%%%%%%%%*/ decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -POWER_DELAY> 0.0) { delay(tau1 -2.0*pwC1/PI -POWER_DELAY -WFG_START_DELAY); sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); } else { sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); } if (h1dec[0]=='n'){ delay(taud-POWER_DELAY); obspower(tpwr); rgpulse(2.0*pw,zero,0.0,0.0); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { delay(timeTC -pwZ -2.0*WFG_STOP_DELAY -taud -2.0*pw -1/dmf3 -2.0e-6 -202.0e-6 -gt7); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); } else{ /* Should be forbidden?? */ delay(timeTC -pwZ -WFG_STOP_DELAY -taud -2.0*pw -202.0e-6 -gt7); } } else { /* hdec=y */ if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { delay(timeTC -pwZ -2.0*WFG_STOP_DELAY -PRG_STOP_DELAY -pwHd -1/dmf3 -4.0e-6-202.0e-6-gt7); xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,2.0e-6); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); } else{ delay(timeTC -pwZ -WFG_STOP_DELAY -PRG_STOP_DELAY -4.0e-6 -202.0e-6 -gt7); xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,2.0e-6); } } delay(2.0e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6-POWER_DELAY); decpwrf(rf2); decrgpulse(pwC2, zero, 0.0, 0.0); /* 13Ca 180 degree pulse */ delay(2.0e-6); zgradpulse(gzlvl7,gt7); delay(200.0e-6); if (h1dec[0]=='n') { if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); delay(timeTC-tau1-202.0e-6-gt7-2.0*WFG_START_DELAY-1/dmf3- 2.0*POWER_DELAY-pwC9a-2.0e-6-WFG_STOP_DELAY-SAPS_DELAY); } else{ /* Should be forbidden??? */ delay(timeTC -tau1 - 202.0e-6 - gt7-2.0*POWER_DELAY-pwC9a- WFG_START_DELAY-WFG_STOP_DELAY-2.0e-6-SAPS_DELAY); } } else { if (dm3[B]=='y') { rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); delay(timeTC-tau1-202.0e-6-gt7-2.0*WFG_START_DELAY-4.0e-6-1/dmf3-pwHd- PRG_START_DELAY-2.0*POWER_DELAY-pwC9a-2.0e-6-SAPS_DELAY); } else { delay(2.0e-6); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); delay(timeTC-tau1-202.0e-6-gt7-4.0e-6-pwHd-PRG_START_DELAY- 2.0*POWER_DELAY-pwC9a-WFG_START_DELAY-WFG_STOP_DELAY-SAPS_DELAY); } } decpwrf(rf9); decshaped_pulse("offC9",pwC9a,zero,0.0,0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ } /* %%%%%%%%%%%%%%%%%%ENDING 13Ca Constant Time EVOLUTION %%%%%%%%%%%%%%%%%%*/ decphase(t5); decpwrf(rf1); decrgpulse(pwC1, t5, 2.0e-6, 0.0); dec2phase(t8); dcplrphase(zero); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } if (h1dec[0]=='y') { xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0); txphase(one); } delay(2.0e-6); zgradpulse(gzlvl4, gt4); delay(2.0e-4); if (TROSY[A]=='n') { rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); } /* %%%%%%%%%%%%%%%%%%STARTING N15 Constant Time Evolution %%%%%%%%%%%%%%%%%%*/ dec2rgpulse(pwN, t8, 0.0, 0.0); decphase(zero); dec2phase(t9); decpwrf(rf2); delay(timeTN - tau2); sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0); dec2phase(t10); decpwrf(rf9); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs) { txphase(three); delay(timeTN - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); } else if (tau2 > pwHs + 0.5e-4) { txphase(three); delay(timeTN-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - pwHs - 0.5e-4); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); } else { txphase(three); delay(timeTN - pwC9a - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > (kappa - pwC9a - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(kappa -pwC9a -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - tau2 - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa-tau2-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt1/10.0); else zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni = getval("ni"), ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ t1a, /* time increments for first dimension */ t1b, t1c, tauCH = getval("tauCH"), /* 1/4J delay for CH */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ timeAB = getval("timeAB"), /* set timeAB=1.9e-3 to get only Ha */ /* set timeAB=3.3e-3 to maximize Hb */ /* set timeAB=2.8e-3 for both Ha/Hb */ zeta = 3.0e-3, eta = 4.6e-3, theta = 14.0e-3, kappa = 5.4e-3, lambda = 2.4e-3, sheila, /* to transfer J evolution time hyperbolically into tau1 */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Cab(46ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 5.1 kHz rf for 600MHz magnet */ /* 180 degree pulse at Cab(46ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 11.4 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "proteincal". SLP pulse shapes, "offC4" etc are called */ /* directly from your shapelib. */ pwC4 = getval("pwC4"), /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */ pwC5 = getval("pwC5"), /* 90 degree selective sinc pulse on CO(174ppm) */ pwC7 = getval("pwC7"), /* 180 degree selective sinc pulse on CO(174ppm) */ rf4, /* fine power for the pwC4 ("offC4") pulse */ rf5, /* fine power for the pwC5 ("offC5") pulse */ rf7, /* fine power for the pwC7 ("offC7") pulse */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ phi7cal = getval("phi7cal"), /* phase in degrees of the last C13 90 pulse */ pwH, /* H1 90 degree pulse length at tpwr1 */ tpwr1, /* 7.3 kHz rf for DIPSI-2 */ DIPSI2time, /* total length of DIPSI-2 decoupling */ ncyc_dec, waltzB1=getval("waltzB1"), /* RF strength for 1H decoupling */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("TROSY",TROSY); /* LOAD PHASE TABLE */ settable(t3,1,phx); settable(t4,1,phx); settable(t5,2,phi5); settable(t6,2,phi6); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,2,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } if( pwC > 24.0e-6*600.0/sfrq ) { printf("increase pwClvl so that pwC < 24*600/sfrq"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Cab, null at CO 128ppm away */ pwC1 = sqrt(15.0)/(4.0*128.0*dfrq); rf1 = (compC*4095.0*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Cab, null at CO 128ppm away */ pwC2 = sqrt(3.0)/(2.0*128.0*dfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); /* 180 degree pulse on Ca, null at CO 118ppm away */ rf4 = (compC*4095.0*pwC*2.0)/pwC4; rf4 = (int) (rf4 + 0.5); /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf5 = (compC*4095.0*pwC*1.69)/pwC5; /* needs 1.69 times more */ rf5 = (int) (rf5 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf7 = (compC*4095.0*pwC*2.0*1.65)/pwC7; /* needs 1.65 times more */ rf7 = (int) (rf7 + 0.5); /* power than a square pulse */ /* power level and pulse times for DIPSI 1H decoupling */ DIPSI2time = 2.0*3.0e-3 + 2.0*14.0e-3 + 2.0*timeTN - 5.4e-3 + 0.5*pwC1 + 2.0*pwC5 + 5.0*pwN + 2.0*gt3 + 1.0e-4 + 4.0*GRADIENT_DELAY + 2.0*POWER_DELAY + 8.0*PRG_START_DELAY; pwH = 1.0/(4.0*waltzB1); ncyc_dec = (DIPSI2time*90.0)/(pwH*2590.0*4.0); ncyc_dec = (int) (ncyc_dec+0.5); pwH = (DIPSI2time*90.0)/(ncyc_dec*2590.0*4.0); /*fine correction of pwH */ tpwr1 = 4095.0*(compH*pw/pwH); tpwr1 = (int) (2.0*tpwr1 + 0.5); /* x2 because obs atten will be reduced by 6dB */ if (ix == 1) { fprintf(stdout, "\nNo of DIPSI-2 cycles = %4.1f\n",ncyc_dec); fprintf(stdout, "\nfine power for DIPSI-2 pulse =%6.1f\n",tpwr1); } /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 50 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y' ) { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Hyperbolic sheila seems superior to original zeta approach */ /* subtract unavoidable delays from tauCH */ tauCH = tauCH - gt0 - 2.0*GRADIENT_DELAY - 5.0e-5; if ((ni-1)/(2.0*sw1) > 2.0*tauCH) { if (tau1 > 2.0*tauCH) sheila = tauCH; else if (tau1 > 0) sheila = 1.0/(1.0/tau1+1.0/tauCH-1.0/(2.0*tauCH)); else sheila = 0.0; } else { if (tau1 > 0) sheila = 1.0/(1.0/tau1 + 1.0/tauCH - 2.0*sw1/((double)(ni-1))); else sheila = 0.0; } t1a = tau1 + tauCH; t1b = tau1 - sheila; t1c = tauCH - sheila; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* For ni<2 (calibration) set timeAB=1.5ms to get avoid signal cancellation between Ha and Hb */ if (ni < 2.0) timeAB=1.5e-3; /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) lk_sample(); /*freezes z0 correction, stops lock pulsing*/ if ((ni/sw1-d2)>0) delay(ni/sw1-d2); /*decreases as t1 increases for const.heating*/ if ((ni2/sw2-d3)>0) delay(ni2/sw2-d3); /*decreases as t2 increases for const.heating*/ if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(one); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { gzlvl0=0.0; gzlvl3=0.0; gzlvl4=0.0; /* no gradients during 2H decoupling */ dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pw, one, 0.0, 0.0); /* 1H pulse excitation */ /* point a */ txphase(zero); decphase(zero); zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ delay(5.0e-5); if((t1a -2.0*pwC) > 0.0) delay(t1a - 2.0*pwC); decrgpulse(2.0*pwC, zero, 0.0, 0.0); delay(t1b); rgpulse(2.0*pw, zero, 0.0, 0.0); zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ txphase(t3); delay(5.0e-5); delay(t1c); /* point b */ rgpulse(pw, t3, 0.0, 0.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); decrgpulse(pwC, zero, 0.0, 0.0); /* point c */ zgradpulse(gzlvl4, gt4); decpwrf(rf2); delay(timeAB - gt4); simpulse(2*pw, pwC2, zero, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); delay(timeAB - gt4); /* point d */ /* ghc_co_nh STOPS HERE */ /* gcbca_co_nh STARTS HERE */ decpwrf(rf1); /* point b */ decrgpulse(pwC1, zero, 2.0e-6, 0.0); obspwrf(tpwr1); obspower(tpwr-6); /* POWER_DELAY */ obsprgon("dipsi2", pwH, 5.0); /* PRG_START_DELAY */ xmtron(); /* point c */ decpwrf(rf0); decphase(t5); delay(zeta - 2.0*POWER_DELAY - PRG_START_DELAY - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, t5, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, t6, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, t5, 0.0, 0.0); /* Shaka composite */ decrgpulse(pwC*145.5/90.0, t6, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, t5, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, t6, 0.0, 0.0); decpwrf(rf1); decphase(zero); delay(zeta - 0.5*10.933*pwC - 0.5*pwC1); /* point d */ decrgpulse(pwC1, zero, 0.0, 0.0); decphase(t5); decpwrf(rf5); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } zgradpulse(gzlvl3, gt3); delay(2.0e-4); decshaped_pulse("offC5", pwC5, t5, 0.0, 0.0); /* point e */ decpwrf(rf4); decphase(zero); delay(eta); decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); decpwrf(rf7); dec2phase(zero); delay(theta - eta - pwC4 - WFG3_START_DELAY); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decpwrf(rf5); decpwrf(rf5); initval(phi7cal, v7); decstepsize(1.0); dcplrphase(v7); /* SAPS_DELAY */ dec2phase(t8); delay(theta - SAPS_DELAY); /* point f */ decshaped_pulse("offC5", pwC5, zero, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ zgradpulse(gzlvl3, gt3); if (TROSY[A]=='y') { xmtroff(); obsprgoff(); } delay(2.0e-4); dcplrphase(zero); dec2rgpulse(pwN, t8, 0.0, 0.0); decpwrf(rf7); decphase(zero); dec2phase(t9); delay(timeTN - WFG3_START_DELAY - tau2); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC7", "", 0.0, pwC7, 2.0*pwN, zero, zero, t9, 0.0, 0.0); dec2phase(t10); decpwrf(rf4); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { txphase(t4); delay(timeTN - pwC4 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else { txphase(t4); delay(timeTN -pwC4 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC4 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else if (tau2 > (kappa - pwC4 - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(kappa -pwC4 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa - tau2 - pwC4 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ txphase(t4); delay(kappa-tau2-pwC4-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspwrf(4095.0); obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - 2.0*POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC4", pwC4, zero, 0.0, 0.0); delay(tau2); } } /* point g */ /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt1/10.0); else zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ int t1_counter; /* used for states tppi in t1 */ double tau1, /* t1 delay */ TC = getval("TC"), /* Constant delay 1/(JCC) ~ 13.5 ms */ mix = getval("mix"), /* TOCSY mixing time */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Cab (46ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 5.1 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (46ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 11.4 kHz rf for 600MHz magnet */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ sw1 = getval("sw1"), gt1 = getval("gt1"), gzlvl1 = getval("gzlvl1"), gt2 = getval("gt2"), gzlvl2 = getval("gzlvl2"), gstab = getval("gstab"), ppm, co_ofs = getval("co_ofs"), /* offset for C' */ co_bw = getval("co_bw"), /* bandwidth for C' */ copwr = getval("copwr"), /* power for C' decoupling. Get from CO_dec.DEC*/ codmf = getval("codmf"), /* dmf for C' decoupling. Get from CO_dec.DEC */ codres = getval("codres"), /* dres for C' decoupling. Get from CO_dec.DEC */ mixbw, /* band width for mixing shape */ mixpwr = getval("mixpwr"), /* power for CC mixing. Get from ccmix.DEC*/ mixdmf= getval("mixdmf"), /* dmf for CC decoupling. Get from ccmix.DEC */ mixdres = getval("mixdres"); /* dres for CC decoupling. Get from ccmix.DEC */ /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,1,phi2); settable(t3,1,phi3); settable(t12,2,rec); setautocal(); /* activate auto-calibration */ /* INITIALIZE VARIABLES */ /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Cab, null at CO 128ppm away */ pwC1 = sqrt(15.0)/(4.0*128.0*sfrq); rf1 = (compC*4095.0*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Cab, null at CO 128ppm away */ pwC2 = sqrt(3.0)/(2.0*128.0*sfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4295 ) { printf("increase pwClvl"); psg_abort(1);} if(( rf2 > 4095 ) && (rf2 <4296)) rf2=4095; /* CHECK VALIDITY OF PARAMETER RANGES */ if ( 0.5*ni*1/(sw1) > TC) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((TC)*2.0*sw1))); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t1,1,4); tau1 = d2; tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t1,2,4); tsadd(t12,2,4); } if (autocal[0] == 'y') { if(FIRST_FID) { ppm = getval("sfrq"); ofs_check(C13ofs); co_ofs = (C13ofs+118.0)*ppm; co_bw = 20*ppm; CO_dec = pbox_Dsh("CO_dec", "SEDUCE1", co_bw, co_ofs, pwC*compC, pwClvl); copwr = CO_dec.pwr; codmf = CO_dec.dmf; codres = CO_dec.dres; mixbw = sw1; mix_seq = pbox_Dsh("mix_seq", "FLOPSY8", mixbw, 0.0, pwC*compC, pwClvl); mixpwr = mix_seq.pwr; mixdmf = mix_seq.dmf; mixdres = mix_seq.dres; } } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(pwClvl); decpower(tpwr); dec2power(dpwr2); dec3power(dpwr3); obspwrf(rf1); /*fine power for Cab 90 degree pulse */ obsoffset(tof); /*13C carrier at 46 ppm */ txphase(zero); delay(1.0e-5); status(B); rgpulse(pwC1, t1, 0.0,0.0); /* xxxxxxxxxxxxxxxxxxxxxx 13Cab Constant Time Evolution xxxxxxxxxxxxxxxxxx */ obspower(copwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("CO_dec",1.0/codmf,codres); if ( dm3[B] == 'y' ) /* turns on 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); delay(TC - tau1 - pwC2/2 - 1/dmf3); } else delay(TC - tau1 - pwC2/2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf2); rgpulse(pwC2, zero, 0.0, 0.0); obspower(copwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("CO_dec",1.0/codmf,codres); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { delay(TC + tau1 - pwC2/2 - 1/dmf3); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } else delay(TC + tau1 - pwC2/2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf1); rgpulse(pwC1,t2,0.0,0.0); status(C); zgradpulse(gzlvl1, gt1); delay(gstab); /* xxxxxxxxxxxxxxxxxxxxxxxxxxxx FLOPSY 8 Spin lock for mixing xxxxxxxxxxxxxxxxxxxx */ obspower(mixpwr); obspwrf(rf0); txphase(zero); obsunblank(); xmtron(); obsprgon("mix_seq",1.0/mixdmf,mixdres); delay(mix-gt1-gt2); obsprgoff(); xmtroff(); obsblank(); obspower(pwClvl); obspwrf(rf1); zgradpulse(gzlvl2,gt2); delay(gstab); rgpulse(pwC1,t3,0.0,rof2); getelem(t3,ct,v3); add(v3,one,v3); obspower(pwClvl); obspwrf(rf0); delay(350e-6-rof2); rgpulse(pwC*2.0,v3,0.0,0.0); delay(350e-6); status(D); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ void makeHHdec(), makeCdec(); /* utility functions */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ C13refoc[MAXSTR], /* C13 sech/tanh pulse in middle of t1*/ NH2only[MAXSTR], /* spectrum of only NH2 groups */ T1[MAXSTR], /* insert T1 relaxation delay */ T1rho[MAXSTR], /* insert T1rho relaxation delay */ T2[MAXSTR], /* insert T2 relaxation delay */ TROSY[MAXSTR], /* do TROSY on N15 and H1 */ Hdecflg[MAXSTR], /* HH-h**o decoupling flag */ Cdecflg[MAXSTR]; /* low power C-13 decoupling flag */ int icosel, /* used to get n and p type */ ihh=1, /* used in HH decouling to improve water suppression */ t1_counter, /* used for states tppi in t1 */ rTnum, /* number of relaxation times, relaxT */ rTcounter; /* to obtain maximum relaxT, ie relaxTmax */ double tau1, /* t1 delay */ lambda = 0.91/(4.0*getval("JNH")), /* 1/4J H1 evolution delay */ tNH = 1.0/(4.0*getval("JNH")), /* 1/4J N15 evolution delay */ relaxT = getval("relaxT"), /* total relaxation time */ rTarray[1000], /* to obtain maximum relaxT, ie relaxTmax */ maxrelaxT = getval("maxrelaxT"), /* maximum relaxT in all exps */ ncyc, /* number of pulsed cycles in relaxT */ pwr_dly, /* power delay */ /* the sech/tanh pulse is automatically calculated by the macro "proteincal", */ /* and is called directly from your shapelib. */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ rfst, /* fine power for the stCall pulse */ compH = getval("compH"), /* adjustment for H1 amplifier compression */ compN = getval("compN"), /* adjustment for N15 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ calH = getval("calH"), /* multiplier on a pw pulse for H1 calibration */ tpwrsf = getval("tpwrsf"), /* fine power adustment for soft pulse */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ pwHH = 0.0, /* pwHH = pwHs for HH h**o-decoupling */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ calN = getval("calN"), /* multiplier on a pwN pulse for calibration */ slNlvl, /* power for N15 spin lock */ slNrf = 1500.0, /* RF field in Hz for N15 spin lock at 600 MHz */ sw1 = getval("sw1"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* dac to G/cm conversion */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), BPpwrlimits, /* =0 for no limit, =1 for limit */ gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"); P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1); getstr("f1180",f1180); getstr("mag_flg",mag_flg); getstr("C13refoc",C13refoc); getstr("NH2only",NH2only); getstr("T1",T1); getstr("T1rho",T1rho); getstr("T2",T2); getstr("TROSY",TROSY); getstr("Hdecflg", Hdecflg); getstr("Cdecflg", Cdecflg); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); if (TROSY[A]=='y') {settable(t1,1,ph_x); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,2,recT);} else {settable(t1,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ /* maximum fine power for pwC pulses (and initialize rfst) */ rf0 = 4095.0; rfst=0.0; /* 180 degree adiabatic C13 pulse from 0 to 200 ppm */ if (C13refoc[A]=='y') {rfst = (compC*4095.0*pwC*4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)); rfst = (int) (rfst + 0.5); if ( 1.0/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35)) < pwC ) { text_error( " Not enough C13 RF. pwC must be %f usec or less.\n", (1.0e6/(4000.0*sqrt((30.0*sfrq/600.0+7.0)/0.35))) ); psg_abort(1); }} /* selective H20 one-lobe sinc pulse */ if(pwHs > 1e-6) tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ else /* power than a square pulse */ tpwrs = 0.0; tpwrs = (int) (tpwrs); if (tpwrsf<4095.0) tpwrs = tpwrs + 6.0; if (tpwrsf < 4095.0) { tpwrs = tpwrs + 6.0; pwr_dly = POWER_DELAY + PWRF_DELAY; } else pwr_dly = POWER_DELAY; /* power level for N15 spinlock (90 degree pulse length calculated first) */ slNlvl = 1/(4.0*slNrf*sfrq/600.0) ; slNlvl = pwNlvl - 20.0*log10(slNlvl/(pwN*compN)); slNlvl = (int) (slNlvl + 0.5); /* use 1/8J times for relaxation measurements of NH2 groups */ if ( (NH2only[A]=='y') && ((T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y')) ) { tNH = tNH/2.0; } /* reset calH and calN for 2D if inadvertently left at 2.0 */ if (ni>1.0) {calH=1.0; calN=1.0;} /* make shapes and set up parameters for HH h**o-decoupling */ if(Cdecflg[0] == 'y') makeCdec(); if(Hdecflg[0] == 'y') makeHHdec(); if(Hdecflg[0] != 'n') { pwHH = pwHs; pwHs = 0.0; } /* CHECK VALIDITY OF PARAMETER RANGES */ if ((TROSY[A]=='y') && (gt1 < -2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY)) { text_error( " gt1 is too small. Make gt1 equal to %f or more.\n", (-2.0e-4 + pwHs + 1.0e-4 + 2.0*POWER_DELAY) ); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' )) { text_error("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y')) { text_error("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1); } if( dpwr2 > 50 ) { text_error("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pw > 50.0e-6 ) { text_error("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 100.0e-6 ) { text_error("dont fry the probe, pwN too high ! "); psg_abort(1); } /* RELAXATION TIMES AND FLAGS */ /* evaluate maximum relaxT, relaxTmax chosen by the user */ rTnum = getarray("relaxT", rTarray); relaxTmax = rTarray[0]; for (rTcounter=1; rTcounter<rTnum; rTcounter++) if (relaxTmax < rTarray[rTcounter]) relaxTmax = rTarray[rTcounter]; /* compare relaxTmax with maxrelaxT */ if (maxrelaxT > relaxTmax) relaxTmax = maxrelaxT; if ( ((T1rho[A]=='y') || (T2[A]=='y')) && (relaxTmax > d1) ) { text_error("Maximum relaxation time, relaxT, is greater than d1 ! "); psg_abort(1);} if ( ((T1[A]=='y') && (T1rho[A]=='y')) || ((T1[A]=='y') && (T2[A]=='y')) || ((T1rho[A]=='y') && (T2[A]=='y')) ) { text_error("Choose only one relaxation measurement ! "); psg_abort(1); } if ( ((T1[A]=='y') || (T1rho[A]=='y')) && ((relaxT*100.0 - (int)(relaxT*100.0+1.0e-4)) > 1.0e-6) ) { text_error("Relaxation time, relaxT, must be zero or multiple of 10msec"); psg_abort(1);} if ( (T2[A]=='y') && (((relaxT+0.01)*50.0 - (int)((relaxT+0.01)*50.0+1.0e-4)) > 1.0e-6) ) { text_error("Relaxation time, relaxT, must be odd multiple of 10msec"); psg_abort(1);} if ( ((T1rho[A]=='y') || (T2[A]=='y')) && (relaxTmax > 0.25) && (ix==1) ) { printf("WARNING, sample heating will result for relaxT>0.25sec"); } if ( ((T1rho[A]=='y') || (T2[A]=='y')) && (relaxTmax > 0.5) ) { text_error("relaxT greater than 0.5 seconds will heat sample"); psg_abort(1);} if ( ((NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y')) && (TROSY[A]=='y') ) { text_error("TROSY not implemented with NH2 spectrum, or relaxation exps."); psg_abort(1);} if ((TROSY[A]=='y') && (dm2[C] == 'y')) { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (TROSY[A]=='y') { if (phase1 == 2) icosel = -1; else { tsadd(t4,2,4); tsadd(t10,2,4); icosel = +1; } } else { if (phase1 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } if(Hdecflg[0] != 'n') ihh = icosel; /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } /* Correct inverted signals for NH2 only spectra */ if ((NH2only[A]=='y') && (T1[A]=='n') && (T1rho[A]=='n') && (T2[A]=='n')) { tsadd(t3,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); obspower(tpwr); decpower(pwClvl); decpwrf(rf0); dec2power(pwNlvl); txphase(zero); decphase(zero); dec2phase(zero); if(Hdecflg[0] != 'n') { delay(5.0e-5); rgpulse(pw,zero,rof1,0.0); rgpulse(pw,one,0.0,rof1); zgradpulse(1.5*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw,zero,rof1,0.0); rgpulse(pw,one,0.0,rof1); zgradpulse(-gzlvl0, 0.5e-3); } delay(d1); /* xxxxxxxxxxxxxxxxx CONSTANT SAMPLE HEATING FROM N15 RF xxxxxxxxxxxxxxxxx */ if (T1rho[A]=='y') {dec2power(slNlvl); dec2rgpulse(relaxTmax-relaxT, zero, 0.0, 0.0); dec2power(pwNlvl);} if (T2[A]=='y') {ncyc = 8.0*100.0*(relaxTmax - relaxT); if (BPpwrlimits > 0.5) { dec2power(pwNlvl-3.0); /* reduce for probe protection */ pwN=pwN*compN*1.4; } if (ncyc > 0) {initval(ncyc,v1); loop(v1,v2); delay(0.625e-3 - pwN); dec2rgpulse(2*pwN, zero, 0.0, 0.0); delay(0.625e-3 - pwN); endloop(v2);} if (BPpwrlimits > 0.5) { dec2power(pwNlvl); /* restore normal value */ pwN=getval("pwN"); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ rcvroff(); if (TROSY[A]=='n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 magnetization*/ zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A]=='n') dec2rgpulse(pwN, one, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); decpwrf(rfst); txphase(t1); delay(5.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { lk_hold(); dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(calH*pw,t1,0.0,0.0); /* 1H pulse excitation */ txphase(zero); dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0 - pwHH); if(Hdecflg[0] != 'n') { obspower(tpwrs); if (tpwrsf<4095.0) obspwrf(tpwrsf); shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0); obspower(tpwr); if (tpwrsf<4095.0) obspwrf(4095.0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); obspower(tpwrs); if (tpwrsf<4095.0) obspwrf(tpwrsf); shaped_pulse("H2Osinc", pwHH, two, 5.0e-5, 0.0); obspower(tpwr); if (tpwrsf<4095.0) obspwrf(4095.0); } else sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0 - pwHH); rgpulse(pw, one, 0.0, 0.0); txphase(two); obspower(tpwrs); if (tpwrsf<4095.0) obspwrf(tpwrsf); shaped_pulse("H2Osinc", pwHs, two, 5.0e-5, 0.0); obspower(tpwr); if (tpwrsf<4095.0) obspwrf(4095.0); if (TROSY[A]=='y') zgradpulse(ihh*gzlvl3, gt3); else zgradpulse(-ihh*gzlvl3, gt3); dec2phase(t3); delay(2.0e-4); dec2rgpulse(calN*pwN, t3, 0.0, 0.0); txphase(zero); decphase(zero); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 RELAXATION xxxxxxxxxxxxxxxxxxxx */ if ( (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') ) { dec2phase(one); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ delay(tNH - gt4 - 2.0*GRADIENT_DELAY); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, one, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ delay(tNH - gt4 - 2.0*GRADIENT_DELAY); } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (T1[A]=='y') { dec2rgpulse(pwN, one, 0.0, 0.0); dec2phase(three); zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ delay(2.5e-3 - gt0 - 2.0*GRADIENT_DELAY - pw); rgpulse(2.0*pw, zero, 0.0, 0.0); delay(2.5e-3 - pw); ncyc = (100.0*relaxT); initval(ncyc,v4); if (ncyc > 0) {loop(v4,v5); delay(2.5e-3 - pw); rgpulse(2.0*pw, two, 0.0, 0.0); delay(2.5e-3 - pw); delay(2.5e-3 - pw); rgpulse(2.0*pw, zero, 0.0, 0.0); delay(2.5e-3 - pw); endloop(v5);} dec2rgpulse(pwN, three, 0.0, 0.0); } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ /* Theory suggests 8.0 is better than 2PI as RF */ /* field multiplier and experiment confirms this.*/ if (T1rho[A]=='y') /* Shift evolution of 2.0*pwN/PI for one pulse */ { /* at end left unrefocused as for normal sequence*/ delay(1.0/(8.0*slNrf) - pwN); decrgpulse(pwN, zero, 0.0, 0.0); dec2power(slNlvl); /* minimum 5ms spinlock to dephase */ dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); /* spins not locked */ sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0); dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); ncyc = 100.0*relaxT; initval(ncyc,v4); if (ncyc > 0) {loop(v4,v5); dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); sim3pulse(2.0*pw, 0.0, 2.0*pw, two, zero, zero, 0.0, 0.0); dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); sim3pulse(2.0*pw, 0.0, 2.0*pw, zero, zero, zero, 0.0, 0.0); dec2rgpulse((2.5e-3-pw), zero, 0.0, 0.0); endloop(v5);} dec2power(pwNlvl); decrgpulse(pwN, zero, 0.0, 0.0); delay(1.0/(8.0*slNrf) + 2.0*pwN/PI - pwN); } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (T2[A]=='y') { dec2phase(zero); initval(0.0,v3); initval(180.0,v4); if (BPpwrlimits > 0.5) { dec2power(pwNlvl-3.0); /* reduce for probe protection */ pwN=pwN*compN*1.4; } ncyc = 100.0*relaxT; initval(ncyc,v5); loop(v5,v6); initval(3.0,v7); loop(v7,v8); delay(0.625e-3 - pwN); dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); delay(0.625e-3 - pwN); endloop(v8); delay(0.625e-3 - pwN - SAPS_DELAY); add(v4,v3,v3); obsstepsize(1.0); xmtrphase(v3); /* SAPS_DELAY */ dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); delay(0.625e-3 - pwN - pw); rgpulse(2*pw, zero, 0.0, 0.0); delay(0.625e-3 - pwN - pw ); dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); xmtrphase(zero); /* SAPS_DELAY */ delay(0.625e-3 - pwN - SAPS_DELAY); initval(3.0,v9); loop(v9,v10); delay(0.625e-3 - pwN); dec2rgpulse(2.0*pwN, zero, 0.0, 0.0); delay(0.625e-3 - pwN); endloop(v10); endloop(v6); if (BPpwrlimits > 0.5) { dec2power(pwNlvl); /* restore normal value */ pwN=getval("pwN"); } } /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ txphase(zero); dec2phase(t9); if ( (NH2only[A]=='y') || (T1[A]=='y') || (T1rho[A]=='y') || (T2[A]=='y') ) { delay(tau1); /* optional sech/tanh pulse in middle of t1 */ if (C13refoc[A]=='y') /* WFG_START_DELAY */ {decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0); delay(tNH - 1.0e-3 - WFG_START_DELAY - 2.0*pw);} else {delay(tNH - 2.0*pw);} rgpulse(2.0*pw, zero, 0.0, 0.0); if (tNH < gt1 + 1.99e-4) delay(gt1 + 1.99e-4 - tNH); delay(tau1); dec2rgpulse(2.0*pwN, t9, 0.0, 0.0); if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ txphase(t4); dec2phase(t10); if (tNH > gt1 + 1.99e-4) delay(tNH - gt1 - 2.0*GRADIENT_DELAY); else delay(1.99e-4 - 2.0*GRADIENT_DELAY); } else if (TROSY[A]=='y') { if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) ) {delay(tau1 - 0.5e-3 - WFG2_START_DELAY); /* WFG2_START_DELAY */ decshaped_pulse("stC200", 1.0e-3, zero, 0.0, 0.0); delay(tau1 - 0.5e-3);} else delay(2.0*tau1); if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ delay(2.0e-4 - 2.0*GRADIENT_DELAY); dec2rgpulse(2.0*pwN, t9, 0.0, 0.0); txphase(three); delay(gt1 + 2.0e-4 - pwHs - 1.0e-4 - 2.0*pwr_dly); obspower(tpwrs); if (tpwrsf<4095.0) obspwrf(tpwrsf); shaped_pulse("H2Osinc", pwHs, three, 5.0e-5, 0.0); obspower(tpwr); if (tpwrsf<4095.0) obspwrf(4095.0); txphase(t4); delay(5.0e-5); } else { /* fully-coupled spectrum */ if (dm2[C]=='n') {rgpulse(2.0*pw, zero, 0.0, 0.0); pw=0.0;} if ( (C13refoc[A]=='y') && (tau1 > 0.5e-3 + WFG2_START_DELAY) ) {delay(tau1 - 0.5e-3 - WFG2_START_DELAY); /* WFG2_START_DELAY */ simshaped_pulse("", "stC200", 2.0*pw, 1.0e-3, zero, zero, 0.0, 0.0); delay(tau1 - 0.5e-3); delay(gt1 + 2.0e-4);} else {delay(tau1); rgpulse(2.0*pw, zero, 0.0, 0.0); delay(gt1 + 2.0e-4 - 2.0*pw); delay(tau1);} pw=getval("pw"); dec2rgpulse(2.0*pwN, t9, 0.0, 0.0); if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ txphase(t4); dec2phase(t10); delay(2.0e-4 - 2.0*GRADIENT_DELAY); } if (T1rho[A]=='y') delay(POWER_DELAY); /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(1.5*gzlvl5, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(1.5*gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.65*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } rgpulse(2.0*pw, zero, 0.0, 0.0); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, 0.1*gt1); else zgradpulse(icosel*gzlvl2, 0.1*gt1); /* 2.0*GRADIENT_DELAY */ if(Cdecflg[0] == 'y') { delay(gstab-2.0*POWER_DELAY-PRG_START_DELAY+rof2); rcvron(); statusdelay(C,1.0e-4); if (dm3[B] == 'y') { delay(1/dmf3); lk_sample(); } setreceiver(t12); pbox_decon(&Cdseq); if(Hdecflg[0] == 'y') homodec(&HHdseq); } else { delay(gstab+rof2); rcvron(); statusdelay(C,1.0e-4); if (dm3[B] == 'y') { delay(1/dmf3); lk_sample(); } setreceiver(t12); if(Hdecflg[0] == 'y') homodec(&HHdseq); } }
pulsesequence() { /* DECLARE VARIABLES */ char fscuba[MAXSTR], f1180[MAXSTR], /* Flag to start t1 @ fulldwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ C_flg[MAXSTR], dtt_flg[MAXSTR]; int phase, phase2, ni, ni2, t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ taua, /* ~ 1/4JHC = 1.6 ms */ taub, /* 1/6JCH = 1.1 ms */ BigTC, /* Carbon constant time period = 1/4Jcc = 7.0 ms */ pwN, /* PW90 for 15N pulse @ pwNlvl */ pwC, /* PW90 for c nucleus @ pwClvl */ pwcrb180, /* PW180 for C 180 reburp @ rfrb */ pwClvl, /* power level for 13C pulses on dec1 */ compC, compH, /* compression factors for H1 and C13 amps */ rfrb, /* power level for 13C reburp pulse */ pwNlvl, /* high dec2 pwr for 15N hard pulses */ sw1, /* sweep width in f1 */ sw2, /* sweep width in f2 */ bw, ofs, ppm, gt0, gt1, gt2, gt3, gt4, gt5, gt6, gstab, gzlvl0, gzlvl1, gzlvl2, gzlvl3, gzlvl4, gzlvl5, gzlvl6, decstep1, decstep2, decstep3, tpwrs, pwHs, dof_me, rfrb_cg, rfrb_co, pwrb_co, pwrb_cg, tof_dtt, rfca90, pwca90, rfca180, pwca180, pwco90, dofCO; /* LOAD VARIABLES */ getstr("f1180",f1180); getstr("f2180",f2180); getstr("fscuba",fscuba); getstr("C_flg",C_flg); getstr("dtt_flg",dtt_flg); taua = getval("taua"); taub = getval("taub"); BigTC = getval("BigTC"); pwC = getval("pwC"); pwcrb180 = getval("pwcrb180"); pwN = getval("pwN"); tpwr = getval("tpwr"); pwClvl = getval("pwClvl"); compC = getval("compC"); compH = getval("compH"); dpwr = getval("dpwr"); pwNlvl = getval("pwNlvl"); phase = (int) ( getval("phase") + 0.5); phase2 = (int) ( getval("phase2") + 0.5); sw1 = getval("sw1"); sw2 = getval("sw2"); ni = getval("ni"); ni2 = getval("ni2"); gstab = getval("gstab"); gt0 = getval("gt0"); gt1 = getval("gt1"); gt2 = getval("gt2"); gt3 = getval("gt3"); gt4 = getval("gt4"); gt5 = getval("gt5"); gt6 = getval("gt6"); gzlvl0 = getval("gzlvl0"); gzlvl1 = getval("gzlvl1"); gzlvl2 = getval("gzlvl2"); gzlvl3 = getval("gzlvl3"); gzlvl4 = getval("gzlvl4"); gzlvl5 = getval("gzlvl5"); gzlvl6 = getval("gzlvl6"); decstep1 = getval("decstep1"); decstep2 = getval("decstep2"); decstep3 = getval("decstep3"); pwHs = getval("pwHs"); dof_me = getval("dof_me"); tof_dtt = getval("tof_dtt"); dofCO = getval("dofCO"); tpwrs = 0.0; setautocal(); /* activate auto-calibration */ if(FIRST_FID) /* make shapes */ { ppm = getval("dfrq"); bw = 80.0*ppm; rb180 = pbox_make("rb180P", "reburp", bw, 0.0, compC*pwC, pwClvl); bw = 8.125*ppm; ofs = -24.0*ppm; rb180_cg = pbox_make("rb180_cgP", "reburp", bw, ofs, compC*pwC, pwClvl); bw = 60*ppm; ofs = 136.0*ppm; rb180_co = pbox_make("rb180_coP", "reburp", bw, ofs, compC*pwC, pwClvl); bw = 118.0*ppm; ofs = -118.0*ppm; ca180 = pbox_make("ca180P", "square180n", bw, ofs, compC*pwC, pwClvl); bw = 118.0*ppm; ofs = 18.0*ppm; ca90 = pbox_make("ca90P", "square90n", bw, ofs, compC*pwC, pwClvl); } pwcrb180 = rb180.pw; rfrb = rb180.pwrf; /* set up parameters */ pwrb_cg = rb180_cg.pw; rfrb_cg = rb180_cg.pwrf; /* set up parameters */ pwrb_co = rb180_co.pw; rfrb_co = rb180_co.pwrf; /* set up parameters */ pwca90 = ca90.pw; rfca90 = ca90.pwrf; /* set up parameters */ pwca180 = ca180.pw; rfca180 = ca180.pwrf; /* set up parameters */ pwco90 = pwca90; tpwrs = tpwr - 20.0*log10(pwHs/((compH*pw)*1.69)); /* sinc=1.69xrect */ tpwrs = (int) (tpwrs); /* LOAD PHASE TABLE */ settable(t1,2,phi1); settable(t2,4,phi2); settable(t3,4,phi3); settable(t4,4,phi4); settable(t5,1,phi5); settable(t6,16,phi6); settable(t7,8,phi7); settable(t8,8,phi8); settable(t9,8,phi9); settable(t10,1,phi10); settable(t11,8,phi11); settable(t12,16,rec); /* CHECK VALIDITY OF PARAMETER RANGES */ if( BigTC - 0.5*(ni2-1)*1/(sw2) - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 < 0.2e-6 ) { printf(" ni2 is too big\n"); psg_abort(1); } if((dm[A] == 'y' || dm[B] == 'y' )) { printf("incorrect dec1 decoupler flags! "); psg_abort(1); } if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if( satpwr > 9 ) { printf("SATPWR too large !!! "); psg_abort(1); } if( dpwr > 48 ) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if( dpwr2 > -16 ) { printf("don't fry the probe, DPWR2 too large! "); psg_abort(1); } if( pw > 200.0e-6 ) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if( pwN > 200.0e-6 ) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } if( pwC > 200.0e-6 ) { printf("dont fry the probe, pwC too high ! "); psg_abort(1); } if( pwcrb180 > 500.0e-6 ) { printf("dont fry the probe, pwcrb180 too high ! "); psg_abort(1); } if(dpwr3 > 51) { printf("dpwr3 is too high; < 52\n"); psg_abort(1); } if(d1 < 1) { printf("d1 must be > 1\n"); psg_abort(1); } if( gt0 > 5.0e-3 || gt1 > 5.0e-3 || gt2 > 5.0e-3 || gt3 > 5.0e-3 || gt4 > 5.0e-3 || gt5 > 5.0e-3 || gt6 > 5.0e-3 ) { printf(" all values of gti must be < 5.0e-3\n"); psg_abort(1); } /* Phase incrementation for hypercomplex 2D data */ if (phase == 2) { tsadd(t11,1,4); } if (phase2 == 2) tsadd(t10,1,4); /* Set up f1180 tau1 = t1 */ tau1 = d2; tau1 = tau1 - 4.0/PI*pwco90 - POWER_DELAY - WFG_START_DELAY - 4.0e-6 - pwca180 - WFG_STOP_DELAY - POWER_DELAY - 2.0*pwN; if(f1180[A] == 'y') { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.4e-6) tau1 = 4.0e-7; } tau1 = tau1/2.0; /* Set up f2180 tau2 = t2 */ tau2 = d3; if(f2180[A] == 'y') { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.4e-6) tau2 = 4.0e-7; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2 ; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t11,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3 ; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t10,2,4); tsadd(t12,2,4); } /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); obspower(satpwr); /* Set transmitter power for 1H presaturation */ decpower(pwClvl); /* Set Dec1 power for hard 13C pulses */ dec2power(pwNlvl); /* Set Dec2 to high power */ /* Presaturation Period */ if (satmode[A] == 'y') { delay(2.0e-5); rgpulse(d1,zero,2.0e-6,2.0e-6); /* presat with transmitter */ obspower(tpwr); /* Set transmitter power for hard 1H pulses */ delay(2.0e-5); if(fscuba[0] == 'y') { delay(2.2e-2); rgpulse(pw,zero,2.0e-6,0.0); rgpulse(2.0*pw,one,2.0e-6,0.0); rgpulse(pw,zero,2.0e-6,0.0); delay(2.2e-2); } } else { delay(d1); } obspower(tpwr); /* Set transmitter power for hard 1H pulses */ txphase(t1); decphase(zero); dec2phase(zero); delay(1.0e-5); /* Begin Pulses */ status(B); decoffset(dof_me); lk_hold(); lk_sampling_off(); rcvroff(); delay(20.0e-6); /* ensure that magnetization originates on 1H and not 13C */ if(dtt_flg[A] == 'y') { obsoffset(tof_dtt); obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,10.0e-6,0.0); obspower(tpwr); obsoffset(tof); } decrgpulse(pwC,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl0,gt0); delay(gstab); rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */ delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); delay(taua - gt1 -gstab -2.0e-6 ); simpulse(2.0*pw,2.0*pwC,zero,zero,0.0,0.0); txphase(one); delay(taua - gt1 - gstab -2.0e-6); delay(2.0e-6); zgradpulse(gzlvl1,gt1); delay(gstab); rgpulse(pw,one,0.0,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ decoffset(dof); /* jump 13C to 40 ppm */ delay(2.0e-6); zgradpulse(gzlvl2,gt2); delay(gstab); decrgpulse(pwC,t1,4.0e-6,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t2); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t2,0.0,0.0); decphase(zero); /* turn on 2H decoupling */ dec3phase(one); dec3power(dpwr3); dec3rgpulse(1/dmf3,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3prgon(dseq3,1/dmf3,dres3); dec3on(); /* turn on 2H decoupling */ initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - 4.0e-6 - 1/dmf3 - POWER_DELAY - PRG_START_DELAY - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t3); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t3,0.0,0.0); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t4); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t4,0.0,0.0); decpwrf(rfrb_co); decphase(zero); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); /* BS */ decpwrf(rfrb); delay(taub - (2.0/PI)*pwC - POWER_DELAY - 4.0e-6 - WFG_START_DELAY - pwrb_co - WFG_STOP_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep2); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_co); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); decphase(t5); decpwrf(rfca90); delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY - WFG_START_DELAY - (2.0/PI)*pwca90); decshaped_pulse(ca90.name,pwca90,t5,0.0,0.0); decoffset(dofCO); /* 2H decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3rgpulse(1/dmf3,three,4.0e-6,0.0); /* 2H decoupling off */ delay(2.0e-6); zgradpulse(gzlvl5,gt5); delay(gstab); decrgpulse(pwco90,t11,4.0e-6,0.0); if(C_flg[A] == 'n') { decpwrf(rfca180); delay(tau1); decshaped_pulse(ca180.name,pwca180,zero,4.0e-6,0.0); decpwrf(rfca90); decphase(zero); dec2rgpulse(2.0*pwN,zero,0.0,0.0); delay(tau1); } else decrgpulse(2.0*pwco90,zero,4.0e-6,4.0e-6); decrgpulse(pwco90,zero,0.0,0.0); delay(2.0e-6); zgradpulse(gzlvl6,gt6); delay(gstab); /* turn on 2H decoupling */ dec3phase(one); dec3rgpulse(1/dmf3,one,4.0e-6,0.0); dec3phase(zero); dec3unblank(); dec3prgon(dseq3,1/dmf3,dres3); dec3on(); /* turn on 2H decoupling */ decoffset(dof); decpwrf(rfca90); decshaped_pulse(ca90.name,pwca90,t6,4.0e-6,0.0); decpwrf(rfrb_co); decphase(zero); delay(taub - WFG_STOP_DELAY - (2.0/PI)*pwca90 - POWER_DELAY - WFG_START_DELAY - pwrb_co - WFG_STOP_DELAY - 2.0e-6 - WFG_START_DELAY); decshaped_pulse(rb180_co.name,pwrb_co,zero,0.0,0.0); decpwrf(rfrb); initval(1.0,v3); decstepsize(decstep3); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_co); delay(taub - WFG_STOP_DELAY - 4.0e-6 - WFG_START_DELAY - pwcrb180 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6 - (2.0/PI)*pwC); decshaped_pulse(rb180_co.name,pwrb_co,zero,4.0e-6,0.0); /* BS */ decpwrf(4095.0); decrgpulse(pwC,t7,4.0e-6,0.0); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(rfrb); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY - SAPS_DELAY - 2.0e-6 - WFG_START_DELAY); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decshaped_pulse(rb180.name,pwcrb180,zero,2.0e-6,0.0); dcplrphase(zero); decpwrf(rfrb_cg); decphase(zero); delay(BigTC/2.0 - WFG_STOP_DELAY - SAPS_DELAY - POWER_DELAY - WFG_START_DELAY - 0.5*pwrb_cg); decshaped_pulse(rb180_cg.name,pwrb_cg,zero,0.0,0.0); decpwrf(4095.0); decphase(t8); delay(BigTC/2.0 - 0.5*pwrb_cg - WFG_STOP_DELAY - POWER_DELAY); decrgpulse(pwC,t8,0.0,0.0); decphase(zero); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t9); decpwrf(4095.0); delay(BigTC - WFG_STOP_DELAY - POWER_DELAY - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - 1/dmf3); /* 2H decoupling off */ dec3off(); dec3prgoff(); dec3blank(); dec3rgpulse(1/dmf3,three,4.0e-6,0.0); lk_autotrig(); /* 2H decoupling off */ decrgpulse(pwC,t9,0.0,0.0); decphase(zero); delay(tau2); rgpulse(2.0*pw,zero,0.0,0.0); initval(1.0,v3); decstepsize(decstep1); dcplrphase(v3); decpwrf(rfrb); delay(BigTC - 2.0*pw - POWER_DELAY - WFG_START_DELAY); decshaped_pulse(rb180.name,pwcrb180,zero,0.0,0.0); dcplrphase(zero); decphase(t10); decpwrf(4095.0); delay(BigTC - tau2 - WFG_STOP_DELAY - POWER_DELAY - 4.0e-6); decrgpulse(pwC,t10,4.0e-6,0.0); decoffset(dof_me); delay(2.0e-6); zgradpulse(gzlvl3,gt3); delay(gstab); lk_sample(); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,zero,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ rgpulse(pw,zero,4.0e-6,0.0); delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - gt4 - gstab -2.0e-6 - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - 2.0e-6); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ simpulse(2.0*pw,2.0*pwC,zero,zero,2.0e-6,0.0); /* shaped_pulse */ obspower(tpwrs); shaped_pulse("H2Osinc",pwHs,two,2.0e-6,0.0); obspower(tpwr); /* shaped_pulse */ delay(2.0e-6); zgradpulse(gzlvl4,gt4); delay(gstab); delay(taua - POWER_DELAY - 2.0e-6 - WFG_START_DELAY - pwHs - WFG_STOP_DELAY - POWER_DELAY - gt4 - gstab -2.0e-6 - 2.0*POWER_DELAY); decpower(dpwr); /* Set power for decoupling */ dec2power(dpwr2); /* BEGIN ACQUISITION */ lk_sample(); status(C); setreceiver(t12); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES; parameters used in the last half of the */ /* sequence are declared and initialized as 0.0 in bionmr.h, and */ /* reinitialized below */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni = getval("ni"), ni2 = getval("ni2"); double d2_init=0.0, /* used for states tppi in t1 */ d3_init=0.0, /* used for states tppi in t2 */ tau1, /* t1 delay */ BPdpwrspinlock, /* user-defined upper limit for spinlock(Hz) */ BPpwrlimits, /* =0 for no limit, =1 for limit */ t1a, /* time increments for first dimension */ t1b, t1c, tauCH = getval("tauCH"), /* 1/4J delay for CH */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ epsilon = 1.05e-3, /* other delays */ zeta = 3.0e-3, eta = 4.6e-3, theta = 14.0e-3, sheila, /* to transfer J evolution time hyperbolically into tau1 */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ widthHd, pwS1, /* length of square 90 on Cab */ pwS2, /* length of square 180 on Ca */ phi7cal = getval("phi7cal"), /* phase in degrees of the last C13 90 pulse */ spinlock = getval("spinlock"), /* DIPSI-3 spinlock field */ ncyc = getval("ncyc"), /* no. of cycles of DIPSI-3 decoupling on Cab */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), waltzB1 = getval("waltzB1"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("TROSY",TROSY); widthHd=2.069*(waltzB1/sfrq); /* produces same field as std. sequence */ /* LOAD PHASE TABLE */ settable(t3,1,phx); settable(t4,1,phx); settable(t5,2,phi5); settable(t6,2,phi6); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,2,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ P_getreal(GLOBAL,"BPpwrlimits",&BPpwrlimits,1); P_getreal(GLOBAL,"BPdpwrspinlock",&BPdpwrspinlock,1); if (BPpwrlimits > 0.5) { if (spinlock > BPdpwrspinlock) { printf("spinlock too large, reset to user-defined limit (BPdpwrspinlock)"); psg_abort(1); } } kappa = 5.4e-3; lambda = 2.4e-3; if( pwC > 24.0*600.0/sfrq ) { printf("increase pwClvl so that pwC < 24*600/sfrq"); psg_abort(1); } /* get calculated pulse lengths of shaped C13 pulses */ pwS1 = c13pulsepw("cab", "co", "square", 90.0); pwS2 = c13pulsepw("ca", "co", "square", 180.0); /* CHECK VALIDITY OF PARAMETER RANGES */ if ( gt4 > epsilon - 0.6*pwC) { printf(" gt4 is too big. Make gt4 equal to %f or less.\n", (epsilon - 0.6*pwC)); psg_abort(1);} if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 50 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y' ) { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* C13 TIME INCREMENTATION and set up f1180 */ /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Hyperbolic sheila seems superior to original zeta approach */ /* subtract unavoidable delays from tauCH */ tauCH = tauCH - gt0 - 2.0*GRADIENT_DELAY - 5.0e-5; if ((ni-1)/(2.0*sw1) > 2.0*tauCH) { if (tau1 > 2.0*tauCH) sheila = tauCH; else if (tau1 > 0) sheila = 1.0/(1.0/tau1+1.0/tauCH-1.0/(2.0*tauCH)); else sheila = 0.0; } else { if (tau1 > 0) sheila = 1.0/(1.0/tau1 + 1.0/tauCH - 2.0*sw1/((double)(ni-1))); else sheila = 0.0; } t1a = tau1 + tauCH; t1b = tau1 - sheila; t1c = tauCH - sheila; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); set_c13offset("cab"); obsoffset(tof); obspower(tpwr); obspwrf(4095.0); decpower(pwClvl); decpwrf(4095.0); dec2power(pwNlvl); txphase(three); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { gzlvl0=0.0; gzlvl3=0.0; gzlvl4=0.0; /* no gradients during 2H decoupling */ dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pw, three, 0.0, 0.0); /* 1H pulse excitation */ /* point a */ txphase(zero); decphase(zero); zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ delay(5.0e-5); delay(t1a - 2.0*pwC); decrgpulse(2.0*pwC, zero, 0.0, 0.0); delay(t1b); rgpulse(2.0*pw, zero, 0.0, 0.0); zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ txphase(t3); delay(5.0e-5); delay(t1c); /* point b */ rgpulse(pw, t3, 0.0, 0.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); decrgpulse(pwC, zero, 0.0, 0.0); /* point c */ zgradpulse(gzlvl4, gt4); delay(epsilon - gt4 - 0.6*pwC); /* WFG2_START_DELAY */ sim_c13pulse("", "cab", "co", "square", 2.0*pw, 180.0, zero, zero, 2.0e-6, 2.0e-6); delay(WFG2_START_DELAY); zgradpulse(gzlvl4, gt4); delay(epsilon - gt4); /* point d */ decrgpulse(0.5e-3, zero, 0.0, 0.0); c13decouple("cab", "DIPSI3", 2.0*spinlock/dfrq, ncyc); /* PRG_STOP_DELAY */ /* point e */ h1decon("DIPSI2", widthHd, 0.0);/*POWER_DELAY+PWRF_DELAY+PRG_START_DELAY */ decphase(t5); delay(zeta - PRG_STOP_DELAY - PRG_START_DELAY - POWER_DELAY - PWRF_DELAY - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, t5, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, t6, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, t5, 0.0, 0.0); /* Shaka composite */ decrgpulse(pwC*145.5/90.0, t6, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, t5, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, t6, 0.0, 0.0); decphase(zero); delay(zeta - 0.5*10.933*pwC - 0.6*pwS1 - WFG_START_DELAY - 2.0e-6); /* WFG_START_DELAY */ c13pulse("cab", "co", "square", 90.0, zero, 2.0e-6, 0.0); /* point f */ decphase(t5); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { gzlvl0=getval("gzlvl0"); gzlvl3=getval("gzlvl3"); gzlvl4=getval("gzlvl4"); setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } zgradpulse(gzlvl3, gt3); delay(2.0e-4); c13pulse("co", "ca", "sinc", 90.0, t5, 2.0e-6, 0.0); /* point g */ decphase(zero); delay(eta - 2.0*POWER_DELAY - 2.0*PWRF_DELAY); /* 2*POWER_DELAY+2*PWRF_DELAY */ c13pulse("ca", "co", "square", 180.0, zero, 2.0e-6, 0.0); /* pwS2 */ dec2phase(zero); delay(theta - eta - pwS2 - WFG3_START_DELAY); /* WFG3_START_DELAY */ sim3_c13pulse("", "co", "ca", "sinc", "", 0.0, 180.0, 2.0*pwN, zero, zero, zero, 2.0e-6, 2.0e-6); initval(phi7cal, v7); decstepsize(1.0); dcplrphase(v7); /* SAPS_DELAY */ dec2phase(t8); delay(theta - SAPS_DELAY); /* point h */ nh_evol_se_train("co", "ca"); /* common part of sequence in bionmr.h */ if (dm3[B]=='y') lk_sample(); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ shape offC10P; char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mixpat[MAXSTR], /* Spinlock waveform */ H2Opurge[MAXSTR], stCdec[MAXSTR], /* calls STUD+ waveforms from shapelib */ STUD[MAXSTR]; /* apply automatically calculated STUD decoupling */ int ncyc, t1_counter, /* used for states tppi in t1 */ first_FID, t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ ni = getval("ni"), ni2 = getval("ni2"), stdmf = getval("dmf80"), /* dmf for 80 ppm of STUD decoupling */ rf80 = getval("rf80"), /* rf in Hz for 80ppm STUD+ */ taua = getval("taua"), /* time delays for CH coupling evolution */ taub = getval("taub"), tauc = getval("tauc"), /* string parameter stCdec calls stud decoupling waveform from your shapelib. */ studlvl, /* coarse power for STUD+ decoupling */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* the following pulse length for the SLP pulse is automatically calculated */ /* by the macro "hcch_tocsyP". The SLP pulse shape,"offC10P" is created */ /* by Pbox "on-the-fly" */ pwC10, /* 180 degree selective sinc pulse on CO(174ppm) */ rf7, /* fine power for the pwC10 ("offC10P") pulse */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ mixpwr = getval("mixpwr"), mixpwrf = getval("mixpwrf"), mixdmf = getval("mixdmf"), pwmix = getval("pwmix"), mixres = getval("mixres"), pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"); if ((getval("arraydim") < 1.5) || (ix == 1)) first_FID = 1; else first_FID = 0; getstr("mixpat", mixpat); getstr("f1180", f1180); getstr("f2180", f2180); getstr("H2Opurge", H2Opurge); getstr("STUD", STUD); if (first_FID) /* calculate the shape only once */ { rf7 = 1.0e-6 * 80.5 * 600.0 / sfrq; offC10P = pbox_make("offC10P", "sinc180", rf7, 139.0 * dfrq, pwClvl, compC * pwC); } else offC10P = getRsh("offC10P"); pwC10 = offC10P.pw; rf7 = offC10P.pwrf; /* 80 ppm STUD+ decoupling */ strcpy(stCdec, "stCdec80"); studlvl = pwClvl + 20.0 * log10(compC * pwC * 4.0 * rf80); studlvl = (int) (studlvl + 0.5); /* LOAD PHASE TABLE */ settable(t3, 2, phi3); settable(t5, 4, phi5); settable(t11, 4, rec); /* INITIALIZE VARIABLES */ if (dpwrf < 4095) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } if (pwC > (25.0e-6 * 600.0 / sfrq)) { printf("Increase pwClvl so that pwC < 25*600/sfrq"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* CHECK VALIDITY OF PARAMETER RANGES */ if ((dm[A] == 'y' || dm[B] == 'y')) { printf("incorrect dec1 decoupler flags! Should be 'nny' or 'nnn' "); psg_abort(1); } if ((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect dec2 decoupler flags! Should be 'nnn' "); psg_abort(1); } if ((dm3[A] == 'y' || dm3[C] == 'y')) { printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); } if (dpwr > 52) { printf("don't fry the probe, DPWR too large! "); psg_abort(1); } if (pw > 80.0e-6) { printf("dont fry the probe, pw too high ! "); psg_abort(1); } if (pwN > 100.0e-6) { printf("dont fry the probe, pwN too high ! "); psg_abort(1); } /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3, 1, 4); if (phase2 == 2) tsadd(t5, 1, 4); /* C13 TIME INCREMENTATION and set up f1180 */ /* Set up f1180 */ tau1 = d2; if (f1180[A] == 'y') { tau1 += (1.0 / (2.0 * sw1)); if (tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1 / 2.0; /* Set up f2180 */ tau2 = d3; if (f2180[A] == 'y') { tau2 += (1.0 / (2.0 * sw2)); if (tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2 / 2.0; ncyc = getval("ncyc"); if (ix < 2) printf("ncyc = %d, mix = %.6f\n", ncyc, (double) ncyc * pwmix); /* Calculate modifications to phases for States-TPPI acquisition */ if (ix == 1) d2_init = d2; t1_counter = (int) ((d2 - d2_init) * sw1 + 0.5); if (t1_counter % 2) { tsadd(t3, 2, 4); tsadd(t11, 2, 4); } if (ix == 1) d3_init = d3; t2_counter = (int) ((d3 - d3_init) * sw2 + 0.5); if (t2_counter % 2) { tsadd(t5, 2, 4); tsadd(t11, 2, 4); } /* BEGIN PULSE SEQUENCE */ status(A); if (dm3[B] == 'y') lk_sample(); if ((ni / sw1 - d2) > 0) delay(ni / sw1 - d2); /*decreases as t1 increases for const.heating */ if ((ni2 / sw2 - d3) > 0) delay(ni2 / sw2 - d3); /*decreases as t2 increases for const.heating */ delay(d1); if (dm3[B] == 'y') { lk_hold(); lk_sampling_off(); } /*freezes z0 correction, stops lock pulsing */ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(t3); delay(1.0e-5); decrgpulse(pwC, zero, 0.0, 0.0); /*destroy C13 magnetization */ zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); decrgpulse(pwC, one, 0.0, 0.0); zgradpulse(0.7 * gzlvl0, 0.5e-3); delay(5.0e-4); if (dm3[B] == 'y') { dec3rgpulse(1 / dmf3, one, 10.0e-6, 2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pw, t3, 0.0, 0.0); /* 1H pulse excitation */ zgradpulse(gzlvl0, gt0); /* 2.0*GRADIENT_DELAY */ decphase(zero); delay(taua + tau1 - gt0 - 2.0 * GRADIENT_DELAY - 2.0 * pwC); decrgpulse(2.0 * pwC, zero, 0.0, 0.0); txphase(zero); delay(tau1); rgpulse(2.0 * pw, zero, 0.0, 0.0); zgradpulse(gzlvl0, gt0); txphase(one); decphase(t5); delay(taua - gt0); rgpulse(pw, one, 0.0, 0.0); zgradpulse(gzlvl3, gt3); delay(2.0e-4); decrgpulse(pwC, t5, 0.0, 0.0); delay(tau2); dec2rgpulse(2.0 * pwN, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ decphase(zero); decpwrf(rf7); delay(taub - 2.0 * pwN - gt4 - 2.0 * GRADIENT_DELAY); decshaped_pulse("offC10P", pwC10, zero, 0.0, 0.0); txphase(zero); decpwrf(rf0); delay(taub - 2.0 * pw); rgpulse(2.0 * pw, zero, 0.0, 0.0); delay(tau2); decrgpulse(2.0 * pwC, zero, 0.0, 0.0); decpwrf(rf7); delay(taub); decshaped_pulse("offC10P", pwC10, zero, 0.0, 0.0); zgradpulse(gzlvl4, gt4); /* 2.0*GRADIENT_DELAY */ decpwrf(rf0); delay(taub - gt4 - 2.0 * GRADIENT_DELAY); decrgpulse(pwC, one, 0.0, 0.0); decpower(mixpwr); decpwrf(mixpwrf); if (ncyc > 0) decspinlock(mixpat, 1.0 / mixdmf, mixres, one, ncyc); decpower(pwClvl); decpwrf(rf0); if (H2Opurge[A] == 'y') { obspwrf(1000.0); rgpulse(900 * pw, zero, 0.0, 0.0); rgpulse(500 * pw, one, 0.0, 0.0); obspwrf(4095.0); } zgradpulse(gzlvl7, gt7); delay(50.0e-6); rgpulse(pw, zero, 0.0, 0.0); zgradpulse(gzlvl7, gt7 / 1.6); decrgpulse(pwC, three, 100.0e-6, 0.0); zgradpulse(gzlvl5, gt5); decphase(zero); delay(tauc - gt5); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); delay(tauc - gt5); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl3, gt3); if (dm3[B] == 'y') { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1 / dmf3, three, 2.0e-6, 2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } delay(2.0e-4); rgpulse(pw, zero, 0.0, 0.0); zgradpulse(gzlvl6, gt5); delay(taua - gt5 + rof1); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, rof1); zgradpulse(gzlvl6, gt5); delay(taua - gt5 - 2.0 * pwC - 2.0 * POWER_DELAY); decrgpulse(pwC, zero, 0.0, 0.0); decrgpulse(pwC, one, 0.0, 0.0); if (STUD[A] == 'y') decpower(studlvl); else decpower(dpwr); dec2power(dpwr2); rgpulse(pw, zero, 0.0, rof2); rcvron(); if (dm3[B] == 'y') lk_sample(); setreceiver(t11); if ((STUD[A] == 'y') && (dm[C] == 'y')) { decunblank(); decon(); decprgon(stCdec,1/stdmf, 1.0); startacq(alfa); acquire(np, 1.0/sw); decprgoff(); decoff(); decblank(); if (dm2[C] == 'y') { setstatus(DEC2ch, TRUE, dmm2[C], FALSE, dmf2); } } else status(C); }
pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* Flag to use magic-angle gradients */ H2O_flg[MAXSTR], stCdec[MAXSTR], /* calls STUD+ waveforms from shapelib */ STUD[MAXSTR]; /* apply automatically calculated STUD decoupling */ int t1_counter, /* used for states tppi in t1 */ t2_counter; /* used for states tppi in t2 */ double tau1, /* t1 delay */ tau2, /* t2 delay */ delta1, delta2, TC = getval("TC"), /* 3.5 ms */ ni = getval("ni"), ni2 = getval("ni2"), stdmf = getval("dmf80"), /* dmf for 80 ppm of STUD decoupling */ rf80 = getval("rf80"), /* rf in Hz for 80ppm STUD+ */ taua = getval("taua"), /* time delays for CH coupling evolution */ taub = getval("taub"), tauc = getval("tauc"), /* string parameter stCdec calls stud decoupling waveform from your shapelib. */ studlvl, /* coarse power for STUD+ decoupling */ bw, ofs, ppm, /* temporary Pbox parameters */ pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ /* the following pulse length for the SLP pulse is automatically calculated */ /* by the macro "hcch_cosy". The SLP pulse shape,"offC10" is called */ /* directly from your shapelib. */ pwC10, /* 180 degree selective sinc pulse on CO(174ppm) */ rf7, /* fine power for the pwC10 ("offC10") pulse */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwmax, pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), gt2 = getval("gt2"), gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gt8 = getval("gt8"), gt9 = getval("gt9"), gzcal = getval("gzcal"), gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl7 = getval("gzlvl7"), gzlvl8 = getval("gzlvl8"), gzlvl9 = getval("gzlvl9"); getstr("f1180", f1180); getstr("f2180", f2180); getstr("H2O_flg", H2O_flg); getstr("STUD", STUD); /* 80 ppm STUD+ decoupling */ strcpy(stCdec, "stCdec80"); studlvl = pwClvl + 20.0 * log10(compC * pwC * 4.0 * rf80); studlvl = (int) (studlvl + 0.5); /* INITIALIZE VARIABLES */ if (dpwrf < 4095) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } setautocal(); /* activate auto-calibration flags */ if (autocal[0] == 'n') { /* "offC10": 180 degree one-lobe sinc pulse on CO, null at Ca 139ppm away */ pwC10 = getval("pwC10"); rf7 = (compC * 4095.0 * pwC * 2.0 * 1.65) / pwC10; /* needs 1.65 times more */ rf7 = (int) (rf7 + 0.5); /* power than a square pulse */ if (pwC > (24.0e-6 * 600.0 / sfrq)) { printf("Increase pwClvl so that pwC < 24*600/sfrq"); psg_abort(1); } } else /* if autocal = 'y'(yes), 'q'(quiet), r(read), or 's'(semi) */ { if (FIRST_FID) /* call Pbox */ { ppm = getval("dfrq"); bw = 118.0 * ppm; ofs = 139.0 * ppm; offC10 = pbox_make("offC10", "sinc180n", bw, ofs, compC * pwC, pwClvl); if (dm3[B] == 'y') H2ofs = 3.2; ofs_check(H1ofs, C13ofs, N15ofs, H2ofs); } rf7 = offC10.pwrf; pwC10 = offC10.pw; } if ((dm3[A] == 'y' || dm3[C] == 'y')) { printf("incorrect dec1 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1); } getstr("f1180", f1180); getstr("f2180", f2180); getstr("mag_flg", mag_flg); getstr("H2O_flg", H2O_flg); pwmax = 2.0 * pwN; if (pwC10 > pwmax) pwmax = pwC10; /* check validity of parameter range */ if ((dm[A] == 'y' || dm[B] == 'y')) { printf("incorrect Dec1 decoupler flags! "); psg_abort(1); } if ((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y')) { printf("incorrect Dec2 decoupler flags! Should be nnn "); psg_abort(1); } if (dpwr > 50) { printf("don't fry the probe, dpwr too large! "); psg_abort(1); } if (dpwr2 > 50) { printf("don't fry the probe, dpwr2 too large! "); psg_abort(1); } /* LOAD VARIABLES */ settable(t1, 2, phi1); settable(t2, 4, phi2); settable(t3, 16, phi3); settable(t4, 2, phi4); settable(t11, 8, rec); /* INITIALIZE VARIABLES */ /* Phase incrementation for hypercomplex data */ if (phase1 == 2) /* Hypercomplex in t1 */ { tsadd(t1, 1, 4); } if (phase2 == 2) { tsadd(t2, 1, 4); } /* calculate modification to phases based on current t1 values to achieve States-TPPI acquisition */ if (ix == 1) d2_init = d2; t1_counter = (int) ((d2 - d2_init) * sw1 + 0.5); if (t1_counter % 2) { tsadd(t1, 2, 4); tsadd(t11, 2, 4); } /* calculate modification to phases based on current t2 values to achieve States-TPPI acquisition */ if (ix == 1) d3_init = d3; t2_counter = (int) ((d3 - d3_init) * sw2 + 0.5); if (t2_counter % 2) { tsadd(t2, 2, 4); tsadd(t11, 2, 4); } /* set up so that get (90, -180) phase corrects in F1 if f1180 flag is y */ tau1 = d2; if (f1180[A] == 'y') { tau1 += (1.0 / (2.0 * sw1)); } if (tau1 < 1.0e-6) tau1 = 0.0; tau1 = tau1 / 2.0; /* set up so that get (90, -180) phase corrects in F2 if f2180 flag is y */ tau2 = d3; if (f2180[A] == 'y') { tau2 += (1.0 / (2.0 * sw2)); } if (tau2 < 1.0e-6) tau2 = 0.0; tau2 = tau2 / 2.0; if (ni > 1) delta1 = (double) (t1_counter * (taua - gt2 - 0.2e-3)) / ((double) (ni - 1)); else delta1 = 0.0; if (ni2 > 1) delta2 = (double) (t2_counter * (TC - 0.6e-3)) / ((double) (ni2 - 1)); else delta2 = 0.0; initval(7.0, v1); obsstepsize(45.0); /* BEGIN ACTUAL PULSE SEQUENCE */ status(A); delay(10.0e-6); obspower(tpwr); decpower(pwClvl); decpwrf(4095.0); dec2power(pwNlvl); decphase(zero); dec2phase(zero); xmtrphase(v1); txphase(t1); if (dm3[B] == 'y') lk_sample(); delay(d1); if (dm3[B] == 'y') { lk_hold(); lk_sampling_off(); } /*freezes z0 correction, stops lock pulsing */ rcvroff(); if (gt1 > 0.2e-6) { decrgpulse(pwC, zero, rof1, rof1); delay(2.0e-6); zgradpulse(gzlvl1, gt1); delay(1.0e-3); } if (dm3[B] == 'y') /* begins optional 2H decoupling */ { dec3rgpulse(1 / dmf3, one, 10.0e-6, 2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } status(B); rgpulse(pw, t1, 1.0e-4, 2.0e-6); xmtrphase(zero); zgradpulse(gzlvl2, gt2); delay(taua - gt2 - 2.0 * pwC - 2.0e-6 - SAPS_DELAY); txphase(zero); delay(tau1); decrgpulse(2.0 * pwC, zero, 0.0, 0.0); delay(tau1 - delta1); rgpulse(2.0 * pw, zero, 0.0, 2.0e-6); zgradpulse(gzlvl2, gt2); txphase(one); delay(taua - delta1 - gt2 - 2.0e-6); rgpulse(pw, one, 0.0, 2.0e-6); if (mag_flg[A] == 'y') { magradpulse(gzcal * gzlvl3, gt3); } else { zgradpulse(gzlvl3, gt3); } decphase(t2); txphase(zero); delay(200.0e-6); decrgpulse(pwC, t2, 2.0e-6, 0.0); decphase(zero); decpwrf(rf7); delay(tau2); sim3shaped_pulse("", "offC10", "", 0.0, pwC10, 2.0 * pwN, zero, zero, zero, 0.0, 0.0); delay(taub - pwmax - WFG_START_DELAY - WFG_STOP_DELAY - POWER_DELAY); rgpulse(2.0 * pw, zero, 0.0, 0.0); decphase(t3); decpwrf(4095.0); delay(TC - taub + tau2 - delta2 - 2.0 * pw - POWER_DELAY); decrgpulse(2.0 * pwC, t3, 0.0, 0.0); decphase(t4); delay(TC - delta2 - POWER_DELAY); decrgpulse(pwC, t4, 0.0, 2.0e-6); zgradpulse(gzlvl4, gt4); txphase(zero); decphase(zero); delay(tauc - gt4); decrgpulse(2.0 * pwC, zero, 0.0, 2.0e-6); if (H2O_flg[A] == 'y') { delay(tauc - gt4 - 500.0e-6 - POWER_DELAY); zgradpulse(gzlvl4, gt4); decphase(one); obspwrf(1000.0); delay(500.0e-6); decrgpulse(pwC, one, 0.0, 1.0e-6); rgpulse(900 * pw, one, rof1, 0.0); txphase(zero); rgpulse(500 * pw, zero, 2.0e-6, 2.0e-6); obspwrf(4095.0); if (mag_flg[A] == 'y') { magradpulse(gzcal * gzlvl5, gt5); } else { zgradpulse(gzlvl5, gt5); } decphase(one); delay(200.0e-6); simpulse(pw, pwC, zero, one, 0.0, 2.0e-6); zgradpulse(gzlvl7, gt7); decphase(zero); delay(taub - gt7); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, 2.0e-6); zgradpulse(gzlvl7, gt7); delay(taub - gt7); } else { delay(tauc - taub - 2.0 * pw - POWER_DELAY); rgpulse(2.0 * pw, zero, 0.0, 2.0e-6); zgradpulse(gzlvl4, gt4); delay(taub - gt4 - 2.0e-6); } decrgpulse(pwC, zero, 0.0, 2.0e-6); if (mag_flg[A] == 'y') { magradpulse(gzcal * gzlvl8, gt8); } else { zgradpulse(gzlvl8, gt8); } txphase(zero); delay(200.0e-6); if (dm3[B] == 'y') /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1 / dmf3, three, 2.0e-6, 2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } rgpulse(pw, zero, 0.0, 2.0e-6); if (mag_flg[A] == 'y') { magradpulse(gzcal * gzlvl9, gt9); } else { zgradpulse(gzlvl9, gt9); } delay(taua - gt9); simpulse(2.0 * pw, 2.0 * pwC, zero, zero, 0.0, 2.0e-6); if (mag_flg[A] == 'y') { magradpulse(gzcal * gzlvl9, gt9); } else { zgradpulse(gzlvl9, gt9); } if (STUD[A] == 'y') decpower(studlvl); else decpower(dpwr); dec2power(dpwr2); delay(taua - gt9 - rof1 - 0.5 * pw - 2.0 * POWER_DELAY); rgpulse(pw, zero, rof1, rof2); rcvron(); if (dm3[B] == 'y') lk_sample(); setreceiver(t11); if ((STUD[A] == 'y') && (dm[C] == 'y')) { decunblank(); decon(); decprgon(stCdec,1/stdmf, 1.0); startacq(alfa); acquire(np, 1.0/sw); decprgoff(); decoff(); decblank(); if (dm2[C] == 'y') { setstatus(DEC2ch, TRUE, dmm2[C], FALSE, dmf2); } } else status(C); setreceiver(t11); }