Exemple #1
0
 /// Beta function. Beta(x,y)=Beta(y,x)=integral(0 to 1) {t^(x-1)*(1-t)^(y-1) dt}.
 /// Also, Beta(x,y) = gamma(x)*gamma(y)/gamma(x+y).
 /// @param x  first argument
 /// @param y  second argument
 /// @return          beta(x,y)
 /// @throw           if either input argument is <= 0
 double beta(const double& x, const double& y) throw(Exception)
 {
    try {
       return ::exp(lnGamma(x) + lnGamma(y) - lnGamma(x+y));
    }
    catch(Exception& e) { GPSTK_RETHROW(e); }
 }
Exemple #2
0
   /// Incomplete beta function I_x(a,b), 0<=x<=1, a,b>0
   /// I sub x (a,b) = (1/beta(a,b)) integral (0 to x) { t^(a-1)*(1-t)^(b-1)dt }
   /// @param double x  input value, 0 <= x <= 1
   /// @param double a  input value, a > 0
   /// @param double b  input value, b > 0
   /// @return          Incomplete beta function I_x(a,b)
   double incompleteBeta(const double& x, const double& a, const double& b)
      throw(Exception)
   {
      if(x < 0 || x > 1) {
         Exception e("Invalid x argument in incompleteBeta()");
         GPSTK_THROW(e);
      }
      if(a <= 0 || b <= 0) {
         Exception e("Non-positive argument in incompleteBeta()");
         GPSTK_THROW(e);
      }

      if(x == 0) return 0.0;
      if(x == 1) return 1.0;

      try {
         double factor = ::exp(lnGamma(a+b) - lnGamma(a) - lnGamma(b)
                                    + a * ::log(x) + b * ::log(1.0-x));
         if(x < (a+1.0)/(a+b+2.0))
            return factor*cfIBeta(x,a,b)/a;
         else
            return 1.0-factor*cfIBeta(1.0-x,b,a)/b;
      }
      catch(Exception& e) {
         e.addText("Called by incompleteBeta()");
         GPSTK_RETHROW(e);
      }
   }
Exemple #3
0
 /// Beta function. Beta(x,y)=Beta(y,x)=integral(0 to 1) {t^(x-1)*(1-t)^(y-1) dt}.
 /// Also, Beta(x,y) = gamma(x)*gamma(y)/gamma(x+y).
 /// @param double x  first argument
 /// @param double y  second argument
 /// @return          beta(x,y)
 /// @throw           if either input argument is <= 0
 double beta(const double& x, const double& y) throw(Exception)
 {
    try {
       return ::exp(lnGamma(x) + lnGamma(y) - lnGamma(x+y));
    }
    catch(Exception& e) {
       e.addText("Called by beta(x,y)");
       GPSTK_RETHROW(e);
    }
 }
Exemple #4
0
 /// Gamma(x) the gamma function for positive argument.
 /// Gamma(x) = integral(0 to inf) { t^(x-1) exp(-t) dt }
 /// @param    x argument, x must be > 0
 /// @return   double Gamma(x), the gamma function of x.
 /// @throw    if the input argument is <= 0
 double Gamma(const double& x) throw(Exception)
 {
    try {
       return ::exp(lnGamma(double(x)));
    }
    catch(Exception& e) { GPSTK_RETHROW(e); }
 }
Exemple #5
0
 double lnFactorial(const int x) {
   static const int maxTableSize = 128;
   static double lut[maxTableSize]; // static arrays are automatically 
                                    // initialized with zero    
   if (x < 0) {
     return NaN;
   }
   if (x <= 1) {
     return 0.0;
   }
   if (x < maxTableSize) {
     return (lut[static_cast<int>(x)] != 0) ? lut[static_cast<int>(x)] :
       (lut[static_cast<int>(x)] = lnGamma(double(static_cast<int>(x)+1)));
   }
   return lnGamma(double(static_cast<int>(x)+1));
 }
Exemple #6
0
 /// ln of Factorial of an integer, returned as a double.
 /// @param    n argument, n must be >= 0
 /// @return   ln(n!) or natural log of factorial(n), as a double
 /// @throw    if the input argument is < 0
 double lnFactorial(const int& n) throw(Exception)
 {
    try {
       if(n < 0) GPSTK_THROW(Exception("Negative argument"));
       if(n <= 1) return 0.0;
       return lnGamma(double(n+1));
    }
    catch(Exception& e) { GPSTK_RETHROW(e); }
 }
Exemple #7
0
 /// ln of Factorial of an integer, returned as a double.
 /// @param n  int argument, n must be >= 0
 /// @return   ln(n!) or natural log of factorial(n), as a double
 /// @throw    if the input argument is < 0
 double lnFactorial(const int& n) throw(Exception)
 {
    if(n < 0) {
       Exception e("Negative argument in lnFactorial()");
       GPSTK_THROW(e);
    }
    if(n <= 1) return 0.0;
    return lnGamma(double(n+1));
 }
Exemple #8
0
  double factorial(const int x) {
    static const int maxLut = 34;
    static const double lut[] = {1.0,        // 0!
                                 1.0,        // 1!
                                 2.0,        // 2!
                                 6.0,        // 3!
                                 24.0,       // 4!
                                 120.0,      // 5!
                                 720.0,      // 6!
                                 5040.0,     // 7!
                                 40320.0,    // 8!
                                 362880.0,   // 9!
                                 3628800.0,  // 10!
                                 39916800.0, // 11!
                                 479001600.0, // 12!
                                 6227020800.0, // 13!
                                 87178291200.0, // 14!
                                 1307674368000.0, // 15!
                                 20922789888000.0, // 16!
                                 355687428096000.0, // 17!
                                 6402373705728000.0, // 18!
                                 121645100408832000.0, // 19!
                                 2432902008176640000.0, // 20!
                                 51090942171709440000.0, // 21!
                                 1124000727777607680000.0, // 22!
                                 25852016738884976640000.0, // 23!
                                 620448401733239439360000.0, // 24!
                                 15511210043330985984000000.0, // 25!
                                 403291461126605635584000000.0, // 26!
                                 10888869450418352160768000000.0, // 27!
                                 304888344611713860501504000000.0, // 28!
                                 8841761993739701954543616000000.0, // 29!
                                 265252859812191058636308480000000.0, // 30!
                                 8222838654177922817725562880000000.0, // 31!
                                 263130836933693530167218012160000000.0, // 32!
                                 8683317618811886495518194401280000000.0 // 33!
    };

    if (x < 0) {
      return NaN;
    }
    if (x>=maxLut) {
      return exp(lnGamma(static_cast<double>(x+1)));
    }
    return lut[static_cast<int>(x)];
  }
Exemple #9
0
   /// Factorial of an integer, returned as a double.
   /// @param n  int argument, n must be >= 0
   /// @return   n! or factorial(n), as a double
   /// @throw    if the input argument is < 0
   double factorial(const int& n) throw(Exception)
   {
      if(n < 0) {
         Exception e("Negative argument in factorial()");
         GPSTK_THROW(e);
      }

      if(n > 32) return ::exp(lnGamma(double(n+1)));

      static double store[33] = { 1.0, 1.0, 2.0, 6.0, 24.0, 120.0 };
      static int nstore=5;

      while(nstore < n) {
         int i = nstore++;
         store[nstore] = store[i] * nstore;
      }

      return store[n];
   }