/** * Generate the depth /stencil test code. */ static void generate_depth_stencil(LLVMBuilderRef builder, const struct lp_fragment_shader_variant_key *key, struct lp_type src_type, struct lp_build_mask_context *mask, LLVMValueRef stencil_refs[2], LLVMValueRef src, LLVMValueRef dst_ptr, LLVMValueRef facing, LLVMValueRef counter) { const struct util_format_description *format_desc; struct lp_type dst_type; if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled) return; format_desc = util_format_description(key->zsbuf_format); assert(format_desc); /* * Depths are expected to be between 0 and 1, even if they are stored in * floats. Setting these bits here will ensure that the lp_build_conv() call * below won't try to unnecessarily clamp the incoming values. */ if(src_type.floating) { src_type.sign = FALSE; src_type.norm = TRUE; } else { assert(!src_type.sign); assert(src_type.norm); } /* Pick the depth type. */ dst_type = lp_depth_type(format_desc, src_type.width*src_type.length); /* FIXME: Cope with a depth test type with a different bit width. */ assert(dst_type.width == src_type.width); assert(dst_type.length == src_type.length); /* Convert fragment Z from float to integer */ lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1); dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(dst_type), 0), ""); lp_build_depth_stencil_test(builder, &key->depth, key->stencil, dst_type, format_desc, mask, stencil_refs, src, dst_ptr, facing, counter); }
/** * @brief lp_build_fetch_rgba_aos_array * * \param format_desc describes format of the image we're fetching from * \param dst_type output type * \param base_ptr address of the pixel block (or the texel if uncompressed) * \param offset ptr offset */ LLVMValueRef lp_build_fetch_rgba_aos_array(struct gallivm_state *gallivm, const struct util_format_description *format_desc, struct lp_type dst_type, LLVMValueRef base_ptr, LLVMValueRef offset) { struct lp_build_context bld; LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef src_elem_type, src_vec_type; LLVMValueRef ptr, res = NULL; struct lp_type src_type; memset(&src_type, 0, sizeof src_type); src_type.floating = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FLOAT; src_type.fixed = format_desc->channel[0].type == UTIL_FORMAT_TYPE_FIXED; src_type.sign = format_desc->channel[0].type != UTIL_FORMAT_TYPE_UNSIGNED; src_type.norm = format_desc->channel[0].normalized; src_type.width = format_desc->channel[0].size; src_type.length = format_desc->nr_channels; assert(src_type.length <= dst_type.length); src_elem_type = lp_build_elem_type(gallivm, src_type); src_vec_type = lp_build_vec_type(gallivm, src_type); /* Read whole vector from memory, unaligned */ if (!res) { ptr = LLVMBuildGEP(builder, base_ptr, &offset, 1, ""); ptr = LLVMBuildPointerCast(builder, ptr, LLVMPointerType(src_vec_type, 0), ""); res = LLVMBuildLoad(builder, ptr, ""); lp_set_load_alignment(res, src_type.width / 8); } /* Truncate doubles to float */ if (src_type.floating && src_type.width == 64) { src_type.width = 32; src_vec_type = lp_build_vec_type(gallivm, src_type); res = LLVMBuildFPTrunc(builder, res, src_vec_type, ""); } /* Expand to correct length */ if (src_type.length < dst_type.length) { res = lp_build_pad_vector(gallivm, res, src_type, dst_type.length); src_type.length = dst_type.length; } /* Convert to correct format */ lp_build_conv(gallivm, src_type, dst_type, &res, 1, &res, 1); /* Swizzle it */ lp_build_context_init(&bld, gallivm, dst_type); return lp_build_format_swizzle_aos(format_desc, &bld, res); }
static LLVMValueRef add_conv_test(struct gallivm_state *gallivm, struct lp_type src_type, unsigned num_srcs, struct lp_type dst_type, unsigned num_dsts) { LLVMModuleRef module = gallivm->module; LLVMContextRef context = gallivm->context; LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef args[2]; LLVMValueRef func; LLVMValueRef src_ptr; LLVMValueRef dst_ptr; LLVMBasicBlockRef block; LLVMValueRef src[LP_MAX_VECTOR_LENGTH]; LLVMValueRef dst[LP_MAX_VECTOR_LENGTH]; unsigned i; args[0] = LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0); args[1] = LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0); func = LLVMAddFunction(module, "test", LLVMFunctionType(LLVMVoidTypeInContext(context), args, 2, 0)); LLVMSetFunctionCallConv(func, LLVMCCallConv); src_ptr = LLVMGetParam(func, 0); dst_ptr = LLVMGetParam(func, 1); block = LLVMAppendBasicBlockInContext(context, func, "entry"); LLVMPositionBuilderAtEnd(builder, block); for(i = 0; i < num_srcs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0); LLVMValueRef ptr = LLVMBuildGEP(builder, src_ptr, &index, 1, ""); src[i] = LLVMBuildLoad(builder, ptr, ""); } lp_build_conv(gallivm, src_type, dst_type, src, num_srcs, dst, num_dsts); for(i = 0; i < num_dsts; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32TypeInContext(context), i, 0); LLVMValueRef ptr = LLVMBuildGEP(builder, dst_ptr, &index, 1, ""); LLVMBuildStore(builder, dst[i], ptr); } LLVMBuildRetVoid(builder);; gallivm_verify_function(gallivm, func); return func; }
/** * Generate the depth test. */ static void generate_depth(LLVMBuilderRef builder, const struct lp_fragment_shader_variant_key *key, struct lp_type src_type, struct lp_build_mask_context *mask, LLVMValueRef src, LLVMValueRef dst_ptr) { const struct util_format_description *format_desc; struct lp_type dst_type; if(!key->depth.enabled) return; format_desc = util_format_description(key->zsbuf_format); assert(format_desc); /* Pick the depth type. */ dst_type = lp_depth_type(format_desc, src_type.width*src_type.length); /* FIXME: Cope with a depth test type with a different bit width. */ assert(dst_type.width == src_type.width); assert(dst_type.length == src_type.length); #if 1 src = lp_build_clamped_float_to_unsigned_norm(builder, src_type, dst_type.width, src); #else lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1); #endif lp_build_depth_test(builder, &key->depth, dst_type, format_desc, mask, src, dst_ptr); }
/** * Fetch a pixel into a 4 float AoS. * * \param format_desc describes format of the image we're fetching from * \param ptr address of the pixel block (or the texel if uncompressed) * \param i, j the sub-block pixel coordinates. For non-compressed formats * these will always be (0, 0). * \return a 4 element vector with the pixel's RGBA values. */ LLVMValueRef lp_build_fetch_rgba_aos(struct gallivm_state *gallivm, const struct util_format_description *format_desc, struct lp_type type, LLVMValueRef base_ptr, LLVMValueRef offset, LLVMValueRef i, LLVMValueRef j) { LLVMBuilderRef builder = gallivm->builder; unsigned num_pixels = type.length / 4; struct lp_build_context bld; assert(type.length <= LP_MAX_VECTOR_LENGTH); assert(type.length % 4 == 0); lp_build_context_init(&bld, gallivm, type); /* * Trivial case * * The format matches the type (apart of a swizzle) so no need for * scaling or converting. */ if (format_matches_type(format_desc, type) && format_desc->block.bits <= type.width * 4 && util_is_power_of_two(format_desc->block.bits)) { LLVMValueRef packed; /* * The format matches the type (apart of a swizzle) so no need for * scaling or converting. */ packed = lp_build_gather(gallivm, type.length/4, format_desc->block.bits, type.width*4, base_ptr, offset); assert(format_desc->block.bits <= type.width * type.length); packed = LLVMBuildBitCast(gallivm->builder, packed, lp_build_vec_type(gallivm, type), ""); return lp_build_format_swizzle_aos(format_desc, &bld, packed); } /* * Bit arithmetic */ if (format_desc->layout == UTIL_FORMAT_LAYOUT_PLAIN && (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) && format_desc->block.width == 1 && format_desc->block.height == 1 && util_is_power_of_two(format_desc->block.bits) && format_desc->block.bits <= 32 && format_desc->is_bitmask && !format_desc->is_mixed && (format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED || format_desc->channel[1].type == UTIL_FORMAT_TYPE_UNSIGNED)) { LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4]; LLVMValueRef res; unsigned k; /* * Unpack a pixel at a time into a <4 x float> RGBA vector */ for (k = 0; k < num_pixels; ++k) { LLVMValueRef packed; packed = lp_build_gather_elem(gallivm, num_pixels, format_desc->block.bits, 32, base_ptr, offset, k); tmps[k] = lp_build_unpack_arith_rgba_aos(gallivm, format_desc, packed); } /* * Type conversion. * * TODO: We could avoid floating conversion for integer to * integer conversions. */ if (gallivm_debug & GALLIVM_DEBUG_PERF && !type.floating) { debug_printf("%s: unpacking %s with floating point\n", __FUNCTION__, format_desc->short_name); } lp_build_conv(gallivm, lp_float32_vec4_type(), type, tmps, num_pixels, &res, 1); return lp_build_format_swizzle_aos(format_desc, &bld, res); } /* * YUV / subsampled formats */ if (format_desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) { struct lp_type tmp_type; LLVMValueRef tmp; memset(&tmp_type, 0, sizeof tmp_type); tmp_type.width = 8; tmp_type.length = num_pixels * 4; tmp_type.norm = TRUE; tmp = lp_build_fetch_subsampled_rgba_aos(gallivm, format_desc, num_pixels, base_ptr, offset, i, j); lp_build_conv(gallivm, tmp_type, type, &tmp, 1, &tmp, 1); return tmp; } /* * Fallback to util_format_description::fetch_rgba_8unorm(). */ if (format_desc->fetch_rgba_8unorm && !type.floating && type.width == 8 && !type.sign && type.norm) { /* * Fallback to calling util_format_description::fetch_rgba_8unorm. * * This is definitely not the most efficient way of fetching pixels, as * we miss the opportunity to do vectorization, but this it is a * convenient for formats or scenarios for which there was no opportunity * or incentive to optimize. */ LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(gallivm->builder))); char name[256]; LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context); LLVMTypeRef pi8t = LLVMPointerType(i8t, 0); LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef function; LLVMValueRef tmp_ptr; LLVMValueRef tmp; LLVMValueRef res; LLVMValueRef callee; unsigned k; util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_8unorm", format_desc->short_name); if (gallivm_debug & GALLIVM_DEBUG_PERF) { debug_printf("%s: falling back to %s\n", __FUNCTION__, name); } /* * Declare and bind format_desc->fetch_rgba_8unorm(). */ function = LLVMGetNamedFunction(module, name); if (!function) { /* * Function to call looks like: * fetch(uint8_t *dst, const uint8_t *src, unsigned i, unsigned j) */ LLVMTypeRef ret_type; LLVMTypeRef arg_types[4]; LLVMTypeRef function_type; ret_type = LLVMVoidTypeInContext(gallivm->context); arg_types[0] = pi8t; arg_types[1] = pi8t; arg_types[2] = i32t; arg_types[3] = i32t; function_type = LLVMFunctionType(ret_type, arg_types, Elements(arg_types), 0); function = LLVMAddFunction(module, name, function_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); LLVMSetLinkage(function, LLVMExternalLinkage); assert(LLVMIsDeclaration(function)); } /* make const pointer for the C fetch_rgba_float function */ callee = lp_build_const_int_pointer(gallivm, func_to_pointer((func_pointer) format_desc->fetch_rgba_8unorm)); /* cast the callee pointer to the function's type */ function = LLVMBuildBitCast(builder, callee, LLVMTypeOf(function), "cast callee"); tmp_ptr = lp_build_alloca(gallivm, i32t, ""); res = LLVMGetUndef(LLVMVectorType(i32t, num_pixels)); /* * Invoke format_desc->fetch_rgba_8unorm() for each pixel and insert the result * in the SoA vectors. */ for (k = 0; k < num_pixels; ++k) { LLVMValueRef index = lp_build_const_int32(gallivm, k); LLVMValueRef args[4]; args[0] = LLVMBuildBitCast(builder, tmp_ptr, pi8t, ""); args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels, base_ptr, offset, k); if (num_pixels == 1) { args[2] = i; args[3] = j; } else { args[2] = LLVMBuildExtractElement(builder, i, index, ""); args[3] = LLVMBuildExtractElement(builder, j, index, ""); } LLVMBuildCall(builder, function, args, Elements(args), ""); tmp = LLVMBuildLoad(builder, tmp_ptr, ""); if (num_pixels == 1) { res = tmp; } else { res = LLVMBuildInsertElement(builder, res, tmp, index, ""); } } /* Bitcast from <n x i32> to <4n x i8> */ res = LLVMBuildBitCast(builder, res, bld.vec_type, ""); return res; } /* * Fallback to util_format_description::fetch_rgba_float(). */ if (format_desc->fetch_rgba_float) { /* * Fallback to calling util_format_description::fetch_rgba_float. * * This is definitely not the most efficient way of fetching pixels, as * we miss the opportunity to do vectorization, but this it is a * convenient for formats or scenarios for which there was no opportunity * or incentive to optimize. */ LLVMModuleRef module = LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder))); char name[256]; LLVMTypeRef f32t = LLVMFloatTypeInContext(gallivm->context); LLVMTypeRef f32x4t = LLVMVectorType(f32t, 4); LLVMTypeRef pf32t = LLVMPointerType(f32t, 0); LLVMTypeRef pi8t = LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0); LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context); LLVMValueRef function; LLVMValueRef tmp_ptr; LLVMValueRef tmps[LP_MAX_VECTOR_LENGTH/4]; LLVMValueRef res; LLVMValueRef callee; unsigned k; util_snprintf(name, sizeof name, "util_format_%s_fetch_rgba_float", format_desc->short_name); if (gallivm_debug & GALLIVM_DEBUG_PERF) { debug_printf("%s: falling back to %s\n", __FUNCTION__, name); } /* * Declare and bind format_desc->fetch_rgba_float(). */ function = LLVMGetNamedFunction(module, name); if (!function) { /* * Function to call looks like: * fetch(float *dst, const uint8_t *src, unsigned i, unsigned j) */ LLVMTypeRef ret_type; LLVMTypeRef arg_types[4]; LLVMTypeRef function_type; ret_type = LLVMVoidTypeInContext(gallivm->context); arg_types[0] = pf32t; arg_types[1] = pi8t; arg_types[2] = i32t; arg_types[3] = i32t; function_type = LLVMFunctionType(ret_type, arg_types, Elements(arg_types), 0); function = LLVMAddFunction(module, name, function_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); LLVMSetLinkage(function, LLVMExternalLinkage); assert(LLVMIsDeclaration(function)); } /* Note: we're using this casting here instead of LLVMAddGlobalMapping() * to work around a bug in LLVM 2.6. */ /* make const pointer for the C fetch_rgba_float function */ callee = lp_build_const_int_pointer(gallivm, func_to_pointer((func_pointer) format_desc->fetch_rgba_float)); /* cast the callee pointer to the function's type */ function = LLVMBuildBitCast(builder, callee, LLVMTypeOf(function), "cast callee"); tmp_ptr = lp_build_alloca(gallivm, f32x4t, ""); /* * Invoke format_desc->fetch_rgba_float() for each pixel and insert the result * in the SoA vectors. */ for (k = 0; k < num_pixels; ++k) { LLVMValueRef args[4]; args[0] = LLVMBuildBitCast(builder, tmp_ptr, pf32t, ""); args[1] = lp_build_gather_elem_ptr(gallivm, num_pixels, base_ptr, offset, k); if (num_pixels == 1) { args[2] = i; args[3] = j; } else { LLVMValueRef index = lp_build_const_int32(gallivm, k); args[2] = LLVMBuildExtractElement(builder, i, index, ""); args[3] = LLVMBuildExtractElement(builder, j, index, ""); } LLVMBuildCall(builder, function, args, Elements(args), ""); tmps[k] = LLVMBuildLoad(builder, tmp_ptr, ""); } lp_build_conv(gallivm, lp_float32_vec4_type(), type, tmps, num_pixels, &res, 1); return res; } assert(0); return lp_build_undef(gallivm, type); }
/** * @brief lp_build_fetch_rgba_aos_array * * \param format_desc describes format of the image we're fetching from * \param dst_type output type * \param base_ptr address of the pixel block (or the texel if uncompressed) * \param offset ptr offset */ LLVMValueRef lp_build_fetch_rgba_aos_array(struct gallivm_state *gallivm, const struct util_format_description *format_desc, struct lp_type dst_type, LLVMValueRef base_ptr, LLVMValueRef offset) { struct lp_build_context bld; LLVMBuilderRef builder = gallivm->builder; LLVMTypeRef src_vec_type; LLVMValueRef ptr, res = NULL; struct lp_type src_type; boolean pure_integer = format_desc->channel[0].pure_integer; struct lp_type tmp_type; lp_type_from_format_desc(&src_type, format_desc); assert(src_type.length <= dst_type.length); src_vec_type = lp_build_vec_type(gallivm, src_type); /* Read whole vector from memory, unaligned */ ptr = LLVMBuildGEP(builder, base_ptr, &offset, 1, ""); ptr = LLVMBuildPointerCast(builder, ptr, LLVMPointerType(src_vec_type, 0), ""); res = LLVMBuildLoad(builder, ptr, ""); LLVMSetAlignment(res, src_type.width / 8); /* Truncate doubles to float */ if (src_type.floating && src_type.width == 64) { src_type.width = 32; src_vec_type = lp_build_vec_type(gallivm, src_type); res = LLVMBuildFPTrunc(builder, res, src_vec_type, ""); } /* Expand to correct length */ if (src_type.length < dst_type.length) { res = lp_build_pad_vector(gallivm, res, dst_type.length); src_type.length = dst_type.length; } tmp_type = dst_type; if (pure_integer) { /* some callers expect (fake) floats other real ints. */ tmp_type.floating = 0; tmp_type.sign = src_type.sign; } /* Convert to correct format */ lp_build_conv(gallivm, src_type, tmp_type, &res, 1, &res, 1); /* Swizzle it */ lp_build_context_init(&bld, gallivm, tmp_type); res = lp_build_format_swizzle_aos(format_desc, &bld, res); /* Bitcast to floats (for pure integers) when requested */ if (pure_integer && dst_type.floating) { res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, dst_type), ""); } return res; }
/** * Generate the runtime callable function for the whole fragment pipeline. * Note that the function which we generate operates on a block of 16 * pixels at at time. The block contains 2x2 quads. Each quad contains * 2x2 pixels. */ static void generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant *variant, unsigned do_tri_test) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); const struct lp_fragment_shader_variant_key *key = &variant->key; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_vec_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef blend_int_vec_type; LLVMTypeRef arg_types[14]; LLVMTypeRef func_type; LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type(); LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef color_ptr_ptr; LLVMValueRef depth_ptr; LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; LLVMValueRef x0; LLVMValueRef y0; struct lp_build_sampler_soa *sampler; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef blend_in_color[NUM_CHANNELS]; LLVMValueRef function; unsigned num_fs; unsigned i; unsigned chan; unsigned cbuf; /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 elements per vector */ num_fs = 4; /* number of quads per block */ memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_vec_type = lp_build_vec_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); blend_int_vec_type = lp_build_int_vec_type(blend_type); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */ arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */ arg_types[8] = LLVMInt32Type(); /* c0 */ arg_types[9] = LLVMInt32Type(); /* c1 */ arg_types[10] = LLVMInt32Type(); /* c2 */ /* Note: the step arrays are built as int32[16] but we interpret * them here as int32_vec4[4]. */ arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */ arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */ arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); function = LLVMAddFunction(screen->module, "shader", func_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); variant->function[do_tri_test] = function; /* XXX: need to propagate noalias down into color param now we are * passing a pointer-to-pointer? */ for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(function, 0); x = LLVMGetParam(function, 1); y = LLVMGetParam(function, 2); a0_ptr = LLVMGetParam(function, 3); dadx_ptr = LLVMGetParam(function, 4); dady_ptr = LLVMGetParam(function, 5); color_ptr_ptr = LLVMGetParam(function, 6); depth_ptr = LLVMGetParam(function, 7); c0 = LLVMGetParam(function, 8); c1 = LLVMGetParam(function, 9); c2 = LLVMGetParam(function, 10); step0_ptr = LLVMGetParam(function, 11); step1_ptr = LLVMGetParam(function, 12); step2_ptr = LLVMGetParam(function, 13); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(color_ptr_ptr, "color_ptr"); lp_build_name(depth_ptr, "depth"); lp_build_name(c0, "c0"); lp_build_name(c1, "c1"); lp_build_name(c2, "c2"); lp_build_name(step0_ptr, "step0"); lp_build_name(step1_ptr, "step1"); lp_build_name(step2_ptr, "step2"); /* * Function body */ block = LLVMAppendBasicBlock(function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); generate_pos0(builder, x, y, &x0, &y0); lp_build_interp_soa_init(&interp, shader->base.tokens, key->flatshade, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x0, y0); /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); /* loop over quads in the block */ for(i = 0; i < num_fs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS]; LLVMValueRef depth_ptr_i; int cbuf; if(i != 0) lp_build_interp_soa_update(&interp, i); depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, &interp, sampler, &fs_mask[i], /* output */ out_color, depth_ptr_i, do_tri_test, c0, c1, c2, step0_ptr, step1_ptr, step2_ptr); for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[cbuf][chan][i] = out_color[cbuf][chan]; } sampler->destroy(sampler); /* Loop over color outputs / color buffers to do blending. */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { LLVMValueRef color_ptr; LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0); /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { lp_build_conv(builder, fs_type, blend_type, fs_out_color[cbuf][chan], num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]); } lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), ""); lp_build_name(color_ptr, "color_ptr%d", cbuf); /* * Blending. */ generate_blend(&key->blend, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr); } LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* Verify the LLVM IR. If invalid, dump and abort */ #ifdef DEBUG if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) { if (1) LLVMDumpValue(function); abort(); } #endif /* Apply optimizations to LLVM IR */ if (1) LLVMRunFunctionPassManager(screen->pass, function); if (LP_DEBUG & DEBUG_JIT) { /* Print the LLVM IR to stderr */ LLVMDumpValue(function); debug_printf("\n"); } /* * Translate the LLVM IR into machine code. */ variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function); if (LP_DEBUG & DEBUG_ASM) lp_disassemble(variant->jit_function[do_tri_test]); }
/** * Pick a suitable num_dsts for lp_build_conv to ensure optimal cases are used. * * Returns the number of dsts created from src */ int lp_build_conv_auto(struct gallivm_state *gallivm, struct lp_type src_type, struct lp_type* dst_type, const LLVMValueRef *src, unsigned num_srcs, LLVMValueRef *dst) { int i; int num_dsts = num_srcs; if (src_type.floating == dst_type->floating && src_type.width == dst_type->width && src_type.length == dst_type->length && src_type.fixed == dst_type->fixed && src_type.norm == dst_type->norm && src_type.sign == dst_type->sign) return num_dsts; /* Special case 4x4f -> 1x16ub or 2x8f -> 1x16ub */ if (src_type.floating == 1 && src_type.fixed == 0 && src_type.sign == 1 && src_type.norm == 0 && src_type.width == 32 && dst_type->floating == 0 && dst_type->fixed == 0 && dst_type->sign == 0 && dst_type->norm == 1 && dst_type->width == 8) { /* Special case 4x4f --> 1x16ub */ if (src_type.length == 4 && util_cpu_caps.has_sse2) { num_dsts = (num_srcs + 3) / 4; dst_type->length = num_srcs * 4 >= 16 ? 16 : num_srcs * 4; lp_build_conv(gallivm, src_type, *dst_type, src, num_srcs, dst, num_dsts); return num_dsts; } /* Special case 2x8f --> 1x16ub */ if (src_type.length == 8 && util_cpu_caps.has_avx) { num_dsts = (num_srcs + 1) / 2; dst_type->length = num_srcs * 8 >= 16 ? 16 : num_srcs * 8; lp_build_conv(gallivm, src_type, *dst_type, src, num_srcs, dst, num_dsts); return num_dsts; } } /* lp_build_resize does not support M:N */ if (src_type.width == dst_type->width) { lp_build_conv(gallivm, src_type, *dst_type, src, num_srcs, dst, num_dsts); } else { for (i = 0; i < num_srcs; ++i) { lp_build_conv(gallivm, src_type, *dst_type, &src[i], 1, &dst[i], 1); } } return num_dsts; }
/** * Generate the runtime callable function for the whole fragment pipeline. */ static struct lp_fragment_shader_variant * generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); struct lp_fragment_shader_variant *variant; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_vec_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef blend_int_vec_type; LLVMTypeRef arg_types[9]; LLVMTypeRef func_type; LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef mask_ptr; LLVMValueRef color_ptr; LLVMValueRef depth_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; LLVMValueRef x0; LLVMValueRef y0; struct lp_build_sampler_soa *sampler; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef blend_in_color[NUM_CHANNELS]; unsigned num_fs; unsigned i; unsigned chan; #ifdef DEBUG tgsi_dump(shader->base.tokens, 0); if(key->depth.enabled) { debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format)); debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE)); debug_printf("depth.writemask = %u\n", key->depth.writemask); } if(key->alpha.enabled) { debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE)); debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value); } if(key->blend.logicop_enable) { debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func); } else if(key->blend.blend_enable) { debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE)); debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE)); debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE)); debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE)); debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE)); debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE)); } debug_printf("blend.colormask = 0x%x\n", key->blend.colormask); for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) { if(key->sampler[i].format) { debug_printf("sampler[%u] = \n", i); debug_printf(" .format = %s\n", pf_name(key->sampler[i].format)); debug_printf(" .target = %s\n", debug_dump_tex_target(key->sampler[i].target, TRUE)); debug_printf(" .pot = %u %u %u\n", key->sampler[i].pot_width, key->sampler[i].pot_height, key->sampler[i].pot_depth); debug_printf(" .wrap = %s %s %s\n", debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE), debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE), debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE)); debug_printf(" .min_img_filter = %s\n", debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE)); debug_printf(" .min_mip_filter = %s\n", debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE)); debug_printf(" .mag_img_filter = %s\n", debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE)); if(key->sampler[i].compare_mode) debug_printf(" .compare_mode = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE)); debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords); debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter); } } #endif variant = CALLOC_STRUCT(lp_fragment_shader_variant); if(!variant) return NULL; variant->shader = shader; memcpy(&variant->key, key, sizeof *key); /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 element per vector */ num_fs = 4; memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_vec_type = lp_build_vec_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); blend_int_vec_type = lp_build_int_vec_type(blend_type); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */ arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */ arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); variant->function = LLVMAddFunction(screen->module, "shader", func_type); LLVMSetFunctionCallConv(variant->function, LLVMCCallConv); for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(variant->function, 0); x = LLVMGetParam(variant->function, 1); y = LLVMGetParam(variant->function, 2); a0_ptr = LLVMGetParam(variant->function, 3); dadx_ptr = LLVMGetParam(variant->function, 4); dady_ptr = LLVMGetParam(variant->function, 5); mask_ptr = LLVMGetParam(variant->function, 6); color_ptr = LLVMGetParam(variant->function, 7); depth_ptr = LLVMGetParam(variant->function, 8); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(mask_ptr, "mask"); lp_build_name(color_ptr, "color"); lp_build_name(depth_ptr, "depth"); /* * Function body */ block = LLVMAppendBasicBlock(variant->function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); generate_pos0(builder, x, y, &x0, &y0); lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x0, y0, 2, 0); #if 0 /* C texture sampling */ sampler = lp_c_sampler_soa_create(context_ptr); #else /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); #endif for(i = 0; i < num_fs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); LLVMValueRef out_color[NUM_CHANNELS]; LLVMValueRef depth_ptr_i; if(i != 0) lp_build_interp_soa_update(&interp); fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), ""); depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, &interp, sampler, &fs_mask[i], out_color, depth_ptr_i); for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[chan][i] = out_color[chan]; } sampler->destroy(sampler); /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { lp_build_conv(builder, fs_type, blend_type, fs_out_color[chan], num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]); } lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); /* * Blending. */ generate_blend(&key->blend, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr); LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* * Translate the LLVM IR into machine code. */ if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) { LLVMDumpValue(variant->function); abort(); } LLVMRunFunctionPassManager(screen->pass, variant->function); #ifdef DEBUG LLVMDumpValue(variant->function); debug_printf("\n"); #endif variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function); #ifdef DEBUG lp_disassemble(variant->jit_function); #endif variant->next = shader->variants; shader->variants = variant; return variant; }
/** * Generate the runtime callable function for the whole fragment pipeline. * Note that the function which we generate operates on a block of 16 * pixels at at time. The block contains 2x2 quads. Each quad contains * 2x2 pixels. */ static void generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant *variant, unsigned partial_mask) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); const struct lp_fragment_shader_variant_key *key = &variant->key; char func_name[256]; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef arg_types[11]; LLVMTypeRef func_type; LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef color_ptr_ptr; LLVMValueRef depth_ptr; LLVMValueRef mask_input; LLVMValueRef counter = NULL; LLVMBasicBlockRef block; LLVMBuilderRef builder; struct lp_build_sampler_soa *sampler; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef function; LLVMValueRef facing; unsigned num_fs; unsigned i; unsigned chan; unsigned cbuf; /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 elements per vector */ num_fs = 4; /* number of quads per block */ memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", shader->no, variant->no, partial_mask ? "partial" : "whole"); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMFloatType(); /* facing */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */ arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */ arg_types[9] = LLVMInt32Type(); /* mask_input */ arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); function = LLVMAddFunction(screen->module, func_name, func_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); variant->function[partial_mask] = function; /* XXX: need to propagate noalias down into color param now we are * passing a pointer-to-pointer? */ for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(function, 0); x = LLVMGetParam(function, 1); y = LLVMGetParam(function, 2); facing = LLVMGetParam(function, 3); a0_ptr = LLVMGetParam(function, 4); dadx_ptr = LLVMGetParam(function, 5); dady_ptr = LLVMGetParam(function, 6); color_ptr_ptr = LLVMGetParam(function, 7); depth_ptr = LLVMGetParam(function, 8); mask_input = LLVMGetParam(function, 9); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(color_ptr_ptr, "color_ptr_ptr"); lp_build_name(depth_ptr, "depth"); lp_build_name(mask_input, "mask_input"); if (key->occlusion_count) { counter = LLVMGetParam(function, 10); lp_build_name(counter, "counter"); } /* * Function body */ block = LLVMAppendBasicBlock(function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); /* * The shader input interpolation info is not explicitely baked in the * shader key, but everything it derives from (TGSI, and flatshade) is * already included in the shader key. */ lp_build_interp_soa_init(&interp, lp->num_inputs, lp->inputs, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x, y); /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); /* loop over quads in the block */ for(i = 0; i < num_fs; ++i) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS]; LLVMValueRef depth_ptr_i; if(i != 0) lp_build_interp_soa_update(&interp, i); depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, &interp, sampler, &fs_mask[i], /* output */ out_color, depth_ptr_i, facing, partial_mask, mask_input, counter); for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[cbuf][chan][i] = out_color[cbuf][chan]; } sampler->destroy(sampler); /* Loop over color outputs / color buffers to do blending. */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { LLVMValueRef color_ptr; LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0); LLVMValueRef blend_in_color[NUM_CHANNELS]; unsigned rt; /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { lp_build_conv(builder, fs_type, blend_type, fs_out_color[cbuf][chan], num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]); } if (partial_mask || !variant->opaque) { lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); } else { blend_mask = lp_build_const_int_vec(blend_type, ~0); } color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), ""); lp_build_name(color_ptr, "color_ptr%d", cbuf); /* which blend/colormask state to use */ rt = key->blend.independent_blend_enable ? cbuf : 0; /* * Blending. */ generate_blend(&key->blend, rt, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr); } #ifdef PIPE_ARCH_X86 /* Avoid corrupting the FPU stack on 32bit OSes. */ lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0); #endif LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* Verify the LLVM IR. If invalid, dump and abort */ #ifdef DEBUG if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) { if (1) lp_debug_dump_value(function); abort(); } #endif /* Apply optimizations to LLVM IR */ LLVMRunFunctionPassManager(screen->pass, function); if (gallivm_debug & GALLIVM_DEBUG_IR) { /* Print the LLVM IR to stderr */ lp_debug_dump_value(function); debug_printf("\n"); } /* * Translate the LLVM IR into machine code. */ { void *f = LLVMGetPointerToGlobal(screen->engine, function); variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f); if (gallivm_debug & GALLIVM_DEBUG_ASM) { lp_disassemble(f); } lp_func_delete_body(function); } }