Exemple #1
0
    void rectify(Mat& K1, Mat& R1, Mat& t1,
                 Mat& K2, Mat& R2, Mat& t2,
                 Size size,
                 Mat& T1, Mat& T2) {

        Mat_<double> Kn1(3, 3), Kn2(3, 3);
        Mat_<double> c1(3, 1), c2(3, 1),
                     v1(3, 1), v2(3, 1), v3(3, 1);

        K1.copyTo(Kn1);
        K2.copyTo(Kn2);

        // optical centers
        c1 = - R1.t() * t1;
        c2 = - R2.t() * t2;

        // x axis
        v1 = c2 - c1;
        // y axis
        v2 = Mat(R1.row(2).t()).cross(v1);
        // z axis
        v3 = v1.cross(v2);

        Mat_<double> m_R(3, 3);
        v1 = v1 / norm(v1);
        v2 = v2 / norm(v2);
        v3 = v3 / norm(v3);

        m_R(0, 0) = v1(0), m_R(0, 1) = v1(1), m_R(0, 2) = v1(2);
        m_R(1, 0) = v2(0), m_R(1, 1) = v2(1), m_R(1, 2) = v2(2);
        m_R(2, 0) = v3(0), m_R(2, 1) = v3(1), m_R(2, 2) = v3(2);

        T1 = (Kn1 * m_R) * (R1.t() * K1.inv());
        T2 = (Kn2 * m_R) * (R2.t() * K2.inv());

        // Image center displacement
        Mat_<double> o1(3, 1), o2(3, 1);
        o1(0) = 0.5 * size.width, o1(1) = 0.5 * size.height, o1(2) = 1.0;
        o2(0) = 0.5 * size.width, o2(1) = 0.5 * size.height, o2(2) = 1.0;

        Mat_<double> on1(3, 1), on2(3, 1), d1(2, 1), d2(2, 1);
        on1 = T1 * o1;
        on2 = T2 * o2;

        d1(0) = o1(0) - on1(0) / on1(2);
        d1(1) = o1(1) - on1(1) / on1(2);
        d2(0) = o2(0) - on2(0) / on1(2);
        d2(1) = o2(1) - on2(1) / on1(2);
        d1(1) = d2(1);

        Kn1(0, 2) = Kn1(0, 2) + d1(0);
        Kn1(1, 2) = Kn1(1, 2) + d1(1);
        Kn2(0, 2) = Kn2(0, 2) + d2(0);
        Kn2(1, 2) = Kn2(1, 2) + d2(1);

        T1 = (Kn1 * m_R) * (R1.t() * K1.inv());
        T2 = (Kn2 * m_R) * (R2.t() * K2.inv());
    }
bool EKalman::findObservation(Detections& det, int frame, int /*detPos*/, int /*startTimeStemp*/)
{

    Vector<double> succPoint;
    if(m_Up)
        frame = frame + 1;
    else
        frame = frame - 1;

    Volume<double> obsCol;
    FrameInlier inlier(frame);

    Vector<int> inl;
    Vector<double> weights;
    double colScore = 1.0;
    double weight;

    Vector<int> allInlierInOneFrame;
    Vector<double> weightOfAllInliersInOneFrame;

//    Matrix<double> covCopy;

    for(int i = 0; i < det.numberDetectionsAtFrame(frame); i++)
    {
        Matrix<double> devObs;
        Vector<double> currBbox;
        det.getPos3D(frame, i, succPoint);
        det.getColorHist(frame, i, obsCol);
        det.get3Dcovmatrix(frame, i, devObs);
        det.getBBox(frame, i, currBbox);

        colScore = Math::hist_bhatta(obsCol, m_colHist);

        Matrix<double> covariance(2,2, 0.0);

        covariance(0,0) = sqrt(devObs(0,0));
        covariance(1,1) = sqrt(devObs(2,2));

        covariance.inv();
//        covCopy = covariance;

        Vector<double> p1(2,0.0);
        Vector<double> p2(2,0.0);

        p1(0) = m_xprio(0);
        p1(1) = m_xprio(1);

        p2(0) = succPoint(0);
        p2(1) = succPoint(2);

        Vector<double> pDiff(2,0.0);
        pDiff = p1;
        pDiff -= p2;

        covariance *= pDiff;
        covariance.Transpose();
        covariance *= pDiff;

        weight = exp(-0.5*covariance(0,0));


        // IMAGE BASED
        Vector<double> rectInter;
        AncillaryMethods::IntersetRect(m_bbox, currBbox, rectInter);
        double iou = rectInter(2)*rectInter(3)/(m_bbox(2)*m_bbox(3)+currBbox(2)*currBbox(3)-rectInter(2)*rectInter(3));

//        if(iou>0.2 && colScore > Globals::kalmanObsColorModelthresh)
//        {
//            allInlierInOneFrame.pushBack(i);
//            weightOfAllInliersInOneFrame.pushBack(iou*colScore);
//        }
        // 3D POSITION BASED



        if(weight > Globals::kalmanObsMotionModelthresh /*&& colScore > Globals::kalmanObsColorModelthresh*/)
        {
            allInlierInOneFrame.pushBack(i);
            weightOfAllInliersInOneFrame.pushBack(weight*colScore);
        }
    }


    if(allInlierInOneFrame.getSize()>0)
    {
        pair<double, int> maxPosValue = weightOfAllInliersInOneFrame.maxim();
        int pos = maxPosValue.second;

        inlier.addInlier(allInlierInOneFrame(pos));
        inlier.addWeight(weightOfAllInliersInOneFrame(pos));
    }

    m_measurement_found = false;
    if(inlier.getNumberInlier() > 0)
    {

        m_measurement_found = true;
        Matrix<double> covMatrix;
        inl = inlier.getInlier();
        weights = inlier.getWeight();

        // Update the color histogram
        Volume<double> newColHist;

        det.getColorHist(frame, inl(0), newColHist);

        m_colHist *= 0.4;
        newColHist *= 0.6;
        m_colHist += newColHist;

        m_height = det.getHeight(frame, inl(0));

        det.get3Dcovmatrix(frame,inl(0), covMatrix);

        Vector<double> inlierPos;
        m_yPos.setSize(3,0.0);
        for(int i = 0; i < allInlierInOneFrame.getSize(); i++)
        {
            det.getPos3D(frame, allInlierInOneFrame(i), inlierPos);
            m_yPos += inlierPos;
        }

        m_yPos *= 1.0/(double) allInlierInOneFrame.getSize();

        FrameInlier newInlier(frame);
        newInlier.addInlier(inl(0));
        newInlier.addWeight(weights(0)*det.getScore(frame, inl(0)));
        m_Idx.pushBack(newInlier);

        m_R.set_size(4,4, 0.0);
        m_R(0,0) = sqrt(covMatrix(0,0));
        m_R(1,1) = sqrt(covMatrix(2,2));

        m_R(2,2) = 0.2*0.2;
        m_R(3,3) = 0.2*0.2;
    }

    return m_measurement_found;
}
void EKalman::runKalmanDown(Detections& det, int frame, int pointPos, int t, Matrix<double>& allXnew, Vector<FrameInlier>& Idx,
                            Vector<double>& R, Vector<double>& Vel, Volume<double>& hMean, Vector<Matrix<double> >& stateCovMats,
                            Vector<Volume<double> >& colHists)
{

    m_Up = false;

    det.getColorHist(frame, pointPos, m_colHist);
    det.getBBox(frame, pointPos, m_bbox);

    Matrix<double> copyInitStateUnc = m_Ppost;
    Vector<double> copyInitState = m_xpost;

    //////////////////////////////////////////////////////////////////////

    Matrix<double> covMatrix;
    det.get3Dcovmatrix(frame, pointPos, covMatrix);
    Vector<double> startingDet;
    det.getPos3D(frame, pointPos, startingDet);

    m_R.fill(0.0);
    m_R(0,0) = covMatrix(0,0);
    m_R(1,1) = covMatrix(2,2);

    m_R(2,2) = 0.2*0.2;
    m_R(3,3) = 0.2*0.2;

    int tLastSupport = 0;

    m_yPos.pushBack(m_xpost(0));
    m_yPos.pushBack(startingDet(1));
    m_yPos.pushBack(m_xpost(1));

    int accepted_frames_without_det = 20;
    for(int i = frame+1; i > t; i--)
    {
        if(tLastSupport > accepted_frames_without_det)
            break;

        predict();
        m_measurement_found = findObservation(det, i, pointPos, frame);

        if(m_measurement_found)
        {

            m_measurement = makeMeasurement();
            update();

            if(i == frame+1)
            {
                m_Ppost = copyInitStateUnc;
                m_xpost = copyInitState;
            }

            saveData(i-1);
            tLastSupport = 0;
            pointPos = m_Idx(m_Idx.getSize()-1).getInlier()(0);
        }
        else
        {
            update();
            m_xpost(3) *= 0.8;
            saveData(i-1);
            tLastSupport += 1;
        }

    }

    if(m_Rot.getSize() > 1) {
        // As this is kalman-DOWN, we start with an unassociated detection (InitState)
        // The position is fine, but we fix the rotation by copying the one from the successor state
        m_Rot(0) = m_Rot(1);
    }

    Vel = m_Vel;
    turnRotations(R, m_Rot);
    Idx = m_Idx;

    allXnew = Matrix<double>(m_allXnew);

    hMean = m_colHist;
    colHists = m_colHists;
    stateCovMats = m_CovMats;
}
void
MAST::ComplexAssemblyBase::
residual_and_jacobian_blocked (const libMesh::NumericVector<Real>& X,
                               libMesh::NumericVector<Real>& R,
                               libMesh::SparseMatrix<Real>&  J,
                               MAST::Parameter* p) {

    libmesh_assert(_system);
    libmesh_assert(_discipline);
    libmesh_assert(_elem_ops);

    START_LOG("residual_and_jacobian()", "ComplexSolve");
    
    MAST::NonlinearSystem& nonlin_sys = _system->system();
    
    R.zero();
    J.zero();
    
    // iterate over each element, initialize it and get the relevant
    // analysis quantities
    RealVectorX
    sol;
    ComplexVectorX
    delta_sol,
    vec;
    ComplexMatrixX
    mat,
    dummy;

    // get the petsc vector and matrix objects
    Mat
    jac_bmat = dynamic_cast<libMesh::PetscMatrix<Real>&>(J).mat();
    
    PetscInt ierr;
    
    std::vector<libMesh::dof_id_type> dof_indices;
    const libMesh::DofMap& dof_map = nonlin_sys.get_dof_map();
    const std::vector<libMesh::dof_id_type>&
    send_list = nonlin_sys.get_dof_map().get_send_list();
    
    
    
    std::unique_ptr<libMesh::NumericVector<Real> >
    localized_base_solution,
    localized_complex_sol(libMesh::NumericVector<Real>::build(nonlin_sys.comm()).release());
    
    // prepare a send list for localization of the complex solution
    std::vector<libMesh::dof_id_type>
    complex_send_list(2*send_list.size());
    
    for (unsigned int i=0; i<send_list.size(); i++) {
        complex_send_list[2*i  ] = 2*send_list[i];
        complex_send_list[2*i+1] = 2*send_list[i]+1;
    }

    localized_complex_sol->init(2*nonlin_sys.n_dofs(),
                                2*nonlin_sys.n_local_dofs(),
                                complex_send_list,
                                false,
                                libMesh::GHOSTED);
    X.localize(*localized_complex_sol, complex_send_list);
    
    // localize the base solution, if it was provided
    if (_base_sol)
        localized_base_solution.reset(build_localized_vector(nonlin_sys,
                                                             *_base_sol).release());
    
    

    // if a solution function is attached, initialize it
    //if (_sol_function)
    //    _sol_function->init( X);
    
    
    libMesh::MeshBase::const_element_iterator       el     =
    nonlin_sys.get_mesh().active_local_elements_begin();
    const libMesh::MeshBase::const_element_iterator end_el =
    nonlin_sys.get_mesh().active_local_elements_end();
    
    MAST::ComplexAssemblyElemOperations&
    ops = dynamic_cast<MAST::ComplexAssemblyElemOperations&>(*_elem_ops);

    for ( ; el != end_el; ++el) {
        
        const libMesh::Elem* elem = *el;
        
        dof_map.dof_indices (elem, dof_indices);
        
        ops.init(*elem);
        
        // get the solution
        unsigned int ndofs = (unsigned int)dof_indices.size();
        sol.setZero(ndofs);
        delta_sol.setZero(ndofs);
        vec.setZero(ndofs);
        mat.setZero(ndofs, ndofs);
        
        // first set the velocity to be zero
        ops.set_elem_velocity(sol);
        
        // next, set the base solution, if provided
        if (_base_sol)
            for (unsigned int i=0; i<dof_indices.size(); i++)
                sol(i) = (*localized_base_solution)(dof_indices[i]);
        
        ops.set_elem_solution(sol);
        
        // set the value of the small-disturbance solution
        for (unsigned int i=0; i<dof_indices.size(); i++) {
            
            // get the complex block for this dof
            delta_sol(i) = Complex((*localized_complex_sol)(2*dof_indices[i]),
                                   (*localized_complex_sol)(2*dof_indices[i]+1));
        }
        
        ops.set_elem_complex_solution(delta_sol);
        
        
//        if (_sol_function)
//            physics_elem->attach_active_solution_function(*_sol_function);
        
        
        // perform the element level calculations
        ops.elem_calculations(true, vec, mat);
        
        // if sensitivity was requested, then ask the element for sensitivity
        // of the residual
        if (p) {
            
            // set the sensitivity of complex sol to zero
            delta_sol.setZero();
            ops.set_elem_complex_solution_sensitivity(delta_sol);
            vec.setZero();
            ops.elem_sensitivity_calculations(*p, vec);
        }
        
        ops.clear_elem();

        //physics_elem->detach_active_solution_function();
        
        // extract the real or the imaginary part of the matrix/vector
        //  The complex system of equations
        //     (J_R + i J_I) (x_R + i x_I) + (r_R + i r_I) = 0
        //  is rewritten as
        //     [ J_R   -J_I] {x_R}  +  {r_R}  = {0}
        //     [ J_I    J_R] {x_I}  +  {r_I}  = {0}
        //
        DenseRealVector v_R, v_I;
        DenseRealMatrix m_R, m_I1, m_I2;
        std::vector<Real> vals(4);
        
        // copy the real part of the residual and Jacobian
        MAST::copy( m_R, mat.real());
        MAST::copy(m_I1, mat.imag()); m_I1 *= -1.;   // this is the -J_I component
        MAST::copy(m_I2, mat.imag());                // this is the J_I component
        MAST::copy( v_R, vec.real());
        MAST::copy( v_I, vec.imag());
        dof_map.constrain_element_matrix(m_R,  dof_indices);
        dof_map.constrain_element_matrix(m_I1, dof_indices);
        dof_map.constrain_element_matrix(m_I2, dof_indices);
        dof_map.constrain_element_vector(v_R,  dof_indices);
        dof_map.constrain_element_vector(v_I,  dof_indices);
        
        
        for (unsigned int i=0; i<dof_indices.size(); i++) {
            
            R.add(2*dof_indices[i],     v_R(i));
            R.add(2*dof_indices[i]+1,   v_I(i));
            
            for (unsigned int j=0; j<dof_indices.size(); j++) {
                vals[0] = m_R (i,j);
                vals[1] = m_I1(i,j);
                vals[2] = m_I2(i,j);
                vals[3] = m_R (i,j);
                ierr = MatSetValuesBlocked(jac_bmat,
                                           1, (PetscInt*)&dof_indices[i],
                                           1, (PetscInt*)&dof_indices[j],
                                           &vals[0],
                                           ADD_VALUES);
            }
        }
    }
    
    
    // if a solution function is attached, clear it
    //if (_sol_function)
    //    _sol_function->clear();
    
    R.close();
    J.close();
    
    libMesh::out << "R: " << R.l2_norm() << std::endl;
    STOP_LOG("residual_and_jacobian()", "ComplexSolve");
}