Exemple #1
0
void	M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmp3, guess;
int	ii, maxp, tolerance, local_precision;

guess = M_get_stack_var();
tmp0  = M_get_stack_var();
tmp1  = M_get_stack_var();
tmp2  = M_get_stack_var();
tmp3  = M_get_stack_var();

M_get_log_guess(guess, nn);

tolerance       = -(places + 4);
maxp            = places + 16;
local_precision = 18;

/*    Use the following iteration to solve for log :

                        exp(X) - N 
      X     =  X - 2 * ------------
       n+1              exp(X) + N 

   
      this is a cubically convergent algorithm 
      (each iteration yields 3X more digits)
*/

ii = 0;

while (TRUE)
  {
   m_apm_exp(tmp1, local_precision, guess);

   m_apm_subtract(tmp3, tmp1, nn);
   m_apm_add(tmp2, tmp1, nn);

   m_apm_divide(tmp1, local_precision, tmp3, tmp2);
   m_apm_multiply(tmp0, MM_Two, tmp1);
   m_apm_subtract(tmp3, guess, tmp0);

   if (ii != 0)
     {
      if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   m_apm_round(guess, local_precision, tmp3);

   local_precision *= 3;

   if (local_precision > maxp)
     local_precision = maxp;

   ii = 1;
  }

m_apm_round(rr, places, tmp3);
M_restore_stack(5);
}
Exemple #2
0
/*
 *     calculate the multiple angle identity for sin (5x)
 *
 *     sin (5x) == 16 * sin^5 (x)  -  20 * sin^3 (x)  +  5 * sin(x)  
 */
void	M_5x_do_it(M_APM rr, int places, M_APM xx)
{
M_APM   tmp0, tmp1, t2, t3, t5;

tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
t2   = M_get_stack_var();
t3   = M_get_stack_var();
t5   = M_get_stack_var();

m_apm_multiply(tmp1, xx, xx);
m_apm_round(t2, (places + 4), tmp1);     /* x ^ 2 */

m_apm_multiply(tmp1, t2, xx);
m_apm_round(t3, (places + 4), tmp1);     /* x ^ 3 */

m_apm_multiply(t5, t2, t3);              /* x ^ 5 */

m_apm_multiply(tmp0, xx, MM_Five);
m_apm_multiply(tmp1, t5, MM_5x_Sixteen);
m_apm_add(t2, tmp0, tmp1);
m_apm_multiply(tmp1, t3, MM_5x_Twenty);
m_apm_subtract(tmp0, t2, tmp1);

m_apm_round(rr, places, tmp0);
M_restore_stack(5);
}
Exemple #3
0
/*
 *      find log(N)
 *
 *      if places < 360
 *         solve with cubically convergent algorithm above
 *
 *      else
 *
 *      let 'X' be 'close' to the solution   (we use ~110 decimal places)
 *
 *      let Y = N * exp(-X) - 1
 *
 *	then
 *
 *	log(N) = X + log(1 + Y)
 *
 *      since 'Y' will be small, we can use the efficient log_near_1 algorithm.
 *
 */
void	M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmpX;

if (places < 360)
  {
   M_log_solve_cubic(rr, places, nn);
  }
else
  {
   tmp0 = M_get_stack_var();
   tmp1 = M_get_stack_var();
   tmp2 = M_get_stack_var();
   tmpX = M_get_stack_var();
   
   M_log_solve_cubic(tmpX, 110, nn);
   
   m_apm_negate(tmp0, tmpX);
   m_apm_exp(tmp1, (places + 8), tmp0);
   m_apm_multiply(tmp2, tmp1, nn);
   m_apm_subtract(tmp1, tmp2, MM_One);
   
   M_log_near_1(tmp0, (places - 104), tmp1);
   
   m_apm_add(tmp1, tmpX, tmp0);
   m_apm_round(rr, places, tmp1);
   
   M_restore_stack(4);
  }
}
Exemple #4
0
/*
 *      arctanh(x) == 0.5 * log [ (1 + x) / (1 - x) ]
 *
 *      |x| < 1.0
 */
void	m_apm_arctanh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3;
int     ii, local_precision;

tmp1 = M_get_stack_var();

m_apm_absolute_value(tmp1, aa);

ii = m_apm_compare(tmp1, MM_One);

if (ii >= 0)       /* |x| >= 1.0 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctanh\', |Argument| >= 1");
   M_set_to_zero(rr);
   M_restore_stack(1);
   return;
  }

tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();

local_precision = places + 8;

m_apm_add(tmp1, MM_One, aa);
m_apm_subtract(tmp2, MM_One, aa);
m_apm_divide(tmp3, local_precision, tmp1, tmp2);
m_apm_log(tmp2, local_precision, tmp3);
m_apm_multiply(tmp1, tmp2, MM_0_5);
m_apm_round(rr, places, tmp1);

M_restore_stack(3);
}
Exemple #5
0
/*
 *      arccosh(x) == log [ x + sqrt(x^2 - 1) ]
 *
 *      x >= 1.0
 */
void	m_apm_arccosh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2;
int     ii;

ii = m_apm_compare(aa, MM_One);

if (ii == -1)       /* x < 1 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccosh\', Argument < 1");
   M_set_to_zero(rr);
   return;
  }

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

m_apm_multiply(tmp1, aa, aa);
m_apm_subtract(tmp2, tmp1, MM_One);
m_apm_sqrt(tmp1, (places + 6), tmp2);
m_apm_add(tmp2, aa, tmp1);
m_apm_log(rr, places, tmp2);

M_restore_stack(2);
}
Exemple #6
0
/*
	compute  int *n  = round_to_nearest_int(a / log(2))
	         M_APM b = MAPM version of *n

        returns      0: OK
		 -1, 1: failure
*/
int	M_exp_compute_nn(int *n, M_APM b, M_APM a)
{
M_APM	tmp0, tmp1;
void	*vp;
char    *cp, sbuf[48];
int	kk;

*n   = 0;
vp   = NULL;
cp   = sbuf;
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();

/* find 'n' and convert it to a normal C int            */
/* we just need an approx 1/log(2) for this calculation */

m_apm_multiply(tmp1, a, MM_exp_log2R);

/* round to the nearest int */

if (tmp1->m_apm_sign >= 0)
  {
   m_apm_add(tmp0, tmp1, MM_0_5);
   m_apm_floor(tmp1, tmp0);
  }
else
  {
   m_apm_subtract(tmp0, tmp1, MM_0_5);
   m_apm_ceil(tmp1, tmp0);
  }

kk = tmp1->m_apm_exponent;
if (kk >= 42)
  {
   if ((vp = (void *)MAPM_MALLOC((kk + 16) * sizeof(char))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, "\'M_exp_compute_nn\', Out of memory");
     }

   cp = (char *)vp;
  }

m_apm_to_integer_string(cp, tmp1);
*n = atoi(cp);

m_apm_set_long(b, (long)(*n));

kk = m_apm_compare(b, tmp1);

if (vp != NULL)
  MAPM_FREE(vp);

M_restore_stack(2);
return(kk);
}
void	M_limit_angle_to_pi(M_APM rr, int places, M_APM aa)
{
	M_APM	tmp7, tmp8, tmp9;

	M_check_PI_places(places);

	tmp9 = M_get_stack_var();
	m_apm_copy(tmp9, MM_lc_PI);

	if (m_apm_compare(aa, tmp9) == 1)       /*  > PI  */
	{
		tmp7 = M_get_stack_var();
		tmp8 = M_get_stack_var();

		m_apm_add(tmp7, aa, tmp9);
		m_apm_integer_divide(tmp9, tmp7, MM_lc_2_PI);
		m_apm_multiply(tmp8, tmp9, MM_lc_2_PI);
		m_apm_subtract(tmp9, aa, tmp8);
		m_apm_round(rr, places, tmp9);

		M_restore_stack(3);
		return;
	}

	tmp9->m_apm_sign = -1;
	if (m_apm_compare(aa, tmp9) == -1)       /*  < -PI  */
	{
		tmp7 = M_get_stack_var();
		tmp8 = M_get_stack_var();

		m_apm_add(tmp7, aa, tmp9);
		m_apm_integer_divide(tmp9, tmp7, MM_lc_2_PI);
		m_apm_multiply(tmp8, tmp9, MM_lc_2_PI);
		m_apm_subtract(tmp9, aa, tmp8);
		m_apm_round(rr, places, tmp9);

		M_restore_stack(3);
		return;
	}

	m_apm_copy(rr, aa);
	M_restore_stack(1);
}
Exemple #8
0
/*
	calculate arctan (x) with the following series:

                               x^3     x^5     x^7     x^9
	arctan (x)  ==   x  -  ---  +  ---  -  ---  +  ---  ...
                                3       5       7       9

*/
void	M_arctan_near_0(M_APM rr, int places, M_APM aa)
{
M_APM   tmp0, tmpR, tmp2, tmpS, digit, term;
int	tolerance,  local_precision;
long    m1;

tmp0  = M_get_stack_var();
tmp2  = M_get_stack_var();
tmpR  = M_get_stack_var();
tmpS  = M_get_stack_var();
term  = M_get_stack_var();
digit = M_get_stack_var();

tolerance       = aa->m_apm_exponent - places - 4;
local_precision = places + 8 - aa->m_apm_exponent;

m_apm_copy(term, aa);
m_apm_copy(tmpS, aa);
m_apm_multiply(tmp0, aa, aa);
m_apm_round(tmp2, (local_precision + 8), tmp0);

m1 = 1;

while (TRUE)
  {
   m1 += 2;
   m_apm_set_long(digit, m1);
   m_apm_multiply(tmp0, term, tmp2);
   m_apm_round(term, local_precision, tmp0);
   m_apm_divide(tmp0, local_precision, term, digit);
   m_apm_subtract(tmpR, tmpS, tmp0);

   if ((tmp0->m_apm_exponent < tolerance) || (tmp0->m_apm_sign == 0))
     {
      m_apm_round(rr, places, tmpR);
      break;
     }

   m1 += 2;
   m_apm_set_long(digit, m1);
   m_apm_multiply(tmp0, term, tmp2);
   m_apm_round(term, local_precision, tmp0);
   m_apm_divide(tmp0, local_precision, term, digit);
   m_apm_add(tmpS, tmpR, tmp0);

   if ((tmp0->m_apm_exponent < tolerance) || (tmp0->m_apm_sign == 0))
     {
      m_apm_round(rr, places, tmpS);
      break;
     }
  }

M_restore_stack(6);                    /* restore the 6 locals we used here */
}
Exemple #9
0
/*
 *   compute  r = sqrt(1 - a ^ 2).
 */
void	M_cos_to_sin(M_APM r, int places, M_APM a)
{
M_APM	tmp1, tmp2;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

m_apm_multiply(tmp1, a, a);
m_apm_subtract(tmp2, MM_One, tmp1);
m_apm_sqrt(r, places, tmp2);
M_restore_stack(2);
}
Exemple #10
0
void	m_apm_integer_div_rem(M_APM qq, M_APM rr, M_APM aa, M_APM bb)
{
 if (aa->m_apm_error || bb->m_apm_error)
   {
     M_set_to_error(rr);
     M_set_to_error(qq);
     return;
   }

m_apm_integer_divide(qq, aa, bb);
m_apm_multiply(M_div_tmp7, qq, bb);
m_apm_subtract(rr, aa, M_div_tmp7);
}
Exemple #11
0
/*
 *	check if our local copy of log(2) & log(10) is precise
 *      enough for our purpose. if not, calculate them so it's
 *	as precise as desired, accurate to at least 'places'.
 */
void	M_check_log_places(int places)
{
M_APM   tmp6, tmp7, tmp8, tmp9;
int     dplaces;

dplaces = places + 4;

if (dplaces > MM_lc_log_digits)
  {
   MM_lc_log_digits = dplaces + 4;
   
   tmp6 = M_get_stack_var();
   tmp7 = M_get_stack_var();
   tmp8 = M_get_stack_var();
   tmp9 = M_get_stack_var();
   
   dplaces += 6 + (int)log10((double)places);
   
   m_apm_copy(tmp7, MM_One);
   tmp7->m_apm_exponent = -places;
   
   M_log_AGM_R_func(tmp8, dplaces, MM_One, tmp7);
   
   m_apm_multiply(tmp6, tmp7, MM_0_5);
   
   M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp6);
   
   m_apm_subtract(MM_lc_log2, tmp9, tmp8);               /* log(2) */

   tmp7->m_apm_exponent -= 1;                            /* divide by 10 */

   M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp7);

   m_apm_subtract(MM_lc_log10, tmp9, tmp8);              /* log(10) */
   m_apm_reciprocal(MM_lc_log10R, dplaces, MM_lc_log10); /* 1 / log(10) */

   M_restore_stack(4);
  }
}
Exemple #12
0
/*
        Calculate arccos using the identity :

        arccos (x) == PI / 2 - arcsin (x)

*/
void	M_arccos_near_0(M_APM rr, int places, M_APM aa)
{
M_APM   tmp1, tmp2;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

M_check_PI_places(places);
M_arcsin_near_0(tmp1, (places + 4), aa);
m_apm_subtract(tmp2, MM_lc_HALF_PI, tmp1);
m_apm_round(rr, places, tmp2);

M_restore_stack(2);
}
Exemple #13
0
/*
 *      sinh(x) == 0.5 * [ exp(x) - exp(-x) ]
 */
void	m_apm_sinh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3;
int     local_precision;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();

local_precision = places + 4;

m_apm_exp(tmp1, local_precision, aa);
m_apm_reciprocal(tmp2, local_precision, tmp1);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_multiply(tmp1, tmp3, MM_0_5);
m_apm_round(rr, places, tmp1);

M_restore_stack(3);
}
Exemple #14
0
/*
 *     calculate the multiple angle identity for cos (4x)
 * 
 *     cos (4x) == 8 * [ cos^4 (x)  -  cos^2 (x) ]  +  1
 */
void	M_4x_do_it(M_APM rr, int places, M_APM xx)
{
M_APM   tmp0, tmp1, t2, t4;

tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
t2   = M_get_stack_var();
t4   = M_get_stack_var();

m_apm_multiply(tmp1, xx, xx);
m_apm_round(t2, (places + 4), tmp1);     /* x ^ 2 */
m_apm_multiply(t4, t2, t2);              /* x ^ 4 */

m_apm_subtract(tmp0, t4, t2);
m_apm_multiply(tmp1, tmp0, MM_5x_Eight);
m_apm_add(tmp0, MM_One, tmp1);
m_apm_round(rr, places, tmp0);
M_restore_stack(4);
}
Exemple #15
0
/*

	for large input values use :

	arctan(x) =  (PI / 2) - arctan(1 / |x|)   

	and sign of result = sign of original input 

*/
void	M_arctan_large_input(M_APM rr, int places, M_APM xx)
{
M_APM	tmp1, tmp2;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

M_check_PI_places(places);

m_apm_divide(tmp1, (places + 6), MM_One, xx);   	   /*  1 / xx       */
tmp1->m_apm_sign = 1;					   /* make positive */
m_apm_arctan(tmp2, (places + 6), tmp1);
m_apm_subtract(tmp1, MM_lc_HALF_PI, tmp2);
m_apm_round(rr, places, tmp1);

rr->m_apm_sign = xx->m_apm_sign;			  /* fix final sign */

M_restore_stack(2);
}
Exemple #16
0
/*
 *      tanh(x) == [ exp(x) - exp(-x) ]  /  [ exp(x) + exp(-x) ]
 */
void	m_apm_tanh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3, tmp4;
int     local_precision;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
tmp4 = M_get_stack_var();

local_precision = places + 4;

m_apm_exp(tmp1, local_precision, aa);
m_apm_reciprocal(tmp2, local_precision, tmp1);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_add(tmp4, tmp1, tmp2);
m_apm_divide(tmp1, local_precision, tmp3, tmp4);
m_apm_round(rr, places, tmp1);

M_restore_stack(4);
}
Exemple #17
0
void	m_apm_arctan2(M_APM rr, int places, M_APM yy, M_APM xx)
{
M_APM   tmp5, tmp6, tmp7;
int	ix, iy;

iy = yy->m_apm_sign;
ix = xx->m_apm_sign;

if (ix == 0)       /* x == 0 */
  {
   if (iy == 0)    /* y == 0 */
     {
      M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctan2\', Both Inputs = 0");
      M_set_to_zero(rr);
      return;
     }

   M_check_PI_places(places);
   m_apm_round(rr, places, MM_lc_HALF_PI);
   rr->m_apm_sign = iy;
   return;
  }

if (iy == 0)
  {
   if (ix == 1)
     {
      M_set_to_zero(rr);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_round(rr, places, MM_lc_PI);
     } 

   return;
  }

/*
 *    the special cases have been handled, now do the real work
 */

tmp5 = M_get_stack_var();
tmp6 = M_get_stack_var();
tmp7 = M_get_stack_var();

m_apm_divide(tmp6, (places + 6), yy, xx);
m_apm_arctan(tmp5, (places + 6), tmp6);

if (ix == 1)         /* 'x' is positive */
  {
   m_apm_round(rr, places, tmp5);
  }
else                 /* 'x' is negative */
  {
   M_check_PI_places(places);

   if (iy == 1)      /* 'y' is positive */
     {
      m_apm_add(tmp7, tmp5, MM_lc_PI);
      m_apm_round(rr, places, tmp7);
     }
   else              /* 'y' is negative */
     {
      m_apm_subtract(tmp7, tmp5, MM_lc_PI);
      m_apm_round(rr, places, tmp7);
     }
  }

M_restore_stack(3);
}
Exemple #18
0
void	m_apm_sqrt(M_APM rr, int places, M_APM aa)
{
M_APM   last_x, guess, tmpN, tmp7, tmp8, tmp9;
int	ii, bflag, nexp, tolerance, dplaces;

if (aa->m_apm_sign <= 0)
  {
   if (aa->m_apm_sign == -1)
     {
      M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_sqrt\', Negative argument");
     }

   M_set_to_zero(rr);
   return;
  }

last_x = M_get_stack_var();
guess  = M_get_stack_var();
tmpN   = M_get_stack_var();
tmp7   = M_get_stack_var();
tmp8   = M_get_stack_var();
tmp9   = M_get_stack_var();

m_apm_copy(tmpN, aa);

/* 
    normalize the input number (make the exponent near 0) so
    the 'guess' function will not over/under flow on large
    magnitude exponents.
*/

nexp = aa->m_apm_exponent / 2;
tmpN->m_apm_exponent -= 2 * nexp;

M_get_sqrt_guess(guess, tmpN);    /* actually gets 1/sqrt guess */

tolerance = places + 4;
dplaces   = places + 16;
bflag     = FALSE;

m_apm_negate(last_x, MM_Ten);

/*   Use the following iteration to calculate 1 / sqrt(N) :

         X    =  0.5 * X * [ 3 - N * X^2 ]
          n+1                    
*/

ii = 0;

while (TRUE)
  {
   m_apm_multiply(tmp9, tmpN, guess);
   m_apm_multiply(tmp8, tmp9, guess);
   m_apm_round(tmp7, dplaces, tmp8);
   m_apm_subtract(tmp9, MM_Three, tmp7);
   m_apm_multiply(tmp8, tmp9, guess);
   m_apm_multiply(tmp9, tmp8, MM_0_5);

   if (bflag)
     break;

   m_apm_round(guess, dplaces, tmp9);

   /* force at least 2 iterations so 'last_x' has valid data */

   if (ii != 0)
     {
      m_apm_subtract(tmp7, guess, last_x);

      if (tmp7->m_apm_sign == 0)
        break;

      /* 
       *   if we are within a factor of 4 on the error term,
       *   we will be accurate enough after the *next* iteration
       *   is complete.  (note that the sign of the exponent on 
       *   the error term will be a negative number).
       */

      if ((-4 * tmp7->m_apm_exponent) > tolerance)
        bflag = TRUE;
     }

   m_apm_copy(last_x, guess);
   ii++;
  }

/*
 *    multiply by the starting number to get the final
 *    sqrt and then adjust the exponent since we found
 *    the sqrt of the normalized number.
 */

m_apm_multiply(tmp8, tmp9, tmpN);
m_apm_round(rr, places, tmp8);
rr->m_apm_exponent += nexp;

M_restore_stack(6);
}
Exemple #19
0
void	M_apm_sdivide(M_APM r, int places, M_APM a, M_APM b)
{
int	j, k, m, b0, sign, nexp, indexr, icompare, iterations;
long    trial_numer;
void	*vp;

if (M_div_firsttime)
  {
   M_div_firsttime = FALSE;

   M_div_worka = m_apm_init();
   M_div_workb = m_apm_init();
   M_div_tmp7  = m_apm_init();
   M_div_tmp8  = m_apm_init();
   M_div_tmp9  = m_apm_init();
  }

sign = a->m_apm_sign * b->m_apm_sign;

if (sign == 0)      /* one number is zero, result is zero */
  {
   if (b->m_apm_sign == 0)
     {
      M_apm_log_error_msg(M_APM_RETURN, "\'M_apm_sdivide\', Divide by 0");
     }

   M_set_to_zero(r);
   return;
  }

/*
 *  Knuth step D1. Since base = 100, base / 2 = 50.
 *  (also make the working copies positive)
 */

if (b->m_apm_data[0] >= 50)
  {
   m_apm_absolute_value(M_div_worka, a);
   m_apm_absolute_value(M_div_workb, b);
  }
else       /* 'normal' step D1 */
  {
   k = 100 / (b->m_apm_data[0] + 1);
   m_apm_set_long(M_div_tmp9, (long)k);

   m_apm_multiply(M_div_worka, M_div_tmp9, a);
   m_apm_multiply(M_div_workb, M_div_tmp9, b);

   M_div_worka->m_apm_sign = 1;
   M_div_workb->m_apm_sign = 1;
  }

/* setup trial denominator for step D3 */

b0 = 100 * (int)M_div_workb->m_apm_data[0];

if (M_div_workb->m_apm_datalength >= 3)
  b0 += M_div_workb->m_apm_data[1];

nexp = M_div_worka->m_apm_exponent - M_div_workb->m_apm_exponent;

if (nexp > 0)
  iterations = nexp + places + 1;
else
  iterations = places + 1;

k = (iterations + 1) >> 1;     /* required size of result, in bytes */

if (k > r->m_apm_malloclength)
  {
   if ((vp = MAPM_REALLOC(r->m_apm_data, (k + 32))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, "\'M_apm_sdivide\', Out of memory");
     }
  
   r->m_apm_malloclength = k + 28;
   r->m_apm_data = (UCHAR *)vp;
  }

/* clear the exponent in the working copies */

M_div_worka->m_apm_exponent = 0;
M_div_workb->m_apm_exponent = 0;

/* if numbers are equal, ratio == 1.00000... */

if ((icompare = m_apm_compare(M_div_worka, M_div_workb)) == 0)
  {
   iterations = 1;
   r->m_apm_data[0] = 10;
   nexp++;
  }
else			           /* ratio not 1, do the real division */
  {
   if (icompare == 1)                        /* numerator > denominator */
     {
      nexp++;                           /* to adjust the final exponent */
      M_div_worka->m_apm_exponent += 1;     /* multiply numerator by 10 */
     }
   else                                      /* numerator < denominator */
     {
      M_div_worka->m_apm_exponent += 2;    /* multiply numerator by 100 */
     }

   indexr = 0;
   m      = 0;

   while (TRUE)
     {
      /*
       *  Knuth step D3. Only use the 3rd -> 6th digits if the number
       *  actually has that many digits.
       */

      trial_numer = 10000L * (long)M_div_worka->m_apm_data[0];
      
      if (M_div_worka->m_apm_datalength >= 5)
        {
         trial_numer += 100 * M_div_worka->m_apm_data[1]
                            + M_div_worka->m_apm_data[2];
	}
      else
        {
         if (M_div_worka->m_apm_datalength >= 3)
           trial_numer += 100 * M_div_worka->m_apm_data[1];
        }

      j = (int)(trial_numer / b0);

      /* 
       *    Since the library 'normalizes' all the results, we need
       *    to look at the exponent of the number to decide if we 
       *    have a lead in 0n or 00.
       */

      if ((k = 2 - M_div_worka->m_apm_exponent) > 0)
        {
	 while (TRUE)
	   {
	    j /= 10;
	    if (--k == 0)
	      break;
	   }
	}

      if (j == 100)     /* qhat == base ??      */
        j = 99;         /* if so, decrease by 1 */

      m_apm_set_long(M_div_tmp8, (long)j);
      m_apm_multiply(M_div_tmp7, M_div_tmp8, M_div_workb);

      /*
       *    Compare our q-hat (j) against the desired number.
       *    j is either correct, 1 too large, or 2 too large
       *    per Theorem B on pg 272 of Art of Compter Programming,
       *    Volume 2, 3rd Edition.
       *    
       *    The above statement is only true if using the 2 leading
       *    digits of the numerator and the leading digit of the 
       *    denominator. Since we are using the (3) leading digits
       *    of the numerator and the (2) leading digits of the 
       *    denominator, we eliminate the case where our q-hat is 
       *    2 too large, (and q-hat being 1 too large is quite remote).
       */

      if (m_apm_compare(M_div_tmp7, M_div_worka) == 1)
        {
	 j--;
         m_apm_subtract(M_div_tmp8, M_div_tmp7, M_div_workb);
         m_apm_copy(M_div_tmp7, M_div_tmp8);
	}

      /* 
       *  Since we know q-hat is correct, step D6 is unnecessary.
       *
       *  Store q-hat, step D5. Since D6 is unnecessary, we can 
       *  do D5 before D4 and decide if we are done.
       */

      r->m_apm_data[indexr++] = (UCHAR)j;    /* j == 'qhat' */
      m += 2;

      if (m >= iterations)
        break;

      /* step D4 */

      m_apm_subtract(M_div_tmp9, M_div_worka, M_div_tmp7);

      /*
       *  if the subtraction yields zero, the division is exact
       *  and we are done early.
       */

      if (M_div_tmp9->m_apm_sign == 0)
        {
	 iterations = m;
	 break;
	}

      /* multiply by 100 and re-save */
      M_div_tmp9->m_apm_exponent += 2;
      m_apm_copy(M_div_worka, M_div_tmp9);
     }
  }

r->m_apm_sign       = sign;
r->m_apm_exponent   = nexp;
r->m_apm_datalength = iterations;

M_apm_normalize(r);
}
Exemple #20
0
void	m_apm_exp(M_APM r, int places, M_APM x)
{
M_APM   tmp7, tmp8, tmp9;
int	dplaces, nn, ii;

if (MM_firsttime1)
  {
   MM_firsttime1 = FALSE;

   MM_exp_log2R = m_apm_init();
   MM_exp_512R  = m_apm_init();

   m_apm_set_string(MM_exp_log2R, "1.44269504089");   /* ~ 1 / log(2) */
   m_apm_set_string(MM_exp_512R,  "1.953125E-3");     /*   1 / 512    */
  }

tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();

if (x->m_apm_sign == 0)		/* if input == 0, return '1' */
  {
   m_apm_copy(r, MM_One);
   M_restore_stack(3);
   return;
  }

if (x->m_apm_exponent <= -3)  /* already small enough so call _raw directly */
  {
   M_raw_exp(tmp9, (places + 6), x);
   m_apm_round(r, places, tmp9);
   M_restore_stack(3);
   return;
  }

/*
    From David H. Bailey's MPFUN Fortran package :

    exp (t) =  (1 + r + r^2 / 2! + r^3 / 3! + r^4 / 4! ...) ^ q * 2 ^ n

    where q = 256, r = t' / q, t' = t - n Log(2) and where n is chosen so
    that -0.5 Log(2) < t' <= 0.5 Log(2).  Reducing t mod Log(2) and
    dividing by 256 insures that -0.001 < r <= 0.001, which accelerates
    convergence in the above series.

    I use q = 512 and also limit how small 'r' can become. The 'r' used
    here is limited in magnitude from 1.95E-4 < |r| < 1.35E-3. Forcing
    'r' into a narrow range keeps the algorithm 'well behaved'.

    ( the range is [0.1 / 512] to [log(2) / 512] )
*/

if (M_exp_compute_nn(&nn, tmp7, x) != 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
      "\'m_apm_exp\', Input too large, Overflow");

   M_set_to_zero(r);
   M_restore_stack(3);
   return;
  }

dplaces = places + 8;

/* check to make sure our log(2) is accurate enough */

M_check_log_places(dplaces);

m_apm_multiply(tmp8, tmp7, MM_lc_log2);
m_apm_subtract(tmp7, x, tmp8);

/*
 *     guarantee that |tmp7| is between 0.1 and 0.9999999....
 *     (in practice, the upper limit only reaches log(2), 0.693... )
 */

while (TRUE)
  {
   if (tmp7->m_apm_sign != 0)
     {
      if (tmp7->m_apm_exponent == 0)
        break;
     }
     
   if (tmp7->m_apm_sign >= 0)
     {
      nn++;
      m_apm_subtract(tmp8, tmp7, MM_lc_log2);
      m_apm_copy(tmp7, tmp8);
     }
   else
     {
      nn--;
      m_apm_add(tmp8, tmp7, MM_lc_log2);
      m_apm_copy(tmp7, tmp8);
     }
  }

m_apm_multiply(tmp9, tmp7, MM_exp_512R);

/* perform the series expansion ... */

M_raw_exp(tmp8, dplaces, tmp9);

/*
 *   raise result to the 512 power
 *
 *   note : x ^ 512  =  (((x ^ 2) ^ 2) ^ 2) ... 9 times
 */

ii = 9;

while (TRUE)
  {
   m_apm_multiply(tmp9, tmp8, tmp8);
   m_apm_round(tmp8, dplaces, tmp9);

   if (--ii == 0)
     break;
  }

/* now compute 2 ^ N */

m_apm_integer_pow(tmp7, dplaces, MM_Two, nn);

m_apm_multiply(tmp9, tmp7, tmp8);
m_apm_round(r, places, tmp9);

M_restore_stack(3);                    /* restore the 3 locals we used here */
}
Exemple #21
0
void	M_log_AGM_R_func(M_APM rr, int places, M_APM aa, M_APM bb)
{
M_APM   tmp1, tmp2, tmp3, tmp4, tmpC2, sum, pow_2, tmpA0, tmpB0;
int	tolerance, dplaces;

tmpA0 = M_get_stack_var();
tmpB0 = M_get_stack_var();
tmpC2 = M_get_stack_var();
tmp1  = M_get_stack_var();
tmp2  = M_get_stack_var();
tmp3  = M_get_stack_var();
tmp4  = M_get_stack_var();
sum   = M_get_stack_var();
pow_2 = M_get_stack_var();

tolerance = places + 8;
dplaces   = places + 16;

m_apm_copy(tmpA0, aa);
m_apm_copy(tmpB0, bb);
m_apm_copy(pow_2, MM_0_5);

m_apm_multiply(tmp1, aa, aa);		    /* 0.5 * [ a ^ 2 - b ^ 2 ] */
m_apm_multiply(tmp2, bb, bb);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_multiply(sum, MM_0_5, tmp3);

while (TRUE)
  {
   m_apm_subtract(tmp1, tmpA0, tmpB0);      /* C n+1 = 0.5 * [ An - Bn ] */
   m_apm_multiply(tmp4, MM_0_5, tmp1);      /* C n+1 */
   m_apm_multiply(tmpC2, tmp4, tmp4);       /* C n+1 ^ 2 */

   /* do the AGM */

   m_apm_add(tmp1, tmpA0, tmpB0);
   m_apm_multiply(tmp3, MM_0_5, tmp1);

   m_apm_multiply(tmp2, tmpA0, tmpB0);
   m_apm_sqrt(tmpB0, dplaces, tmp2);

   m_apm_round(tmpA0, dplaces, tmp3);

   /* end AGM */

   m_apm_multiply(tmp2, MM_Two, pow_2);
   m_apm_copy(pow_2, tmp2);

   m_apm_multiply(tmp1, tmpC2, pow_2);
   m_apm_add(tmp3, sum, tmp1);

   if ((tmp1->m_apm_sign == 0) || 
      ((-2 * tmp1->m_apm_exponent) > tolerance))
     break;

   m_apm_round(sum, dplaces, tmp3);
  }

m_apm_subtract(tmp4, MM_One, tmp3);
m_apm_reciprocal(rr, places, tmp4);

M_restore_stack(9);
}
Exemple #22
0
void	m_apm_to_fixpt_string(char *ss, int dplaces, M_APM mtmp)
{
M_APM   ctmp;
void	*vp;
int	places, i2, ii, jj, kk, xp, dl, numb;
UCHAR   *ucp, numdiv, numrem;
char	*cpw, *cpd, sbuf[128];

ctmp   = M_get_stack_var();
vp     = NULL;
cpd    = ss;
places = dplaces;

/* just want integer portion if places == 0 */

if (places == 0)
  {
   if (mtmp->m_apm_sign >= 0)
     m_apm_add(ctmp, mtmp, MM_0_5);
   else
     m_apm_subtract(ctmp, mtmp, MM_0_5);

   m_apm_to_integer_string(cpd, ctmp);

   M_restore_stack(1);
   return;
  }

if (places > 0)
  M_apm_round_fixpt(ctmp, places, mtmp);
else
  m_apm_copy(ctmp, mtmp);	  /* show ALL digits */

if (ctmp->m_apm_sign == 0)        /* result is 0 */
  {
   if (places < 0)
     {
      cpd[0] = '0';		  /* "0.0" */
      cpd[1] = '.';
      cpd[2] = '0';
      cpd[3] = '\0';
     }
   else
     {
      memset(cpd, '0', (places + 2));	/* pre-load string with all '0' */
      cpd[1] = '.';
      cpd[places + 2] = '\0';
     }

   M_restore_stack(1);
   return;
  }

xp   = ctmp->m_apm_exponent;
dl   = ctmp->m_apm_datalength;
numb = (dl + 1) >> 1;

if (places < 0)
  {
   if (dl > xp)
     jj = dl + 16;
   else
     jj = xp + 16;
  }
else
  {
   jj = places + 16;
   
   if (xp > 0)
     jj += xp;
  }

if (jj > 112)
  {
   if ((vp = (void *)MAPM_MALLOC((jj + 16) * sizeof(char))) == NULL)
     {
      /* fatal, this does not return */

      M_apm_log_error_msg(M_APM_FATAL, 
                          "\'m_apm_to_fixpt_string\', Out of memory");
     }

   cpw = (char *)vp;
  }
else
  {
   cpw = sbuf;
  }

/*
 *  at this point, the number is non-zero and the the output
 *  string will contain at least 1 significant digit.
 */

if (ctmp->m_apm_sign == -1) 	  /* negative number */
  {
   *cpd++ = '-';
  }

ucp = ctmp->m_apm_data;
ii  = 0;

/* convert MAPM num to ASCII digits and store in working char array */

while (TRUE)
  {
   M_get_div_rem_10((int)(*ucp++), &numdiv, &numrem);

   cpw[ii++] = numdiv + '0';
   cpw[ii++] = numrem + '0';

   if (--numb == 0)
     break;
  }

i2 = ii;		/* save for later */

if (places < 0)		/* show ALL digits */
  {
   places = dl - xp;

   if (places < 1)
     places = 1;
  }

/* pad with trailing zeros if needed */

kk = xp + places + 2 - ii;

if (kk > 0)
  memset(&cpw[ii], '0', kk);

if (xp > 0)          /* |num| >= 1, NO lead-in "0.nnn" */
  {
   ii = xp + places + 1;
   jj = 0;

   for (kk=0; kk < ii; kk++)
     {
      if (kk == xp)
        cpd[jj++] = '.';

      cpd[jj++] = cpw[kk];
     }

   cpd[ii] = '\0';
  }
else			/* |num| < 1, have lead-in "0.nnn" */
  {
   jj = 2 - xp;
   ii = 2 + places;
   memset(cpd, '0', (ii + 1));	/* pre-load string with all '0' */
   cpd[1] = '.';		/* assign decimal point */

   for (kk=0; kk < i2; kk++)
     {
      cpd[jj++] = cpw[kk];
     }

   cpd[ii] = '\0';
  }

if (vp != NULL)
  MAPM_FREE(vp);

M_restore_stack(1);
}
Exemple #23
0
/*
 *      From Knuth, The Art of Computer Programming: 
 *
 *	This is the binary GCD algorithm as described
 *	in the book (Algorithm B)
 */
void	m_apm_gcd(M_APM r, M_APM u, M_APM v)
{
M_APM   tmpM, tmpN, tmpT, tmpU, tmpV;
int	kk, kr, mm;
long    pow_2;

/* 'is_integer' will return 0 || 1 */

if ((m_apm_is_integer(u) + m_apm_is_integer(v)) != 2)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! \'m_apm_gcd\', Non-integer input");

   M_set_to_zero(r);
   return;
  }

if (u->m_apm_sign == 0)
  {
   m_apm_absolute_value(r, v);
   return;
  }

if (v->m_apm_sign == 0)
  {
   m_apm_absolute_value(r, u);
   return;
  }

tmpM = M_get_stack_var();
tmpN = M_get_stack_var();
tmpT = M_get_stack_var();
tmpU = M_get_stack_var();
tmpV = M_get_stack_var();

m_apm_absolute_value(tmpU, u);
m_apm_absolute_value(tmpV, v);

/* Step B1 */

kk = 0;

while (TRUE)
  {
   mm = 1;
   if (m_apm_is_odd(tmpU))
     break;

   mm = 0;
   if (m_apm_is_odd(tmpV))
     break;

   m_apm_multiply(tmpN, MM_0_5, tmpU);
   m_apm_copy(tmpU, tmpN);

   m_apm_multiply(tmpN, MM_0_5, tmpV);
   m_apm_copy(tmpV, tmpN);

   kk++;
  }

/* Step B2 */

if (mm)
  {
   m_apm_negate(tmpT, tmpV);
   goto B4;
  }

m_apm_copy(tmpT, tmpU);

/* Step: */

B3:

m_apm_multiply(tmpN, MM_0_5, tmpT);
m_apm_copy(tmpT, tmpN);

/* Step: */

B4:

if (m_apm_is_even(tmpT))
  goto B3;

/* Step B5 */

if (tmpT->m_apm_sign == 1)
  m_apm_copy(tmpU, tmpT);
else
  m_apm_negate(tmpV, tmpT);

/* Step B6 */

m_apm_subtract(tmpT, tmpU, tmpV);

if (tmpT->m_apm_sign != 0)
  goto B3;

/*
 *  result = U * 2 ^ kk
 */

if (kk == 0)
   m_apm_copy(r, tmpU);
else
  {
   if (kk == 1)
     m_apm_multiply(r, tmpU, MM_Two);

   if (kk == 2)
     m_apm_multiply(r, tmpU, MM_Four);

   if (kk >= 3)
     {
      mm = kk / 28;
      kr = kk % 28;
      pow_2 = 1L << kr;

      if (mm == 0)
        {
	 m_apm_set_long(tmpN, pow_2);
         m_apm_multiply(r, tmpU, tmpN);
	}
      else
        {
	 m_apm_copy(tmpN, MM_One);
         m_apm_set_long(tmpM, 0x10000000L);   /* 2 ^ 28 */

	 while (TRUE)
	   {
            m_apm_multiply(tmpT, tmpN, tmpM);
            m_apm_copy(tmpN, tmpT);

	    if (--mm == 0)
	      break;
	   }

	 if (kr == 0)
	   {
            m_apm_multiply(r, tmpU, tmpN);
	   }
	 else
	   {
	    m_apm_set_long(tmpM, pow_2);
            m_apm_multiply(tmpT, tmpN, tmpM);
            m_apm_multiply(r, tmpU, tmpT);
	   }
	}
     }
  }

M_restore_stack(5);
}
Exemple #24
0
void	m_apm_factorial(M_APM moutput, M_APM minput)
{
int     ii, nmul, ndigits, nd, jj, kk, mm, ct;
M_APM   array[NDIM];
M_APM   iprod1, iprod2, tmp1, tmp2;

/* return 1 for any input <= 1 */

if (m_apm_compare(minput, MM_One) <= 0)
  {
   m_apm_copy(moutput, MM_One);
   return;
  }

ct       = 0;
mm       = NDIM - 2;
ndigits  = 256;
nd       = ndigits - 20;
tmp1     = m_apm_init();
tmp2     = m_apm_init();
iprod1   = m_apm_init();
iprod2   = m_apm_init();
array[0] = m_apm_init();

m_apm_copy(tmp2, minput);

/* loop until multiply count-down has reached '2' */

while (TRUE)
  {
   m_apm_copy(iprod1, MM_One);

   /* 
    *   loop until the number of significant digits in this 
    *   partial result is slightly less than 256
    */

   while (TRUE)
     {
      m_apm_multiply(iprod2, iprod1, tmp2);

      m_apm_subtract(tmp1, tmp2, MM_One);

      m_apm_multiply(iprod1, iprod2, tmp1);

      /*
       *  I know, I know.  There just isn't a *clean* way 
       *  to break out of 2 nested loops.
       */

      if (m_apm_compare(tmp1, MM_Two) <= 0)
        goto PHASE2;

      m_apm_subtract(tmp2, tmp1, MM_One);

      if (iprod1->m_apm_datalength > nd)
        break;
     }

   if (ct == (NDIM - 1))
     {
      /* 
       *    if the array has filled up, start multiplying
       *    some of the partial products now.
       */

      m_apm_copy(tmp1, array[mm]);
      m_apm_multiply(array[mm], iprod1, tmp1);

      if (mm == 0)
        {
         mm = NDIM - 2;
	 ndigits = ndigits << 1;
         nd = ndigits - 20;
	}
      else
         mm--;
     }
   else
     {
      /* 
       *    store this partial product in the array
       *    and allocate the next array element
       */

      m_apm_copy(array[ct], iprod1);
      array[++ct] = m_apm_init();
     }
  }

PHASE2:

m_apm_copy(array[ct], iprod1);

kk = ct;

while (kk != 0)
  {
   ii = 0;
   jj = 0;
   nmul = (kk + 1) >> 1;

   while (TRUE)
     {
      /* must use tmp var when ii,jj point to same element */

      if (ii == 0)
        {
         m_apm_copy(tmp1, array[ii]);
         m_apm_multiply(array[jj], tmp1, array[ii+1]);
        }
      else
         m_apm_multiply(array[jj], array[ii], array[ii+1]);

      if (++jj == nmul)
        break;

      ii += 2;
     }

   if ((kk & 1) == 0)
     {
      jj = kk >> 1;
      m_apm_copy(array[jj], array[kk]);
     }

   kk = kk >> 1;
  }
Exemple #25
0
void	m_apm_subtract_mt(M_APM r, M_APM a, M_APM b)
{
	m_apm_enter();
	m_apm_subtract(r,a,b);
	m_apm_leave();
}
Exemple #26
0
/*
 *      Calculate PI using the AGM (Arithmetic-Geometric Mean)
 *
 *      Init :  A0  = 1
 *              B0  = 1 / sqrt(2)
 *              Sum = 1
 *
 *      Iterate: n = 1...
 *
 *
 *      A   =  0.5 * [ A    +  B   ]
 *       n              n-1     n-1
 *
 *
 *      B   =  sqrt [ A    *  B   ]
 *       n             n-1     n-1
 *
 *
 *
 *      C   =  0.5 * [ A    -  B   ]
 *       n              n-1     n-1
 *
 *
 *                      2      n+1
 *     Sum  =  Sum  -  C   *  2
 *                      n
 *
 *
 *      At the end when C  is 'small enough' :
 *                       n
 *
 *                    2 
 *      PI  =  4  *  A    /  Sum
 *                    n+1
 *
 *          -OR-
 *
 *                       2
 *      PI  = ( A  +  B )   /  Sum
 *               n     n
 *
 */
void	M_calculate_PI_AGM(M_APM outv, int places)
{
M_APM   tmp1, tmp2, a0, b0, c0, a1, b1, sum, pow_2;
int     dplaces, nn;

tmp1  = M_get_stack_var();
tmp2  = M_get_stack_var();
a0    = M_get_stack_var();
b0    = M_get_stack_var();
c0    = M_get_stack_var();
a1    = M_get_stack_var();
b1    = M_get_stack_var();
sum   = M_get_stack_var();
pow_2 = M_get_stack_var();

dplaces = places + 16;

m_apm_copy(a0, MM_One);
m_apm_copy(sum, MM_One);
m_apm_copy(pow_2, MM_Four);
m_apm_sqrt(b0, dplaces, MM_0_5);        /* sqrt(0.5) */

while (TRUE)
  {
   m_apm_add(tmp1, a0, b0);
   m_apm_multiply(a1, MM_0_5, tmp1);

   m_apm_multiply(tmp1, a0, b0);
   m_apm_sqrt(b1, dplaces, tmp1);

   m_apm_subtract(tmp1, a0, b0);
   m_apm_multiply(c0, MM_0_5, tmp1);

   /*
    *   the net 'PI' calculated from this iteration will
    *   be accurate to ~4 X the value of (c0)'s exponent.
    *   this was determined experimentally. 
    */

   nn = -4 * c0->m_apm_exponent;

   m_apm_multiply(tmp1, c0, c0);
   m_apm_multiply(tmp2, tmp1, pow_2);
   m_apm_subtract(tmp1, sum, tmp2);
   m_apm_round(sum, dplaces, tmp1);

   if (nn >= dplaces)
     break;

   m_apm_copy(a0, a1);
   m_apm_copy(b0, b1);

   m_apm_multiply(tmp1, pow_2, MM_Two);
   m_apm_copy(pow_2, tmp1);
  }

m_apm_add(tmp1, a1, b1);
m_apm_multiply(tmp2, tmp1, tmp1);
m_apm_divide(tmp1, dplaces, tmp2, sum);
m_apm_round(outv, places, tmp1);

M_restore_stack(9);
}
Exemple #27
0
void	m_apm_arccos(M_APM r, int places, M_APM x)
{
M_APM   tmp0, tmp1, tmp2, tmp3, current_x;
int	ii, maxiter, maxp, tolerance, local_precision;

current_x = M_get_stack_var();
tmp0      = M_get_stack_var();
tmp1      = M_get_stack_var();
tmp2      = M_get_stack_var();
tmp3      = M_get_stack_var();

m_apm_absolute_value(tmp0, x);

ii = m_apm_compare(tmp0, MM_One);

if (ii == 1)       /* |x| > 1 */
  {
   M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccos\', |Argument| > 1");
   M_set_to_zero(r);
   M_restore_stack(5);
   return;
  }

if (ii == 0)       /* |x| == 1, arccos = 0, PI */
  {
   if (x->m_apm_sign == 1)
     {
      M_set_to_zero(r);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_round(r, places, MM_lc_PI);
     }

   M_restore_stack(5);
   return;
  }

if (m_apm_compare(tmp0, MM_0_85) == 1)        /* check if > 0.85 */
  {
   M_cos_to_sin(tmp2, (places + 4), x);

   if (x->m_apm_sign == 1)
     {
      m_apm_arcsin(r, places, tmp2);
     }
   else
     {
      M_check_PI_places(places);
      m_apm_arcsin(tmp3, (places + 4), tmp2);
      m_apm_subtract(tmp1, MM_lc_PI, tmp3);
      m_apm_round(r, places, tmp1);
     }

   M_restore_stack(5);
   return;
  }

if (x->m_apm_sign == 0)			      /* input == 0 ?? */
  {
   M_check_PI_places(places);
   m_apm_round(r, places, MM_lc_HALF_PI);
   M_restore_stack(5);
   return;
  }

if (x->m_apm_exponent <= -4)		      /* input close to 0 ?? */
  {
   M_arccos_near_0(r, places, x);
   M_restore_stack(5);
   return;
  }

tolerance       = -(places + 4);
maxp            = places + 8;
local_precision = 18;

/*
 *      compute the maximum number of iterations
 *	that should be needed to calculate to
 *	the desired accuracy.  [ constant below ~= 1 / log(2) ]
 */

maxiter = (int)(log((double)(places + 2)) * 1.442695) + 3;

if (maxiter < 5)
  maxiter = 5;

M_get_acos_guess(current_x, x);

/*    Use the following iteration to solve for arc-cos :

                      cos(X) - N
      X     =  X  +  ------------
       n+1              sin(X)
*/

ii = 0;

while (TRUE)
  {
   M_4x_cos(tmp1, local_precision, current_x);

   M_cos_to_sin(tmp2, local_precision, tmp1);
   if (tmp2->m_apm_sign != 0)
     tmp2->m_apm_sign = current_x->m_apm_sign;

   m_apm_subtract(tmp3, tmp1, x);
   m_apm_divide(tmp0, local_precision, tmp3, tmp2);

   m_apm_add(tmp2, current_x, tmp0);
   m_apm_copy(current_x, tmp2);

   if (ii != 0)
     {
      if (((2 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   if (++ii == maxiter)
     {
      M_apm_log_error_msg(M_APM_RETURN,
            "\'m_apm_arccos\', max iteration count reached");
      break;
     }

   local_precision *= 2;

   if (local_precision > maxp)
     local_precision = maxp;
  }

m_apm_round(r, places, current_x);
M_restore_stack(5);
}
Exemple #28
0
void	m_apm_log(M_APM r, int places, M_APM a)
{
M_APM   tmp0, tmp1, tmp2;
int	mexp, dplaces;

if (a->m_apm_sign <= 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! ... \'m_apm_log\', Negative argument");
   M_set_to_zero(r);
   return;
  }

tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();

dplaces = places + 8;

/*
 *    if the input is real close to 1, use the series expansion
 *    to compute the log.
 *    
 *    0.9999 < a < 1.0001
 */

m_apm_subtract(tmp0, a, MM_One);

if (tmp0->m_apm_sign == 0)    /* is input exactly 1 ?? */
  {                           /* if so, result is 0    */
   M_set_to_zero(r);
   M_restore_stack(3);   
   return;
  }

if (tmp0->m_apm_exponent <= -4)
  {
   M_log_near_1(r, places, tmp0);
   M_restore_stack(3);   
   return;
  }

/* make sure our log(10) is accurate enough for this calculation */
/* (and log(2) which is called from M_log_basic_iteration) */

M_check_log_places(dplaces + 25);

mexp = a->m_apm_exponent;
if (mexp >= -4 && mexp <= 4)
  {
   M_log_basic_iteration(r, places, a);
  }
else
  {
   /*
    *  use log (x * y) = log(x) + log(y)
    *
    *  here we use y = exponent of our base 10 number.
    *
    *  let 'C' = log(10) = 2.3025850929940....
    *
    *  then log(x * y) = log(x) + ( C * base_10_exponent )
    */

   m_apm_copy(tmp2, a);
   
   mexp = tmp2->m_apm_exponent - 2;
   tmp2->m_apm_exponent = 2;              /* force number between 10 & 100 */
   
   M_log_basic_iteration(tmp0, dplaces, tmp2);
   
   m_apm_set_long(tmp1, (long)mexp);
   m_apm_multiply(tmp2, tmp1, MM_lc_log10);
   m_apm_add(tmp1, tmp2, tmp0);
   
   m_apm_round(r, places, tmp1);
  }

M_restore_stack(3);                    /* restore the 3 locals we used here */
}
Exemple #29
0
void	m_apm_reciprocal(M_APM rr, int places, M_APM aa)
{
M_APM   last_x, guess, tmpN, tmp1, tmp2;
int	ii, bflag, dplaces, nexp, tolerance;

if (aa->m_apm_sign == 0)
  {
   M_apm_log_error_msg(M_APM_RETURN, 
                       "Warning! ... \'m_apm_reciprocal\', Input = 0");

   M_set_to_zero(rr);
   return;
  }

last_x = M_get_stack_var();
guess  = M_get_stack_var();
tmpN   = M_get_stack_var();
tmp1   = M_get_stack_var();
tmp2   = M_get_stack_var();

m_apm_absolute_value(tmpN, aa);

/* 
    normalize the input number (make the exponent 0) so
    the 'guess' below will not over/under flow on large
    magnitude exponents.
*/

nexp = aa->m_apm_exponent;
tmpN->m_apm_exponent -= nexp;

m_apm_set_double(guess, (1.0 / m_apm_get_double(tmpN)));

tolerance = places + 4;
dplaces   = places + 16;
bflag     = FALSE;

m_apm_negate(last_x, MM_Ten);

/*   Use the following iteration to calculate the reciprocal :


         X     =  X  *  [ 2 - N * X ]
          n+1
*/

ii = 0;

while (TRUE)
  {
   m_apm_multiply(tmp1, tmpN, guess);
   m_apm_subtract(tmp2, MM_Two, tmp1);
   m_apm_multiply(tmp1, tmp2, guess);

   if (bflag)
     break;

   m_apm_round(guess, dplaces, tmp1);

   /* force at least 2 iterations so 'last_x' has valid data */

   if (ii != 0)
     {
      m_apm_subtract(tmp2, guess, last_x);

      if (tmp2->m_apm_sign == 0)
        break;

      /* 
       *   if we are within a factor of 4 on the error term,
       *   we will be accurate enough after the *next* iteration
       *   is complete.
       */

      if ((-4 * tmp2->m_apm_exponent) > tolerance)
        bflag = TRUE;
     }

   m_apm_copy(last_x, guess);
   ii++;
  }

m_apm_round(rr, places, tmp1);
rr->m_apm_exponent -= nexp;
rr->m_apm_sign = aa->m_apm_sign;
M_restore_stack(5);
}
Exemple #30
0
void	m_apm_add(M_APM r, M_APM a, M_APM b)
{
int	j, carry, sign, aexp, bexp, adigits, bdigits;

if (M_add_firsttime)
  {
   M_add_firsttime = FALSE;
   M_work1 = m_apm_init();
   M_work2 = m_apm_init();
  }

if (a->m_apm_sign == 0)
  {
   m_apm_copy(r,b);
   return;
  }

if (b->m_apm_sign == 0)
  {
   m_apm_copy(r,a);
   return;
  }
  
if (a->m_apm_sign == 1 && b->m_apm_sign == -1)
  {
   b->m_apm_sign = 1;
   m_apm_subtract(r,a,b);
   b->m_apm_sign = -1;
   return;
  }

if (a->m_apm_sign == -1 && b->m_apm_sign == 1)
  {
   a->m_apm_sign = 1;
   m_apm_subtract(r,b,a);
   a->m_apm_sign = -1;
   return;
  }

sign = a->m_apm_sign;         /* signs are the same, result will be same */

aexp = a->m_apm_exponent;
bexp = b->m_apm_exponent;

m_apm_copy(M_work1, a);
m_apm_copy(M_work2, b);

/*
 *  scale by at least 1 factor of 10 in case the MSB carrys
 */

if (aexp == bexp)
  {
   M_apm_scale(M_work1, 2);   /* shift 2 digits == 1 byte for efficiency */
   M_apm_scale(M_work2, 2);
  }
else
  {
   if (aexp > bexp)
     {
      M_apm_scale(M_work1, 2);
      M_apm_scale(M_work2, (aexp + 2 - bexp));
     }
   else            /*  aexp < bexp  */
     {
      M_apm_scale(M_work2, 2);
      M_apm_scale(M_work1, (bexp + 2 - aexp));
     }
  }

adigits = M_work1->m_apm_datalength;
bdigits = M_work2->m_apm_datalength;

if (adigits >= bdigits)
  {
   m_apm_copy(r, M_work1);
   j = (bdigits + 1) >> 1;
   carry = 0;

   while (TRUE)
     {
      j--;
      r->m_apm_data[j] += carry + M_work2->m_apm_data[j];

      if (r->m_apm_data[j] >= 100)
        {
         r->m_apm_data[j] -= 100;
	 carry = 1;
	}
      else
         carry = 0;

      if (j == 0) 
        break;
     }
  }