Exemple #1
0
void
mag_geom_series(mag_t res, const mag_t x, ulong n)
{
    if (mag_is_zero(x))
    {
        if (n == 0)
            mag_one(res);
        else
            mag_zero(res);
    }
    else if (mag_is_inf(x))
    {
        mag_inf(res);
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_one(t);
        mag_sub_lower(t, t, x);

        if (mag_is_zero(t))
        {
            mag_inf(res);
        }
        else
        {
            mag_pow_ui(res, x, n);
            mag_div(res, res, t);
        }

        mag_clear(t);
    }
}
Exemple #2
0
/* bound (1 + 1/m)^n, m > 0, n >= 0 */
void
mag_binpow_uiui(mag_t b, ulong m, ulong n)
{
    mag_t t;

    if (m == 0)
    {
        mag_inf(b);
        return;
    }

    mag_init(t);

    /* bound by exp(n/m) <= 1 + (n/m) + (n/m)^2 */
    if (m > n)
    {
        mag_set_ui(t, n);   /* x = n/m */
        mag_div_ui(t, t, m);

        mag_mul(b, t, t);   /* x^2 */
        mag_add(b, b, t);   /* x */
        mag_one(t);
        mag_add(b, b, t);   /* 1 */
    }
    else
    {
        mag_one(b);
        mag_div_ui(b, b, m);
        mag_one(t);
        mag_add(t, t, b);
        mag_pow_ui(b, t, n);
    }

    mag_clear(t);
}
Exemple #3
0
static void
acb_log1p_tiny(acb_t r, const acb_t z, slong prec)
{
    mag_t b, c;
    acb_t t;
    int real;

    mag_init(b);
    mag_init(c);
    acb_init(t);

    real = acb_is_real(z);

    /* if |z| < 1, then |log(1+z) - [z - z^2/2]| <= |z|^3/(1-|z|) */
    acb_get_mag(b, z);
    mag_one(c);
    mag_sub_lower(c, c, b);
    mag_pow_ui(b, b, 3);
    mag_div(b, b, c);

    acb_mul(t, z, z, prec);
    acb_mul_2exp_si(t, t, -1);
    acb_sub(r, z, t, prec);

    if (real && mag_is_finite(b))
        arb_add_error_mag(acb_realref(r), b);
    else
        acb_add_error_mag(r, b);

    mag_clear(b);
    mag_clear(c);
    acb_clear(t);
}
Exemple #4
0
void
mag_exp_tail(mag_t z, const mag_t x, ulong N)
{
    if (N == 0 || mag_is_inf(x))
    {
        mag_exp(z, x);
    }
    else if (mag_is_zero(x))
    {
        mag_zero(z);
    }
    else
    {
        mag_t t;
        mag_init(t);
        mag_set_ui_2exp_si(t, N, -1);

        /* bound by geometric series when N >= 2*x  <=> N/2 >= x */
        if (mag_cmp(t, x) >= 0)
        {
            /* 2 c^N / N! */
            mag_pow_ui(t, x, N);
            mag_rfac_ui(z, N);
            mag_mul(z, z, t);
            mag_mul_2exp_si(z, z, 1);
        }
        else
        {
            mag_exp(z, x);
        }

        mag_clear(t);
    }
}
Exemple #5
0
static void
arb_sqrt1pm1_tiny(arb_t r, const arb_t z, slong prec)
{
    mag_t b, c;
    arb_t t;

    mag_init(b);
    mag_init(c);
    arb_init(t);

    /* if |z| < 1, then |(sqrt(1+z)-1) - (z/2-z^2/8)| <= |z|^3/(1-|z|)/16 */
    arb_get_mag(b, z);
    mag_one(c);
    mag_sub_lower(c, c, b);
    mag_pow_ui(b, b, 3);
    mag_div(b, b, c);
    mag_mul_2exp_si(b, b, -4);

    arb_mul(t, z, z, prec);
    arb_mul_2exp_si(t, t, -2);
    arb_sub(r, z, t, prec);
    arb_mul_2exp_si(r, r, -1);

    if (mag_is_finite(b))
        arb_add_error_mag(r, b);
    else
        arb_indeterminate(r);

    mag_clear(b);
    mag_clear(c);
    arb_clear(t);
}
Exemple #6
0
static void
acb_hypgeom_mag_Cn(mag_t Cn, int R, const mag_t nu, const mag_t sigma, ulong n)
{
    if (R == 1)
    {
        mag_one(Cn);
    }
    else
    {
        acb_hypgeom_mag_chi(Cn, n);

        if (R == 3)
        {
            mag_t tmp;
            mag_init(tmp);
            mag_mul(tmp, nu, nu);
            mag_mul(tmp, tmp, sigma);
            if (n != 1)
                mag_mul_ui(tmp, tmp, n);
            mag_add(Cn, Cn, tmp);
            mag_pow_ui(tmp, nu, n);
            mag_mul(Cn, Cn, tmp);
            mag_clear(tmp);
        }
    }
}
Exemple #7
0
/* The error for eta(s) is bounded by 3/(3+sqrt(8))^n */
void
mag_borwein_error(mag_t err, slong n)
{
    /* upper bound for 1/(3+sqrt(8)) */
    mag_set_ui_2exp_si(err, 736899889, -32);

    mag_pow_ui(err, err, n);
    mag_mul_ui(err, err, 3);
}
void
mag_polylog_tail(mag_t u, const mag_t z, long sigma, ulong d, ulong N)
{
    mag_t TN, UN, t;

    if (N < 2)
    {
        mag_inf(u);
        return;
    }

    mag_init(TN);
    mag_init(UN);
    mag_init(t);

    if (mag_cmp_2exp_si(z, 0) >= 0)
    {
        mag_inf(u);
    }
    else
    {
        /* Bound T(N) */
        mag_pow_ui(TN, z, N);

        /* multiply by log(N)^d */
        if (d > 0)
        {
            mag_log_ui(t, N);
            mag_pow_ui(t, t, d);
            mag_mul(TN, TN, t);
        }

        /* multiply by 1/k^s */
        if (sigma > 0)
        {
            mag_set_ui_lower(t, N);
            mag_pow_ui_lower(t, t, sigma);
            mag_div(TN, TN, t);
        }
        else if (sigma < 0)
        {
            mag_set_ui(t, N);
            mag_pow_ui(t, t, -sigma);
            mag_mul(TN, TN, t);
        }

        /* Bound U(N) */
        mag_set(UN, z);

        /* multiply by (1 + 1/N)**S */
        if (sigma < 0)
        {
            mag_binpow_uiui(t, N, -sigma);
            mag_mul(UN, UN, t);
        }

        /* multiply by (1 + 1/(N log(N)))^d */
        if (d > 0)
        {
            ulong nl;

            /* rounds down */
            nl = mag_d_log_lower_bound(N) * N * (1 - 1e-13);

            mag_binpow_uiui(t, nl, d);
            mag_mul(UN, UN, t);
        }

        /* T(N) / (1 - U(N)) */
        if (mag_cmp_2exp_si(UN, 0) >= 0)
        {
            mag_inf(u);
        }
        else
        {
            mag_one(t);
            mag_sub_lower(t, t, UN);
            mag_div(u, TN, t);
        }
    }

    mag_clear(TN);
    mag_clear(UN);
    mag_clear(t);
}
Exemple #9
0
/*
Given T(K), compute bound for T(n) z^n.

We need to multiply by

z^n * 1/rf(K+1,m)^r * (rf(K+1,m)/rf(K+1-A,m)) * (rf(K+1-B,m)/rf(K+1-2B,m))

where m = n - K. This is equal to

z^n * 

(K+A)! (K-2B)! (K-B+m)!
-----------------------    * ((K+m)! / K!)^(1-r)
(K-B)! (K-A+m)! (K-2B+m)!
*/
void
hypgeom_term_bound(mag_t Tn, const mag_t TK, slong K, slong A, slong B, int r, const mag_t z, slong n)
{
    mag_t t, u, num;
    slong m;

    mag_init(t);
    mag_init(u);
    mag_init(num);

    m = n - K;

    if (m < 0)
    {
        flint_printf("hypgeom term bound\n");
        abort();
    }

    /* TK * z^n */
    mag_pow_ui(t, z, n);
    mag_mul(num, TK, t);

    /* numerator: (K+A)! (K-2B)! (K-B+m)! */
    mag_fac_ui(t, K+A);
    mag_mul(num, num, t);

    mag_fac_ui(t, K-2*B);
    mag_mul(num, num, t);

    mag_fac_ui(t, K-B+m);
    mag_mul(num, num, t);

    /* denominator: (K-B)! (K-A+m)! (K-2B+m)! */
    mag_rfac_ui(t, K-B);
    mag_mul(num, num, t);

    mag_rfac_ui(t, K-A+m);
    mag_mul(num, num, t);

    mag_rfac_ui(t, K-2*B+m);
    mag_mul(num, num, t);

    /* ((K+m)! / K!)^(1-r) */
    if (r == 0)
    {
        mag_fac_ui(t, K+m);
        mag_mul(num, num, t);

        mag_rfac_ui(t, K);
        mag_mul(num, num, t);
    }
    else if (r != 1)
    {
        mag_fac_ui(t, K);
        mag_rfac_ui(u, K+m);
        mag_mul(t, t, u);

        mag_pow_ui(t, t, r-1);
        mag_mul(num, num, t);
    }

    mag_set(Tn, num);

    mag_clear(t);
    mag_clear(u);
    mag_clear(num);
}
Exemple #10
0
void
acb_hypgeom_pfq_sum_rs(acb_t res, acb_t term, acb_srcptr a, slong p,
                                              acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
{
    acb_ptr zpow;
    acb_t s, t, u;
    slong i, j, k, m;
    mag_t B, C;

    if (n == 0)
    {
        acb_zero(res);
        acb_one(term);
        return;
    }

    if (n < 0)
        abort();

    m = n_sqrt(n);
    m = FLINT_MIN(m, 150);

    mag_init(B);
    mag_init(C);
    acb_init(s);
    acb_init(t);
    acb_init(u);
    zpow = _acb_vec_init(m + 1);

    _acb_vec_set_powers(zpow, z, m + 1, prec);

    mag_one(B);

    for (k = n; k >= 0; k--)
    {
        j = k % m;

        if (k < n)
            acb_add(s, s, zpow + j, prec);

        if (k > 0)
        {
            if (p > 0)
            {
                acb_add_ui(u, a, k - 1, prec);

                for (i = 1; i < p; i++)
                {
                    acb_add_ui(t, a + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_mul(s, s, u, prec);

                acb_get_mag(C, u);
                mag_mul(B, B, C);
            }

            if (q > 0)
            {
                acb_add_ui(u, b, k - 1, prec);

                for (i = 1; i < q; i++)
                {
                    acb_add_ui(t, b + i, k - 1, prec);
                    acb_mul(u, u, t, prec);
                }

                if (k < n)
                    acb_div(s, s, u, prec);

                acb_get_mag_lower(C, u);
                mag_div(B, B, C);
            }

            if (j == 0 && k < n)
            {
                acb_mul(s, s, zpow + m, prec);
            }
        }
    }

    acb_get_mag(C, z);
    mag_pow_ui(C, C, n);
    mag_mul(B, B, C);

    acb_zero(term);
    if (_acb_vec_is_real(a, p) && _acb_vec_is_real(b, q) && acb_is_real(z))
        arb_add_error_mag(acb_realref(term), B);
    else
        acb_add_error_mag(term, B);

    acb_set(res, s);

    mag_clear(B);
    mag_clear(C);
    acb_clear(s);
    acb_clear(t);
    acb_clear(u);
    _acb_vec_clear(zpow, m + 1);
}
int
acb_calc_integrate_taylor(acb_t res,
    acb_calc_func_t func, void * param,
    const acb_t a, const acb_t b,
    const arf_t inner_radius,
    const arf_t outer_radius,
    long accuracy_goal, long prec)
{
    long num_steps, step, N, bp;
    int result;

    acb_t delta, m, x, y1, y2, sum;
    acb_ptr taylor_poly;
    arf_t err;

    acb_init(delta);
    acb_init(m);
    acb_init(x);
    acb_init(y1);
    acb_init(y2);
    acb_init(sum);
    arf_init(err);

    acb_sub(delta, b, a, prec);

    /* precision used for bounds calculations */
    bp = MAG_BITS;

    /* compute the number of steps */
    {
        arf_t t;
        arf_init(t);
        acb_get_abs_ubound_arf(t, delta, bp);
        arf_div(t, t, inner_radius, bp, ARF_RND_UP);
        arf_mul_2exp_si(t, t, -1);
        num_steps = (long) (arf_get_d(t, ARF_RND_UP) + 1.0);
        /* make sure it's not something absurd */
        num_steps = FLINT_MIN(num_steps, 10 * prec);
        num_steps = FLINT_MAX(num_steps, 1);
        arf_clear(t);
    }

    result = ARB_CALC_SUCCESS;

    acb_zero(sum);

    for (step = 0; step < num_steps; step++)
    {
        /* midpoint of subinterval */
        acb_mul_ui(m, delta, 2 * step + 1, prec);
        acb_div_ui(m, m, 2 * num_steps, prec);
        acb_add(m, m, a, prec);

        if (arb_calc_verbose)
        {
            printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps);
            acb_printd(m, 15); printf("\n");
        }

        /* evaluate at +/- x */
        /* TODO: exactify m, and include error in x? */
        acb_div_ui(x, delta, 2 * num_steps, prec);

        /* compute bounds and number of terms to use */
        {
            arb_t cbound, xbound, rbound;
            arf_t C, D, R, X, T;
            double DD, TT, NN;

            arb_init(cbound);
            arb_init(xbound);
            arb_init(rbound);
            arf_init(C);
            arf_init(D);
            arf_init(R);
            arf_init(X);
            arf_init(T);

            /* R is the outer radius */
            arf_set(R, outer_radius);

            /* X = upper bound for |x| */
            acb_get_abs_ubound_arf(X, x, bp);
            arb_set_arf(xbound, X);

            /* Compute C(m,R). Important subtlety: due to rounding when
               computing m, we will in general be farther than R away from
               the integration path. But since acb_calc_cauchy_bound
               actually integrates over the area traced by a complex
               interval, it will catch any extra singularities (giving
               an infinite bound). */
            arb_set_arf(rbound, outer_radius);
            acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp);
            arf_set_mag(C, arb_radref(cbound));
            arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP);

            /* Sanity check: we need C < inf and R > X */
            if (arf_is_finite(C) && arf_cmp(R, X) > 0)
            {
                /* Compute upper bound for D = C * R * X / (R - X) */
                arf_mul(D, C, R, bp, ARF_RND_UP);
                arf_mul(D, D, X, bp, ARF_RND_UP);
                arf_sub(T, R, X, bp, ARF_RND_DOWN);
                arf_div(D, D, T, bp, ARF_RND_UP);

                /* Compute upper bound for T = (X / R) */
                arf_div(T, X, R, bp, ARF_RND_UP);

                /* Choose N */
                /* TODO: use arf arithmetic to avoid overflow */
                /* TODO: use relative accuracy (look at |f(m)|?) */
                DD = arf_get_d(D, ARF_RND_UP);
                TT = arf_get_d(T, ARF_RND_UP);
                NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT);
                N = NN + 0.5;
                N = FLINT_MIN(N, 100 * prec);
                N = FLINT_MAX(N, 1);

                /* Tail bound: D / (N + 1) * T^N */
                {
                    mag_t TT;
                    mag_init(TT);
                    arf_get_mag(TT, T);
                    mag_pow_ui(TT, TT, N);
                    arf_set_mag(T, TT);
                    mag_clear(TT);
                }
                arf_mul(D, D, T, bp, ARF_RND_UP);
                arf_div_ui(err, D, N + 1, bp, ARF_RND_UP);
            }
            else
            {
                N = 1;
                arf_pos_inf(err);
                result = ARB_CALC_NO_CONVERGENCE;
            }

            if (arb_calc_verbose)
            {
                printf("N = %ld; bound: ", N); arf_printd(err, 15); printf("\n");
                printf("R: "); arf_printd(R, 15); printf("\n");
                printf("C: "); arf_printd(C, 15); printf("\n");
                printf("X: "); arf_printd(X, 15); printf("\n");
            }

            arb_clear(cbound);
            arb_clear(xbound);
            arb_clear(rbound);
            arf_clear(C);
            arf_clear(D);
            arf_clear(R);
            arf_clear(X);
            arf_clear(T);
        }

        /* evaluate Taylor polynomial */
        taylor_poly = _acb_vec_init(N + 1);
        func(taylor_poly, m, param, N, prec);
        _acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec);
        _acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec);
        acb_neg(x, x);
        _acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec);
        acb_neg(x, x);

        /* add truncation error */
        arb_add_error_arf(acb_realref(y1), err);
        arb_add_error_arf(acb_imagref(y1), err);
        arb_add_error_arf(acb_realref(y2), err);
        arb_add_error_arf(acb_imagref(y2), err);

        acb_add(sum, sum, y2, prec);
        acb_sub(sum, sum, y1, prec);

        if (arb_calc_verbose)
        {
            printf("values:  ");
            acb_printd(y1, 15); printf("  ");
            acb_printd(y2, 15); printf("\n");
        }

        _acb_vec_clear(taylor_poly, N + 1);

        if (result == ARB_CALC_NO_CONVERGENCE)
            break;
    }

    acb_set(res, sum);

    acb_clear(delta);
    acb_clear(m);
    acb_clear(x);
    acb_clear(y1);
    acb_clear(y2);
    acb_clear(sum);
    arf_clear(err);

    return result;
}