/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();

    magma_copts zopts;
    magma_queue_t queue=NULL;
    magma_queue_create( /*devices[ opts->device ],*/ &queue );

    real_Double_t res;
    magma_c_matrix A={Magma_CSR}, AT={Magma_CSR}, A2={Magma_CSR}, 
    B={Magma_CSR}, B_d={Magma_CSR};
    
    int i=1;
    real_Double_t start, end;
    CHECK( magma_cparse_opts( argc, argv, &zopts, &i, queue ));

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    while(  i < argc ) {

        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_cm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_c_csr_mtx( &A,  argv[i], queue ));
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );

        // scale matrix
        CHECK( magma_cmscale( &A, zopts.scaling, queue ));

        // remove nonzeros in matrix
        start = magma_sync_wtime( queue );
        for (int j=0; j<10; j++)
            CHECK( magma_cmcsrcompressor( &A, queue ));
        end = magma_sync_wtime( queue );
        printf( " > MAGMA CPU: %.2e seconds.\n", (end-start)/10 );
        // transpose
        CHECK( magma_cmtranspose( A, &AT, queue ));

        // convert, copy back and forth to check everything works
        CHECK( magma_cmconvert( AT, &B, Magma_CSR, Magma_CSR, queue ));
        magma_cmfree(&AT, queue );
        CHECK( magma_cmtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));
        magma_cmfree(&B, queue );

        start = magma_sync_wtime( queue );
        for (int j=0; j<10; j++)
            CHECK( magma_cmcsrcompressor_gpu( &B_d, queue ));
        end = magma_sync_wtime( queue );
        printf( " > MAGMA GPU: %.2e seconds.\n", (end-start)/10 );


        CHECK( magma_cmtransfer( B_d, &B, Magma_DEV, Magma_CPU, queue ));
        magma_cmfree(&B_d, queue );
        CHECK( magma_cmconvert( B, &AT, Magma_CSR, Magma_CSR, queue ));
        magma_cmfree(&B, queue );

        // transpose back
        CHECK( magma_cmtranspose( AT, &A2, queue ));
        magma_cmfree(&AT, queue );
        CHECK( magma_cmdiff( A, A2, &res, queue ));
        printf("# ||A-B||_F = %8.2e\n", res);
        if ( res < .000001 )
            printf("# tester matrix compressor:  ok\n");
        else
            printf("# tester matrix compressor:  failed\n");

        magma_cmfree(&A, queue );
        magma_cmfree(&A2, queue );

        i++;
    }
    
cleanup:
    magma_cmfree(&AT, queue );
    magma_cmfree(&B, queue );
    magma_cmfree(&A, queue );
    magma_cmfree(&A2, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver 
*/
int main(  int argc, char** argv )
{
    TESTING_INIT();

    magma_copts zopts;
    magma_queue_t queue;
    magma_queue_create( /*devices[ opts->device ],*/ &queue );
    
    int i=1;
    magma_cparse_opts( argc, argv, &zopts, &i, queue );


    magmaFloatComplex one = MAGMA_C_MAKE(1.0, 0.0);
    magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0);
    magma_c_sparse_matrix A, B, B_d;
    magma_c_vector x, b;

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    if ( zopts.solver_par.solver != Magma_PCG &&
         zopts.solver_par.solver != Magma_PGMRES &&
         zopts.solver_par.solver != Magma_PBICGSTAB &&
         zopts.solver_par.solver != Magma_ITERREF )
    zopts.precond_par.solver = Magma_NONE;

    magma_csolverinfo_init( &zopts.solver_par, &zopts.precond_par, queue );

    while(  i < argc ) {

        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            magma_cm_5stencil(  laplace_size, &A, queue );
        } else {                        // file-matrix test
            magma_c_csr_mtx( &A,  argv[i], queue );
        }

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );


        // for the eigensolver case
        zopts.solver_par.ev_length = A.num_rows;
        magma_ceigensolverinfo_init( &zopts.solver_par, queue );

        // scale matrix
        magma_cmscale( &A, zopts.scaling, queue );

        magma_c_mconvert( A, &B, Magma_CSR, zopts.output_format, queue );
        magma_c_mtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue );

        // vectors and initial guess
        magma_c_vinit( &b, Magma_DEV, A.num_cols, one, queue );
        magma_c_vinit( &x, Magma_DEV, A.num_cols, one, queue );
        magma_c_spmv( one, B_d, x, zero, b, queue );                 //  b = A x
        magma_c_vfree(&x, queue );
        magma_c_vinit( &x, Magma_DEV, A.num_cols, zero, queue );

        magma_c_solver( B_d, b, &x, &zopts, queue );         

        magma_csolverinfo( &zopts.solver_par, &zopts.precond_par, queue );

        magma_c_mfree(&B_d, queue );
        magma_c_mfree(&B, queue );
        magma_c_mfree(&A, queue ); 
        magma_c_vfree(&x, queue );
        magma_c_vfree(&b, queue );

        i++;
    }

    magma_csolverinfo_free( &zopts.solver_par, &zopts.precond_par, queue );
    
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return 0;
}
Exemple #3
0
extern "C" magma_int_t
magma_cmscale(
    magma_c_sparse_matrix *A, 
    magma_scale_t scaling,
    magma_queue_t queue )
{
    if ( A->memory_location == Magma_CPU && A->storage_type == Magma_CSRCOO ) {
        if ( scaling == Magma_NOSCALE ) {
            // no scale
            ;
        }
        else if ( scaling == Magma_UNITROW ) {
            // scale to unit rownorm
            magmaFloatComplex *tmp;
            magma_cmalloc_cpu( &tmp, A->num_rows );
            for( magma_int_t z=0; z<A->num_rows; z++ ) {
                magmaFloatComplex s = MAGMA_C_MAKE( 0.0, 0.0 );
                for( magma_int_t f=A->row[z]; f<A->row[z+1]; f++ )
                    s+= MAGMA_C_REAL(A->val[f])*MAGMA_C_REAL(A->val[f]);
                tmp[z] = MAGMA_C_MAKE( 1.0/sqrt(  MAGMA_C_REAL( s )  ), 0.0 );                   
            }
            for( magma_int_t z=0; z<A->nnz; z++ ) {
                A->val[z] = A->val[z] * tmp[A->col[z]] * tmp[A->rowidx[z]];
            }
            magma_free_cpu( tmp );
        }
        else if (scaling == Magma_UNITDIAG ) {
            // scale to unit diagonal
            magmaFloatComplex *tmp;
            magma_cmalloc_cpu( &tmp, A->num_rows );
            for( magma_int_t z=0; z<A->num_rows; z++ ) {
                magmaFloatComplex s = MAGMA_C_MAKE( 0.0, 0.0 );
                for( magma_int_t f=A->row[z]; f<A->row[z+1]; f++ ) {
                    if ( A->col[f]== z ) {
                        // add some identity matrix
                        //A->val[f] = A->val[f] +  MAGMA_C_MAKE( 100000.0, 0.0 );
                        s = A->val[f];
                    }
                }
                if ( s == MAGMA_C_MAKE( 0.0, 0.0 ) )
                    printf("error: zero diagonal element.\n");
                tmp[z] = MAGMA_C_MAKE( 1.0/sqrt(  MAGMA_C_REAL( s )  ), 0.0 );    
                   
            }
            for( magma_int_t z=0; z<A->nnz; z++ ) {
                A->val[z] = A->val[z] * tmp[A->col[z]] * tmp[A->rowidx[z]];
            }
            magma_free_cpu( tmp );
        }
        else
            printf( "error: scaling not supported\n" );
        return MAGMA_SUCCESS; 
    }
    else {

        magma_c_sparse_matrix hA, CSRA;
        magma_storage_t A_storage = A->storage_type;
        magma_location_t A_location = A->memory_location;
        magma_c_mtransfer( *A, &hA, A->memory_location, Magma_CPU, queue );
        magma_c_mconvert( hA, &CSRA, hA.storage_type, Magma_CSRCOO, queue );

        magma_cmscale( &CSRA, scaling, queue );

        magma_c_mfree( &hA, queue );
        magma_c_mfree( A, queue );
        magma_c_mconvert( CSRA, &hA, Magma_CSRCOO, A_storage, queue );
        magma_c_mtransfer( hA, A, Magma_CPU, A_location, queue );
        magma_c_mfree( &hA, queue );
        magma_c_mfree( &CSRA, queue );    

        return MAGMA_SUCCESS; 
    }
}
Exemple #4
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver 
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    magma_copts zopts;

    int i=1;
    magma_cparse_opts( argc, argv, &zopts, &i);


    magmaFloatComplex one = MAGMA_C_MAKE(1.0, 0.0);
    magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0);
    magma_c_sparse_matrix A, B, B_d;
    magma_c_vector x, b;

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    if ( zopts.solver_par.solver != Magma_PCG &&
         zopts.solver_par.solver != Magma_PGMRES &&
         zopts.solver_par.solver != Magma_PBICGSTAB &&
         zopts.solver_par.solver != Magma_ITERREF )
    zopts.precond_par.solver = Magma_NONE;

    magma_csolverinfo_init( &zopts.solver_par, &zopts.precond_par );

    while(  i < argc ){

        magma_c_csr_mtx( &A,  argv[i]  ); 

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );

        // scale matrix
        magma_cmscale( &A, zopts.scaling );

        magma_c_mconvert( A, &B, Magma_CSR, zopts.output_format );
        magma_c_mtransfer( B, &B_d, Magma_CPU, Magma_DEV );

        // vectors and initial guess
        magma_c_vinit( &b, Magma_DEV, A.num_cols, one );
        magma_c_vinit( &x, Magma_DEV, A.num_cols, one );
        magma_c_spmv( one, B_d, x, zero, b );                 //  b = A x
        magma_c_vfree(&x);
        magma_c_vinit( &x, Magma_DEV, A.num_cols, zero );

        magma_c_solver( B_d, b, &x, &zopts ); 

        magma_csolverinfo( &zopts.solver_par, &zopts.precond_par );

        magma_c_mfree(&B_d);
        magma_c_mfree(&B);
        magma_c_mfree(&A); 
        magma_c_vfree(&x);
        magma_c_vfree(&b);

        i++;
    }

    magma_csolverinfo_free( &zopts.solver_par, &zopts.precond_par );

    TESTING_FINALIZE();
    return 0;
}
Exemple #5
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_CHECK( magma_init() );
    magma_print_environment();

    magma_copts zopts;
    magma_queue_t queue;
    magma_queue_create( 0, &queue );
    
    magmaFloatComplex one = MAGMA_C_MAKE(1.0, 0.0);
    magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0);
    magma_c_matrix A={Magma_CSR}, B={Magma_CSR}, B_d={Magma_CSR};
    magma_c_matrix x={Magma_CSR}, b={Magma_CSR};
    
    int i=1;
    TESTING_CHECK( magma_cparse_opts( argc, argv, &zopts, &i, queue ));
    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    TESTING_CHECK( magma_csolverinfo_init( &zopts.solver_par, &zopts.precond_par, queue ));

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            TESTING_CHECK( magma_cm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            TESTING_CHECK( magma_c_csr_mtx( &A,  argv[i], queue ));
        }

        // for the eigensolver case
        zopts.solver_par.ev_length = A.num_cols;
        TESTING_CHECK( magma_ceigensolverinfo_init( &zopts.solver_par, queue ));

        // scale matrix
        TESTING_CHECK( magma_cmscale( &A, zopts.scaling, queue ));
        
        // preconditioner
        if ( zopts.solver_par.solver != Magma_ITERREF ) {
            TESTING_CHECK( magma_c_precondsetup( A, b, &zopts.solver_par, &zopts.precond_par, queue ) );
        }

        TESTING_CHECK( magma_cmconvert( A, &B, Magma_CSR, zopts.output_format, queue ));
        
        printf( "\n%% matrix info: %lld-by-%lld with %lld nonzeros\n\n",
                            (long long) A.num_rows, (long long) A.num_cols, (long long) A.nnz );
        
        printf("matrixinfo = [\n");
        printf("%%   size   (m x n)     ||   nonzeros (nnz)   ||   nnz/m   ||   stored nnz\n");
        printf("%%============================================================================%%\n");
        printf("  %8lld  %8lld      %10lld             %4lld        %10lld\n",
               (long long) B.num_rows, (long long) B.num_cols, (long long) B.true_nnz,
               (long long) (B.true_nnz/B.num_rows), (long long) B.nnz );
        printf("%%============================================================================%%\n");
        printf("];\n");

        TESTING_CHECK( magma_cmtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));

        // vectors and initial guess
        TESTING_CHECK( magma_cvinit( &b, Magma_DEV, A.num_rows, 1, one, queue ));
        //magma_cvinit( &x, Magma_DEV, A.num_cols, 1, one, queue );
        //magma_c_spmv( one, B_d, x, zero, b, queue );                 //  b = A x
        //magma_cmfree(&x, queue );
        TESTING_CHECK( magma_cvinit( &x, Magma_DEV, A.num_cols, 1, zero, queue ));
        
        info = magma_c_solver( B_d, b, &x, &zopts, queue );
        if( info != 0 ) {
            printf("%%error: solver returned: %s (%lld).\n",
                    magma_strerror( info ), (long long) info );
        }
        printf("convergence = [\n");
        magma_csolverinfo( &zopts.solver_par, &zopts.precond_par, queue );
        printf("];\n\n");
        
        zopts.solver_par.verbose = 0;
        printf("solverinfo = [\n");
        magma_csolverinfo( &zopts.solver_par, &zopts.precond_par, queue );
        printf("];\n\n");
        
        printf("precondinfo = [\n");
        printf("%%   setup  runtime\n");        
        printf("  %.6f  %.6f\n",
           zopts.precond_par.setuptime, zopts.precond_par.runtime );
        printf("];\n\n");
        magma_cmfree(&B_d, queue );
        magma_cmfree(&B, queue );
        magma_cmfree(&A, queue );
        magma_cmfree(&x, queue );
        magma_cmfree(&b, queue );
        i++;
    }

    magma_queue_destroy( queue );
    TESTING_CHECK( magma_finalize() );
    return info;
}
Exemple #6
0
/* ////////////////////////////////////////////////////////////////////////////
   -- testing any solver
*/
int main(  int argc, char** argv )
{
    magma_int_t info = 0;
    TESTING_INIT();

    magma_copts zopts;
    magma_queue_t queue=NULL;
    magma_queue_create( 0, &queue );
    
    magmaFloatComplex one = MAGMA_C_MAKE(1.0, 0.0);
    magmaFloatComplex zero = MAGMA_C_MAKE(0.0, 0.0);
    magma_c_matrix A={Magma_CSR}, B={Magma_CSR}, B_d={Magma_CSR};
    magma_c_matrix x={Magma_CSR}, b={Magma_CSR}, t={Magma_CSR};
    magma_c_matrix x1={Magma_CSR}, x2={Magma_CSR};
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    
    int i=1;
    CHECK( magma_cparse_opts( argc, argv, &zopts, &i, queue ));

    B.blocksize = zopts.blocksize;
    B.alignment = zopts.alignment;

    CHECK( magma_csolverinfo_init( &zopts.solver_par, &zopts.precond_par, queue ));

    while( i < argc ) {
        if ( strcmp("LAPLACE2D", argv[i]) == 0 && i+1 < argc ) {   // Laplace test
            i++;
            magma_int_t laplace_size = atoi( argv[i] );
            CHECK( magma_cm_5stencil(  laplace_size, &A, queue ));
        } else {                        // file-matrix test
            CHECK( magma_c_csr_mtx( &A,  argv[i], queue ));
        }

        printf( "\n%% matrix info: %d-by-%d with %d nonzeros\n\n",
                            int(A.num_rows), int(A.num_cols), int(A.nnz) );


        // for the eigensolver case
        zopts.solver_par.ev_length = A.num_rows;
        CHECK( magma_ceigensolverinfo_init( &zopts.solver_par, queue ));

        // scale matrix
        CHECK( magma_cmscale( &A, zopts.scaling, queue ));

        CHECK( magma_cmconvert( A, &B, Magma_CSR, zopts.output_format, queue ));
        CHECK( magma_cmtransfer( B, &B_d, Magma_CPU, Magma_DEV, queue ));

        // vectors and initial guess
        CHECK( magma_cvinit( &b, Magma_DEV, A.num_cols, 1, one, queue ));
        CHECK( magma_cvinit( &x, Magma_DEV, A.num_cols, 1, zero, queue ));
        CHECK( magma_cvinit( &t, Magma_DEV, A.num_cols, 1, zero, queue ));
        CHECK( magma_cvinit( &x1, Magma_DEV, A.num_cols, 1, zero, queue ));
        CHECK( magma_cvinit( &x2, Magma_DEV, A.num_cols, 1, zero, queue ));
                        
        //preconditioner
        CHECK( magma_c_precondsetup( B_d, b, &zopts.solver_par, &zopts.precond_par, queue ) );
        
        float residual;
        CHECK( magma_cresidual( B_d, b, x, &residual, queue ));
        zopts.solver_par.init_res = residual;
        printf("data = [\n");
        
        printf("%%runtime left preconditioner:\n");
        tempo1 = magma_sync_wtime( queue );
        info = magma_c_applyprecond_left( MagmaNoTrans, B_d, b, &x1, &zopts.precond_par, queue ); 
        tempo2 = magma_sync_wtime( queue );
        if( info != 0 ){
            printf("error: preconditioner returned: %s (%d).\n",
                magma_strerror( info ), int(info) );
        }
        CHECK( magma_cresidual( B_d, b, x1, &residual, queue ));
        printf("%.8e  %.8e\n", tempo2-tempo1, residual );
        
        printf("%%runtime right preconditioner:\n");
        tempo1 = magma_sync_wtime( queue );
        info = magma_c_applyprecond_right( MagmaNoTrans, B_d, b, &x2, &zopts.precond_par, queue ); 
        tempo2 = magma_sync_wtime( queue );
        if( info != 0 ){
            printf("error: preconditioner returned: %s (%d).\n",
                magma_strerror( info ), int(info) );
        }
        CHECK( magma_cresidual( B_d, b, x2, &residual, queue ));
        printf("%.8e  %.8e\n", tempo2-tempo1, residual );
        
        
        printf("];\n");
        
        info = magma_c_applyprecond_left( MagmaNoTrans, B_d, b, &t, &zopts.precond_par, queue ); 
        info = magma_c_applyprecond_right( MagmaNoTrans, B_d, t, &x, &zopts.precond_par, queue ); 

                
        CHECK( magma_cresidual( B_d, b, x, &residual, queue ));
        zopts.solver_par.final_res = residual;
        
        magma_csolverinfo( &zopts.solver_par, &zopts.precond_par, queue );

        magma_cmfree(&B_d, queue );
        magma_cmfree(&B, queue );
        magma_cmfree(&A, queue );
        magma_cmfree(&x, queue );
        magma_cmfree(&x1, queue );
        magma_cmfree(&x2, queue );
        magma_cmfree(&b, queue );
        magma_cmfree(&t, queue );

        i++;
    }

cleanup:
    magma_cmfree(&B_d, queue );
    magma_cmfree(&B, queue );
    magma_cmfree(&A, queue );
    magma_cmfree(&x, queue );
    magma_cmfree(&x1, queue );
    magma_cmfree(&x2, queue );
    magma_cmfree(&b, queue );
    magma_cmfree(&t, queue );
    magma_csolverinfo_free( &zopts.solver_par, &zopts.precond_par, queue );
    magma_queue_destroy( queue );
    TESTING_FINALIZE();
    return info;
}
Exemple #7
0
/* ////////////////////////////////////////////////////////////////////////////
   -- running magma_clobpcg
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    magma_c_solver_par solver_par;
    solver_par.epsilon = 1e-5;
    solver_par.maxiter = 1000;
    solver_par.verbose = 0;
    solver_par.num_eigenvalues = 32;
    solver_par.solver = Magma_LOBPCG;
    magma_c_preconditioner precond_par;
    precond_par.solver = Magma_JACOBI;
    int precond = 0;
    int format = 0;
    int scale = 0;
    magma_scale_t scaling = Magma_NOSCALE;
    
    magma_c_sparse_matrix A, B, dA;
    B.blocksize = 8;
    B.alignment = 8;

    B.storage_type = Magma_CSR;
    int i;
    for( i = 1; i < argc; ++i ) {
     if ( strcmp("--format", argv[i]) == 0 ) {
            format = atoi( argv[++i] );
            switch( format ) {
                case 0: B.storage_type = Magma_CSR; break;
                case 1: B.storage_type = Magma_ELL; break;
                case 2: B.storage_type = Magma_ELLRT; break;
                case 3: B.storage_type = Magma_SELLP; break;
            }
        }else if ( strcmp("--mscale", argv[i]) == 0 ) {
            scale = atoi( argv[++i] );
            switch( scale ) {
                case 0: scaling = Magma_NOSCALE; break;
                case 1: scaling = Magma_UNITDIAG; break;
                case 2: scaling = Magma_UNITROW; break;
            }

        }else if ( strcmp("--precond", argv[i]) == 0 ) {
            format = atoi( argv[++i] );
            switch( precond ) {
                case 0: precond_par.solver = Magma_JACOBI; break;
            }

        }else if ( strcmp("--blocksize", argv[i]) == 0 ) {
            B.blocksize = atoi( argv[++i] );
        }else if ( strcmp("--alignment", argv[i]) == 0 ) {
            B.alignment = atoi( argv[++i] );
        }else if ( strcmp("--verbose", argv[i]) == 0 ) {
            solver_par.verbose = atoi( argv[++i] );
        }  else if ( strcmp("--maxiter", argv[i]) == 0 ) {
            solver_par.maxiter = atoi( argv[++i] );
        } else if ( strcmp("--tol", argv[i]) == 0 ) {
            sscanf( argv[++i], "%f", &solver_par.epsilon );
        } else if ( strcmp("--eigenvalues", argv[i]) == 0 ) {
            solver_par.num_eigenvalues = atoi( argv[++i] );
        } else
            break;
    }
    printf( "\n#    usage: ./run_clobpcg"
        " [ --format %d (0=CSR, 1=ELL, 2=ELLRT, 4=SELLP)"
        " [ --blocksize %d --alignment %d ]"
        " --mscale %d (0=no, 1=unitdiag, 2=unitrownrm)"
        " --verbose %d (0=summary, k=details every k iterations)"
        " --maxiter %d --tol %.2e"
        " --preconditioner %d (0=Jacobi) "
        " --eigenvalues %d ]"
        " matrices \n\n", format, (int) B.blocksize, (int) B.alignment,
        (int) scale,
        (int) solver_par.verbose,
        (int) solver_par.maxiter, solver_par.epsilon, precond,  
        (int) solver_par.num_eigenvalues);

    while(  i < argc ){

        magma_c_csr_mtx( &A,  argv[i]  ); 

        printf( "\n# matrix info: %d-by-%d with %d nonzeros\n\n",
                            (int) A.num_rows,(int) A.num_cols,(int) A.nnz );

        // scale initial guess
        magma_cmscale( &A, scaling );

        solver_par.ev_length = A.num_cols;

        magma_c_sparse_matrix A2;
        A2.storage_type = Magma_SELLC;
        A2.blocksize = 8;
        A2.alignment = 4;
        magma_c_mconvert( A, &A2, Magma_CSR, A2.storage_type );

        // copy matrix to GPU                                                     
        magma_c_mtransfer( A2, &dA, Magma_CPU, Magma_DEV);

        magma_csolverinfo_init( &solver_par, &precond_par ); // inside the loop!
                           // as the matrix size has influence on the EV-length

        real_Double_t  gpu_time;

        // Find the blockSize smallest eigenvalues and corresponding eigen-vectors
        gpu_time = magma_wtime();
        magma_clobpcg( dA, &solver_par );
        gpu_time = magma_wtime() - gpu_time;

        printf("Time (sec) = %7.2f\n", gpu_time);
        printf("solver runtime (sec) = %7.2f\n", solver_par.runtime );



        magma_csolverinfo_free( &solver_par, &precond_par );

        magma_c_mfree(     &dA    );
        magma_c_mfree(     &A2    );
        magma_c_mfree(     &A    );

        i++;
    }

    TESTING_FINALIZE();
    return 0;
}