Exemple #1
0
void MAGMAF_ZUNMQR( char *side, char *trans, 
                    magma_int_t *m, magma_int_t *n, magma_int_t *k, 
                    cuDoubleComplex *a, magma_int_t *lda, cuDoubleComplex *tau, 
                    cuDoubleComplex *c, magma_int_t *ldc, 
                    cuDoubleComplex *work, magma_int_t *lwork, magma_int_t *info)
{
    magma_zunmqr( side[0], trans[0], 
                  *m, *n, *k, 
                  a, *lda, tau, 
                  c, *ldc, 
                  work, *lwork, info);
}
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing zunmqr
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    double error, work[1];
    magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
    magma_int_t ione = 1;
    magma_int_t mm, m, n, k, size, info;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t nb, ldc, lda, lwork, lwork_max;
    magmaDoubleComplex *C, *R, *A, *W, *tau;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    // need slightly looser bound (60*eps instead of 30*eps) for some tests
    opts.tolerance = max( 60., opts.tolerance );
    double tol = opts.tolerance * lapackf77_dlamch("E");
    
    // test all combinations of input parameters
    magma_side_t  side [] = { MagmaLeft,      MagmaRight   };
    magma_trans_t trans[] = { MagmaConjTrans, MagmaNoTrans };

    printf("    M     N     K   side   trans   CPU GFlop/s (sec)   GPU GFlop/s (sec)   ||R||_F / ||QC||_F\n");
    printf("===============================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            m = opts.msize[itest];
            n = opts.nsize[itest];
            k = opts.ksize[itest];
            nb  = magma_get_zgeqrf_nb( m );
            ldc = m;
            // A is m x k (left) or n x k (right)
            mm = (side[iside] == MagmaLeft ? m : n);
            lda = mm;
            gflops = FLOPS_ZUNMQR( m, n, k, side[iside] ) / 1e9;
            
            if ( side[iside] == MagmaLeft && m < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=left  and m < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            if ( side[iside] == MagmaRight && n < k ) {
                printf( "%5d %5d %5d   %4c   %5c   skipping because side=right and n < k\n",
                        (int) m, (int) n, (int) k,
                        lapacke_side_const( side[iside] ),
                        lapacke_trans_const( trans[itran] ) );
                continue;
            }
            
            // need at least 2*nb*nb for geqrf
            lwork_max = max( max( m*nb, n*nb ), 2*nb*nb );
            
            TESTING_MALLOC_CPU( C,   magmaDoubleComplex, ldc*n );
            TESTING_MALLOC_CPU( R,   magmaDoubleComplex, ldc*n );
            TESTING_MALLOC_CPU( A,   magmaDoubleComplex, lda*k );
            TESTING_MALLOC_CPU( W,   magmaDoubleComplex, lwork_max );
            TESTING_MALLOC_CPU( tau, magmaDoubleComplex, k );
            
            // C is full, m x n
            size = ldc*n;
            lapackf77_zlarnv( &ione, ISEED, &size, C );
            lapackf77_zlacpy( "Full", &m, &n, C, &ldc, R, &ldc );
            
            size = lda*k;
            lapackf77_zlarnv( &ione, ISEED, &size, A );
            
            // compute QR factorization to get Householder vectors in A, tau
            magma_zgeqrf( mm, k, A, lda, tau, W, lwork_max, &info );
            if (info != 0)
                printf("magma_zgeqrf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            lapackf77_zunmqr( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              &m, &n, &k,
                              A, &lda, tau, C, &ldc, W, &lwork_max, &info );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            if (info != 0)
                printf("lapackf77_zunmqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            // query for workspace size
            lwork = -1;
            magma_zunmqr( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            if (info != 0)
                printf("magma_zunmqr (lwork query) returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            lwork = (magma_int_t) MAGMA_Z_REAL( W[0] );
            if ( lwork < 0 || lwork > lwork_max ) {
                printf("optimal lwork %d > lwork_max %d\n", (int) lwork, (int) lwork_max );
                lwork = lwork_max;
            }
            
            gpu_time = magma_wtime();
            magma_zunmqr( side[iside], trans[itran],
                          m, n, k,
                          A, lda, tau, R, ldc, W, lwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0)
                printf("magma_zunmqr returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
                        
            /* =====================================================================
               compute relative error |QC_magma - QC_lapack| / |QC_lapack|
               =================================================================== */
            error = lapackf77_zlange( "Fro", &m, &n, C, &ldc, work );
            size = ldc*n;
            blasf77_zaxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_zlange( "Fro", &m, &n, R, &ldc, work ) / error;
            
            printf( "%5d %5d %5d   %4c   %5c   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                    (int) m, (int) n, (int) k,
                    lapacke_side_const( side[iside] ),
                    lapacke_trans_const( trans[itran] ),
                    cpu_perf, cpu_time, gpu_perf, gpu_time,
                    error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( W );
            TESTING_FREE_CPU( tau );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}  // end iside, itran
      printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return status;
}
Exemple #3
0
extern "C" magma_int_t
magma_zunmtr(char side, char uplo, char trans,
             magma_int_t m, magma_int_t n, 
             cuDoubleComplex *a,    magma_int_t lda, 
             cuDoubleComplex *tau, 
             cuDoubleComplex *c,    magma_int_t ldc,
             cuDoubleComplex *work, magma_int_t lwork, 
             magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   
    ZUNMTR overwrites the general complex M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**H * C       C * Q**H   

    where Q is a complex orthogonal matrix of order nq, with nq = m if   
    SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of   
    nq-1 elementary reflectors, as returned by SSYTRD:   

    if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);   

    if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).   

    Arguments   
    =========   
    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**H from the Left;   
            = 'R': apply Q or Q**H from the Right.   

    UPLO    (input) CHARACTER*1   
            = 'U': Upper triangle of A contains elementary reflectors   
                   from SSYTRD;   
            = 'L': Lower triangle of A contains elementary reflectors   
                   from SSYTRD.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**H.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    A       (input) COMPLEX_16 array, dimension   
                                 (LDA,M) if SIDE = 'L'   
                                 (LDA,N) if SIDE = 'R'   
            The vectors which define the elementary reflectors, as   
            returned by SSYTRD.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.   

    TAU     (input) COMPLEX_16 array, dimension   
                                 (M-1) if SIDE = 'L'   
                                 (N-1) if SIDE = 'R'   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by SSYTRD.   

    C       (input/output) COMPLEX_16 array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**H * C or C * Q**H or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
    =====================================================================    */
   
    cuDoubleComplex c_one = MAGMA_Z_ONE;

    char side_[2]  = {side, 0};
    char uplo_[2]  = {uplo, 0};
    char trans_[2] = {trans, 0};
    magma_int_t  i__2;
    magma_int_t i1, i2, nb, mi, ni, nq, nw;
    int left, upper, lquery;
    magma_int_t iinfo;
    magma_int_t lwkopt;

    *info = 0;
    left   = lapackf77_lsame(side_, "L");
    upper  = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    if (! left && ! lapackf77_lsame(side_, "R")) {
        *info = -1;
    } else if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -2;
    } else if (! lapackf77_lsame(trans_, "N") && 
               ! lapackf77_lsame(trans_, "C")) {
        *info = -3;
    } else if (m < 0) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    if (*info == 0) 
      {
        nb = 32;
        lwkopt = max(1,nw) * nb;
        MAGMA_Z_SET2REAL( work[0], lwkopt );
      }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || nq == 1) {
        work[0] = c_one;
        return *info;
    }

    if (left) {
        mi = m - 1;
        ni = n;
    } else {
        mi = m;
        ni = n - 1;
    }

    if (upper) 
      {
        /* Q was determined by a call to SSYTRD with UPLO = 'U' */
        i__2 = nq - 1;
        //lapackf77_zunmql(side_, trans_, &mi, &ni, &i__2, &a[lda], &lda, 
        //                 tau, c, &ldc, work, &lwork, &iinfo);
        magma_zunmql(side, trans, mi, ni, i__2, &a[lda], lda, tau,
                     c, ldc, work, lwork, &iinfo);
      }
    else 
      {
        /* Q was determined by a call to SSYTRD with UPLO = 'L' */
        if (left) {
            i1 = 1;
            i2 = 0;
        } else {
            i1 = 0;
            i2 = 1;
        }
        i__2 = nq - 1;
        magma_zunmqr(side, trans, mi, ni, i__2, &a[1], lda, tau,
                     &c[i1 + i2 * ldc], ldc, work, lwork, &iinfo);
      }

    MAGMA_Z_SET2REAL( work[0], lwkopt );

    return *info;
} /* magma_zunmtr */