Exemple #1
0
/*
 * update pools
 */
static void add_entropy(FState *st, const uint8_t *data, unsigned len)
{
	unsigned pos;
	uint8_t hash[block];
	mdCtx md;

	/* hash given data */
	md_init(&md);
	md_update(&md, data, len);
	md_result(&md, hash);

	/*
	 * Make sure the pool 0 is initialized, then update randomly.
	 */
	if (st->reseedCount == 0)
		pos = 0;
	else
		pos = get_rand_pool(st);
	md_update(&st->pool[pos], hash, block);

	if (pos == 0)
		st->pool0Bytes += len;

	memset(hash, 0, block);
	memset(&md, 0, sizeof(md));
}
Exemple #2
0
/*
 * update pools
 */
static void
add_entropy(FState * st, const uint8 *data, unsigned len)
{
	unsigned	pos;
	uint8		hash[BLOCK];
	MD_CTX		md;

	/* hash given data */
	md_init(&md);
	md_update(&md, data, len);
	md_result(&md, hash);

	/*
	 * Make sure the pool 0 is initialized, then update randomly.
	 */
	if (st->reseed_count == 0 && st->pool0_bytes < POOL0_FILL)
		pos = 0;
	else
		pos = get_rand_pool(st);
	md_update(&st->pool[pos], hash, BLOCK);

	if (pos == 0)
		st->pool0_bytes += len;

	memset(hash, 0, BLOCK);
	memset(&md, 0, sizeof(md));
}
Exemple #3
0
/*
 * generate new key from all the pools
 */
static void
reseed(FState * st)
{
    unsigned	k;
    unsigned	n;
    MD_CTX		key_md;
    unsigned char	buf[BLOCK];

    /* set pool as empty */
    st->pool0_bytes = 0;

    /*
     * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
     */
    n = ++st->reseed_count;

    /*
     * The goal: use k-th pool only 1/(2^k) of the time.
     */
    md_init(&key_md);
    for (k = 0; k < NUM_POOLS; k++)
    {
	md_result(&st->pool[k], buf);
	md_update(&key_md, buf, BLOCK);

	if (n & 1 || !n)
	    break;
	n >>= 1;
    }

    /* add old key into mix too */
    md_update(&key_md, st->key, BLOCK);

    /* add pid to make output diverse after fork() */
    md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));

    /* now we have new key */
    md_result(&key_md, st->key);

    /* use new key */
    ciph_init(&st->ciph, st->key, BLOCK);

    memset(&key_md, 0, sizeof(key_md));
    memset(buf, 0, BLOCK);
}
Exemple #4
0
    int
main( int argc, char *argv[])
{
    int				fd;
    SNET			*snet;
    char			*line;
    u_int			line_len;
    struct message_digest       md;

    if ( argc != 3 ) {
	fprintf( stderr, "Usage: %s <checksum_algorithm> <file>\n", argv[ 0 ]);
	return( 1 );
    }

    /* OpenSSL 1.1.0 added auto-init */
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
    OpenSSL_add_all_digests();
#endif /* OpenSSL < 1.1.0 */
    simta_checksum_md = EVP_get_digestbyname((const char*)(argv[ 1 ]));

    if ( simta_checksum_md == NULL ) {
	fprintf( stderr, "%s: unknown checksum algorithm\n", argv[ 1 ]);
	return( 1 );
    }

    md_init( &md );
    md_reset( &md );

    if (( fd = open( argv[ 2 ], O_RDONLY, 0 )) < 0 ) {
	perror( "open" );
	exit( 1 );
    }

    if (( snet = snet_attach( fd, 1024 * 1024 )) == NULL ) {
	perror( "snet_attach" );
	exit( 1 );
    }

    while (( line = snet_getline( snet, NULL )) != NULL ) {
	line_len = strlen( line );
        md_update( &md, line, line_len );
    }

    md_finalize( &md );
    md_cleanup( &md );

    if ( snet_close( snet ) != 0 ) {
	perror( "snet_close" );
	return( 1 );
    }

    printf( "\nChecksum: %s\n", md.md_b16 );

    return( 0 );
}
Exemple #5
0
/*
 * generate new key from all the pools
 */
static void reseed(FState *st)
{
	unsigned k;
	unsigned n;
	mdCtx key_md;
	uint8_t buf[block];

	/* set pool as empty */
	st->pool0Bytes = 0;

	/*
	 * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
	 */
	n = ++st->reseedCount;

	/*
	 * The goal: use k-th pool only 1/(2^k) of the time.
	 */
	md_init(&key_md);
	for (k = 0; k < numPools; k++) {
		md_result(&st->pool[k], buf);
		md_update(&key_md, buf, block);

		if (n & 1 || !n)
			break;
		n >>= 1;
	}

	/* add old key into mix too */
	md_update(&key_md, st->key, block);

	/* now we have new key */
	md_result(&key_md, st->key);

	/* use new key */
	ciph_init(&st->ciph, st->key, block);

	memset(&key_md, 0, sizeof(key_md));
	memset(buf, 0, block);
}
/**
 * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
 *
 * \param dst       buffer to mask
 * \param dlen      length of destination buffer
 * \param src       source of the mask generation
 * \param slen      length of the source buffer
 * \param md_ctx    message digest context to use
 */
static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen,
                       md_context_t *md_ctx )
{
    unsigned char mask[POLARSSL_MD_MAX_SIZE];
    unsigned char counter[4];
    unsigned char *p;
    unsigned int hlen;
    size_t i, use_len;

    memset( mask, 0, POLARSSL_MD_MAX_SIZE );
    memset( counter, 0, 4 );

    hlen = md_ctx->md_info->size;

    // Generate and apply dbMask
    //
    p = dst;

    while( dlen > 0 )
    {
        use_len = hlen;
        if( dlen < hlen )
            use_len = dlen;

        md_starts( md_ctx );
        md_update( md_ctx, src, slen );
        md_update( md_ctx, counter, 4 );
        md_finish( md_ctx, mask );

        for( i = 0; i < use_len; ++i )
            *p++ ^= mask[i];

        counter[3]++;

        dlen -= use_len;
    }
}
Exemple #7
0
/*
 * Hide public constants. (counter, pools > 0)
 *
 * This can also be viewed as spreading the startup
 * entropy over all of the components.
 */
static void startup_tricks(FState *st)
{
	int i;
	uint8_t buf[block];

	/* Use next block as counter. */
	encrypt_counter(st, st->counter);

	/* Now shuffle pools, excluding #0 */
	for (i = 1; i < numPools; i++) {
		encrypt_counter(st, buf);
		encrypt_counter(st, buf + ciphBlock);
		md_update(&st->pool[i], buf, block);
	}
	memset(buf, 0, block);

	/* Hide the key. */
	rekey(st);

	/* This can be done only once. */
	st->tricksDone = 1;
}
Exemple #8
0
/*
 * Hide public constants. (counter, pools > 0)
 *
 * This can also be viewed as spreading the startup
 * entropy over all of the components.
 */
static void
startup_tricks(FState *st)
{
	int			i;
	uint8		buf[BLOCK];

	/* Use next block as counter. */
	encrypt_counter(st, st->counter);

	/* Now shuffle pools, excluding #0 */
	for (i = 1; i < NUM_POOLS; i++)
	{
		encrypt_counter(st, buf);
		encrypt_counter(st, buf + CIPH_BLOCK);
		md_update(&st->pool[i], buf, BLOCK);
	}
	px_memset(buf, 0, BLOCK);

	/* Hide the key. */
	rekey(st);

	/* This can be done only once. */
	st->tricks_done = 1;
}
void
md_ctx_update (md_context_t *ctx, const uint8_t *src, int src_len)
{
  ASSERT(0 == md_update(ctx, src, src_len));
}
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
 */
int rsa_rsassa_pss_sign( rsa_context *ctx,
                         int (*f_rng)(void *, unsigned char *, size_t),
                         void *p_rng,
                         int mode,
                         int hash_id,
                         unsigned int hashlen,
                         const unsigned char *hash,
                         unsigned char *sig )
{
    size_t olen;
    unsigned char *p = sig;
    unsigned char salt[POLARSSL_MD_MAX_SIZE];
    unsigned int slen, hlen, offset = 0;
    int ret;
    size_t msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 || f_rng == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    olen = ctx->len;

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = hlen;

    if( olen < hlen + slen + 2 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    memset( sig, 0, olen );

    msb = mpi_msb( &ctx->N ) - 1;

    // Generate salt of length slen
    //
    if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
        return( POLARSSL_ERR_RSA_RNG_FAILED + ret );

    // Note: EMSA-PSS encoding is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;
    p += olen - hlen * 2 - 2;
    *p++ = 0x01;
    memcpy( p, salt, slen );
    p += slen;

    md_init_ctx( &md_ctx, md_info );

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, p, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, salt, slen );
    md_finish( &md_ctx, p );

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
        offset = 1;

    // maskedDB: Apply dbMask to DB
    //
    mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );

    md_free_ctx( &md_ctx );

    msb = mpi_msb( &ctx->N ) - 1;
    sig[0] &= 0xFF >> ( olen * 8 - msb );

    p += hlen;
    *p++ = 0xBC;

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, sig, sig )
            : rsa_private( ctx, sig, sig ) );
}
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 */
int rsa_rsassa_pss_verify( rsa_context *ctx,
                           int mode,
                           int hash_id,
                           unsigned int hashlen,
                           const unsigned char *hash,
                           unsigned char *sig )
{
    int ret;
    size_t siglen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char result[POLARSSL_MD_MAX_SIZE];
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    siglen = ctx->len;

    if( siglen < 16 || siglen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( buf[siglen - 1] != 0xBC )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    switch( hash_id )
    {
        case SIG_RSA_MD2:
        case SIG_RSA_MD4:
        case SIG_RSA_MD5:
            hashlen = 16;
            break;

        case SIG_RSA_SHA1:
            hashlen = 20;
            break;

        case SIG_RSA_SHA224:
            hashlen = 28;
            break;

        case SIG_RSA_SHA256:
            hashlen = 32;
            break;

        case SIG_RSA_SHA384:
            hashlen = 48;
            break;

        case SIG_RSA_SHA512:
            hashlen = 64;
            break;

        default:
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
    }

    md_info = md_info_from_type( ctx->hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = siglen - hlen - 1;

    memset( zeros, 0, 8 );

    // Note: EMSA-PSS verification is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
    {
        p++;
        siglen -= 1;
    }
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_init_ctx( &md_ctx, md_info );

    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

    buf[0] &= 0xFF >> ( siglen * 8 - msb );

    while( *p == 0 && p < buf + siglen )
        p++;

    if( p == buf + siglen ||
        *p++ != 0x01 )
    {
        md_free_ctx( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    slen -= p - buf;

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, zeros, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, p, slen );
    md_finish( &md_ctx, result );

    md_free_ctx( &md_ctx );

    if( memcmp( p + slen, result, hlen ) == 0 )
        return( 0 );
    else
        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
Exemple #12
0
/*
 * Do an RSA operation and check the message digest
 */
int rsa_pkcs1_verify( rsa_context *ctx,
                      int mode,
                      int hash_id,
                      unsigned int hashlen,
                      const unsigned char *hash,
                      unsigned char *sig )
{
    int ret;
    size_t len, siglen;
    unsigned char *p, c;
    unsigned char buf[1024];
#if defined(POLARSSL_PKCS1_V21)
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;
#endif
    siglen = ctx->len;

    if( siglen < 16 || siglen > (int) sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            if( *p++ != 0 || *p++ != RSA_SIGN )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            while( *p != 0 )
            {
                if( p >= buf + siglen - 1 || *p != 0xFF )
                    return( POLARSSL_ERR_RSA_INVALID_PADDING );
                p++;
            }
            p++;

            len = siglen - (int)( p - buf );

            if( len == 34 )
            {
                c = p[13];
                p[13] = 0;

                if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );

                if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
                        ( c == 4 && hash_id == SIG_RSA_MD4 ) ||
                        ( c == 5 && hash_id == SIG_RSA_MD5 ) )
                {
                    if( memcmp( p + 18, hash, 16 ) == 0 ) 
                        return( 0 );
                    else
                        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
                }
            }

            if( len == 35 && hash_id == SIG_RSA_SHA1 )
            {
                if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&
                        memcmp( p + 15, hash, 20 ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }
            if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||
                    ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||
                    ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||
                    ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )
            {
                c = p[1] - 17;
                p[1] = 17;
                p[14] = 0;

                if( p[18] == c &&
                        memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&
                        memcmp( p + 19, hash, c ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }

            if( len == hashlen && hash_id == SIG_RSA_RAW )
            {
                if( memcmp( p, hash, hashlen ) == 0 )
                    return( 0 );
                else
                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            }

            break;

#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:
            
            if( buf[siglen - 1] != 0xBC )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            switch( hash_id )
            {
                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    hashlen = 16;
                    break;

                case SIG_RSA_SHA1:
                    hashlen = 20;
                    break;

                case SIG_RSA_SHA224:
                    hashlen = 28;
                    break;

                case SIG_RSA_SHA256:
                    hashlen = 32;
                    break;

                case SIG_RSA_SHA384:
                    hashlen = 48;
                    break;

                case SIG_RSA_SHA512:
                    hashlen = 64;
                    break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
                
            hlen = md_get_size( md_info );
            slen = siglen - hlen - 1;

            memset( &md_ctx, 0, sizeof( md_context_t ) );
            memset( zeros, 0, 8 );

            md_init_ctx( &md_ctx, md_info );

            // Note: EMSA-PSS verification is over the length of N - 1 bits
            //
            msb = mpi_msb( &ctx->N ) - 1;

            // Compensate for boundary condition when applying mask
            //
            if( msb % 8 == 0 )
            {
                p++;
                siglen -= 1;
            }
            if( buf[0] >> ( 8 - siglen * 8 + msb ) )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

            buf[0] &= 0xFF >> ( siglen * 8 - msb );

            while( *p == 0 && p < buf + siglen )
                p++;

            if( p == buf + siglen )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            if( *p++ != 0x01 )
                return( POLARSSL_ERR_RSA_INVALID_PADDING );

            slen -= p - buf;

            // Generate H = Hash( M' )
            //
            md_starts( &md_ctx );
            md_update( &md_ctx, zeros, 8 );
            md_update( &md_ctx, hash, hashlen );
            md_update( &md_ctx, p, slen );
            md_finish( &md_ctx, p );

            if( memcmp( p, p + slen, hlen ) == 0 )
                return( 0 );
            else
                return( POLARSSL_ERR_RSA_VERIFY_FAILED );
            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    return( POLARSSL_ERR_RSA_INVALID_PADDING );
}
Exemple #13
0
/*
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 */
int rsa_rsassa_pss_verify_ext( rsa_context *ctx,
                               int (*f_rng)(void *, unsigned char *, size_t),
                               void *p_rng,
                               int mode,
                               md_type_t md_alg,
                               unsigned int hashlen,
                               const unsigned char *hash,
                               md_type_t mgf1_hash_id,
                               int expected_salt_len,
                               const unsigned char *sig )
{
    int ret;
    size_t siglen;
    unsigned char *p;
    unsigned char buf[POLARSSL_MPI_MAX_SIZE];
    unsigned char result[POLARSSL_MD_MAX_SIZE];
    unsigned char zeros[8];
    unsigned int hlen;
    size_t slen, msb;
    const md_info_t *md_info;
    md_context_t md_ctx;

    if( mode == RSA_PRIVATE && ctx->padding != RSA_PKCS_V21 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    siglen = ctx->len;

    if( siglen < 16 || siglen > sizeof( buf ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    ret = ( mode == RSA_PUBLIC )
          ? rsa_public(  ctx, sig, buf )
          : rsa_private( ctx, f_rng, p_rng, sig, buf );

    if( ret != 0 )
        return( ret );

    p = buf;

    if( buf[siglen - 1] != 0xBC )
        return( POLARSSL_ERR_RSA_INVALID_PADDING );

    if( md_alg != POLARSSL_MD_NONE )
    {
        // Gather length of hash to sign
        //
        md_info = md_info_from_type( md_alg );
        if( md_info == NULL )
            return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

        hashlen = md_get_size( md_info );
    }

    md_info = md_info_from_type( mgf1_hash_id );
    if( md_info == NULL )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    hlen = md_get_size( md_info );
    slen = siglen - hlen - 1; /* Currently length of salt + padding */

    memset( zeros, 0, 8 );

    // Note: EMSA-PSS verification is over the length of N - 1 bits
    //
    msb = mpi_msb( &ctx->N ) - 1;

    // Compensate for boundary condition when applying mask
    //
    if( msb % 8 == 0 )
    {
        p++;
        siglen -= 1;
    }
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    md_init( &md_ctx );
    md_init_ctx( &md_ctx, md_info );

    mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );

    buf[0] &= 0xFF >> ( siglen * 8 - msb );

    while( p < buf + siglen && *p == 0 )
        p++;

    if( p == buf + siglen ||
        *p++ != 0x01 )
    {
        md_free( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    /* Actual salt len */
    slen -= p - buf;

    if( expected_salt_len != RSA_SALT_LEN_ANY &&
        slen != (size_t) expected_salt_len )
    {
        md_free( &md_ctx );
        return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    // Generate H = Hash( M' )
    //
    md_starts( &md_ctx );
    md_update( &md_ctx, zeros, 8 );
    md_update( &md_ctx, hash, hashlen );
    md_update( &md_ctx, p, slen );
    md_finish( &md_ctx, result );

    md_free( &md_ctx );

    if( memcmp( p + slen, result, hlen ) == 0 )
        return( 0 );
    else
        return( POLARSSL_ERR_RSA_VERIFY_FAILED );
}
Exemple #14
0
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md, const uint8_t *pass, uint8_t *key, uint8_t *iv)
{
    size_t datal;
    datal = strlen((const char *) pass);
#if defined(USE_CRYPTO_OPENSSL)
    return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv);
#elif defined(USE_CRYPTO_POLARSSL)
    md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv = cipher_iv_size(cipher);
    rv = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(md_context_t));
    if (md_init_ctx(&c, md)) {
        return 0;
    }
    addmd = 0;
    mds = md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }  
            } else {
                addmd = 1;
            }
            if (md_update(&c, pass, datal))
                break;
            if (md_finish(&c, &(md_buf[0])))
                break;
            error = 0;
        } while (0);
        if (error) {
            md_free_ctx(&c);
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i=0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) break;
                if (i == mds) break;
                if (key != NULL)
                    *(key++)=md_buf[i];
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) break;
                if (i == mds) break;
                if (iv != NULL)
                    *(iv++)=md_buf[i];
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) break;
    }
    md_free_ctx(&c);
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#endif
}
Exemple #15
0
int bytes_to_key(const cipher_kt_t *cipher, const digest_type_t *md,
                 const uint8_t *pass, uint8_t *key, uint8_t *iv)
{
    size_t datal;
    datal = strlen((const char *)pass);
#if defined(USE_CRYPTO_OPENSSL)
    return EVP_BytesToKey(cipher, md, NULL, pass, datal, 1, key, iv);
#elif defined(USE_CRYPTO_POLARSSL)
    md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(md_context_t));
    if (md_init_ctx(&c, md)) {
        return 0;
    }
    addmd = 0;
    mds   = md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (md_update(&c, pass, datal)) {
                break;
            }
            if (md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            md_free_ctx(&c);
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    md_free_ctx(&c);
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#elif defined(USE_CRYPTO_MBEDTLS)
/*
 *
 * Generic message digest context.
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const mbedtls_md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 *
 *   HMAC part of the context
 *  void *hmac_ctx;
 * } mbedtls_md_context_t; // mbedtls 2.0.0
 *
 * typedef struct {
 *  Information about the associated message digest
 *  const md_info_t *md_info;
 *
 *  Digest-specific context
 *  void *md_ctx;
 * } md_context_t; //polarssl 1.3
 *
 */
    // NOTE: different struct body, initialize new param hmac 0 to disable HMAC
    mbedtls_md_context_t c;
    unsigned char md_buf[MAX_MD_SIZE];
    int niv;
    int nkey;
    int addmd;
    unsigned int mds;
    unsigned int i;
    int rv;

    nkey = cipher_key_size(cipher);
    niv  = cipher_iv_size(cipher);
    rv   = nkey;
    if (pass == NULL) {
        return nkey;
    }

    memset(&c, 0, sizeof(mbedtls_md_context_t));
    // XXX: md_init_ctx superseded by mbedtls_md_setup() in 2.0.0
    // new param hmac      0 to save some memory if HMAC will not be used,
    //                     non-zero is HMAC is going to be used with this context.
    if (mbedtls_md_setup(&c, md, 1)) {
        return 0;
    }
    addmd = 0;
    mds   = mbedtls_md_get_size(md);
    for (;;) {
        int error;
        do {
            error = 1;
            if (mbedtls_md_starts(&c)) {
                break;
            }
            if (addmd) {
                if (mbedtls_md_update(&c, &(md_buf[0]), mds)) {
                    break;
                }
            } else {
                addmd = 1;
            }
            if (mbedtls_md_update(&c, pass, datal)) {
                break;
            }
            if (mbedtls_md_finish(&c, &(md_buf[0]))) {
                break;
            }
            error = 0;
        } while (0);
        if (error) {
            mbedtls_md_free(&c); // md_free_ctx deprecated, Use mbedtls_md_free() instead
            memset(md_buf, 0, MAX_MD_SIZE);
            return 0;
        }

        i = 0;
        if (nkey) {
            for (;;) {
                if (nkey == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (key != NULL) {
                    *(key++) = md_buf[i];
                }
                nkey--;
                i++;
            }
        }
        if (niv && (i != mds)) {
            for (;;) {
                if (niv == 0) {
                    break;
                }
                if (i == mds) {
                    break;
                }
                if (iv != NULL) {
                    *(iv++) = md_buf[i];
                }
                niv--;
                i++;
            }
        }
        if ((nkey == 0) && (niv == 0)) {
            break;
        }
    }
    mbedtls_md_free(&c); // NOTE: md_free_ctx deprecated, Use mbedtls_md_free() instead
    memset(md_buf, 0, MAX_MD_SIZE);
    return rv;
#endif
}
Exemple #16
0
/*
 * Do an RSA operation to sign the message digest
 */
int rsa_pkcs1_sign( rsa_context *ctx,
                    int (*f_rng)(void *),
                    void *p_rng,
                    int mode,
                    int hash_id,
                    unsigned int hashlen,
                    const unsigned char *hash,
                    unsigned char *sig )
{
    size_t nb_pad, olen;
    unsigned char *p = sig;
#if defined(POLARSSL_PKCS1_V21)
    unsigned char salt[POLARSSL_MD_MAX_SIZE];
    unsigned int i, slen, hlen, offset = 0;
    size_t msb;
    const md_info_t *md_info;
    md_context_t md_ctx;
#else
    (void) f_rng;
    (void) p_rng;
#endif

    olen = ctx->len;

    switch( ctx->padding )
    {
        case RSA_PKCS_V15:

            switch( hash_id )
            {
                case SIG_RSA_RAW:
                    nb_pad = olen - 3 - hashlen;
                    break;

                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    nb_pad = olen - 3 - 34;
                    break;

                case SIG_RSA_SHA1:
                    nb_pad = olen - 3 - 35;
                    break;

                case SIG_RSA_SHA224:
                    nb_pad = olen - 3 - 47;
                    break;

                case SIG_RSA_SHA256:
                    nb_pad = olen - 3 - 51;
                    break;

                case SIG_RSA_SHA384:
                    nb_pad = olen - 3 - 67;
                    break;

                case SIG_RSA_SHA512:
                    nb_pad = olen - 3 - 83;
                    break;


                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            if( nb_pad < 8 )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            *p++ = 0;
            *p++ = RSA_SIGN;
            memset( p, 0xFF, nb_pad );
            p += nb_pad;
            *p++ = 0;

            switch( hash_id )
            {
                case SIG_RSA_RAW:
                    memcpy( p, hash, hashlen );
                    break;

                case SIG_RSA_MD2:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 2; break;

                case SIG_RSA_MD4:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 4; break;

                case SIG_RSA_MD5:
                    memcpy( p, ASN1_HASH_MDX, 18 );
                    memcpy( p + 18, hash, 16 );
                    p[13] = 5; break;

                case SIG_RSA_SHA1:
                    memcpy( p, ASN1_HASH_SHA1, 15 );
                    memcpy( p + 15, hash, 20 );
                    break;

                case SIG_RSA_SHA224:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 28 );
                    p[1] += 28; p[14] = 4; p[18] += 28; break;

                case SIG_RSA_SHA256:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 32 );
                    p[1] += 32; p[14] = 1; p[18] += 32; break;

                case SIG_RSA_SHA384:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 48 );
                    p[1] += 48; p[14] = 2; p[18] += 48; break;

                case SIG_RSA_SHA512:
                    memcpy( p, ASN1_HASH_SHA2X, 19 );
                    memcpy( p + 19, hash, 64 );
                    p[1] += 64; p[14] = 3; p[18] += 64; break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            break;

#if defined(POLARSSL_PKCS1_V21)
        case RSA_PKCS_V21:

            if( f_rng == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

            switch( hash_id )
            {
                case SIG_RSA_MD2:
                case SIG_RSA_MD4:
                case SIG_RSA_MD5:
                    hashlen = 16;
                    break;

                case SIG_RSA_SHA1:
                    hashlen = 20;
                    break;

                case SIG_RSA_SHA224:
                    hashlen = 28;
                    break;

                case SIG_RSA_SHA256:
                    hashlen = 32;
                    break;

                case SIG_RSA_SHA384:
                    hashlen = 48;
                    break;

                case SIG_RSA_SHA512:
                    hashlen = 64;
                    break;

                default:
                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
            }

            md_info = md_info_from_type( ctx->hash_id );
            if( md_info == NULL )
                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
                
            hlen = md_get_size( md_info );
            slen = hlen;

            memset( sig, 0, olen );
            memset( &md_ctx, 0, sizeof( md_context_t ) );

            md_init_ctx( &md_ctx, md_info );

            msb = mpi_msb( &ctx->N ) - 1;

            // Generate salt of length slen
            //
            for( i = 0; i < slen; ++i )
                salt[i] = (unsigned char) f_rng( p_rng ); 

            // Note: EMSA-PSS encoding is over the length of N - 1 bits
            //
            msb = mpi_msb( &ctx->N ) - 1;
            p += olen - hlen * 2 - 2;
            *p++ = 0x01;
            memcpy( p, salt, slen );
            p += slen;

            // Generate H = Hash( M' )
            //
            md_starts( &md_ctx );
            md_update( &md_ctx, p, 8 );
            md_update( &md_ctx, hash, hashlen );
            md_update( &md_ctx, salt, slen );
            md_finish( &md_ctx, p );

            // Compensate for boundary condition when applying mask
            //
            if( msb % 8 == 0 )
                offset = 1;

            // maskedDB: Apply dbMask to DB
            //
            mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );

            msb = mpi_msb( &ctx->N ) - 1;
            sig[0] &= 0xFF >> ( olen * 8 - msb );

            p += hlen;
            *p++ = 0xBC;
            break;
#endif

        default:

            return( POLARSSL_ERR_RSA_INVALID_PADDING );
    }

    return( ( mode == RSA_PUBLIC )
            ? rsa_public(  ctx, sig, sig )
            : rsa_private( ctx, sig, sig ) );
}
Exemple #17
0
/*
 * Do the system upgrade.
 */
void
do_upgrade(void)
{
    int retcode = 0;
    partman_go = 0;

    msg_display(MSG_upgradeusure);
    if (!ask_noyes(NULL))
        return;

    get_ramsize();

    if (find_disks(msg_string(MSG_upgrade)) < 0)
        return;

    if (set_swap_if_low_ram(pm->diskdev, NULL) < 0)
        return;

    if (md_pre_update() < 0)
        return;

    if (mount_disks() != 0)
        return;


    /*
     * Save X symlink, ...
     */
    if (save_X("/usr/X11R6"))
        return;
    if (save_X("/usr/X11R7"))
        return;

#ifdef AOUT2ELF
    move_aout_libs();
#endif
    /* Do any md updating of the file systems ... e.g. bootblocks,
       copy file systems ... */
    if (!md_update())
        return;

    wrefresh(curscr);
    wmove(stdscr, 0, 0);
    wclear(stdscr);
    wrefresh(stdscr);

    /* Done with disks. Ready to get and unpack tarballs. */
    process_menu(MENU_distset, &retcode);
    if (retcode == 0)
        return;
    if (get_and_unpack_sets(1, MSG_disksetupdoneupdate,
                            MSG_upgrcomplete, MSG_abortupgr) != 0)
        return;

    if (md_post_extract())
        return;

    merge_X("/usr/X11R6");
    merge_X("/usr/X11R7");

    sanity_check();
}