Exemple #1
0
 doublereal LatticePhase::
 enthalpy_mole() const {
   doublereal p0 = m_spthermo->refPressure();
   return GasConstant * temperature() * 
     mean_X(&enthalpy_RT_ref()[0]) 
     + (pressure() - p0)/molarDensity();
 }
doublereal MaskellSolidSolnPhase::enthalpy_mole() const
{
    _updateThermo();
    const doublereal h0 = RT() * mean_X(m_h0_RT);
    const doublereal r = moleFraction(product_species_index);
    const doublereal fmval = fm(r);
    return h0 + r * fmval * h_mixing;
}
Exemple #3
0
doublereal SurfPhase::enthalpy_mole() const
{
    if (m_n0 <= 0.0) {
        return 0.0;
    }
    _updateThermo();
    return mean_X(DATA_PTR(m_h0));
}
doublereal MaskellSolidSolnPhase::entropy_mole() const
{
    _updateThermo();
    const doublereal s0 = GasConstant * mean_X(m_s0_R);
    const doublereal r = moleFraction(product_species_index);
    const doublereal fmval = fm(r);
    const doublereal rfm = r * fmval;
    return s0 + GasConstant * (xlogx(1-rfm) - xlogx(rfm) - xlogx(1-r-rfm) - xlogx((1-fmval)*r) - xlogx(1-r) - xlogx(r));
}
Exemple #5
0
void IdealMolalSoln::calcDensity()
{
    getPartialMolarVolumes(m_tmpV.data());
    doublereal dd = meanMolecularWeight() / mean_X(m_tmpV);
    Phase::setDensity(dd);
}
Exemple #6
0
doublereal IdealMolalSoln::cp_mole() const
{
    getPartialMolarCp(m_tmpV.data());
    return mean_X(m_tmpV);
}
  /// Molar entropy. Units: J/kmol/K. 
  doublereal IdealSolnGasVPSS::entropy_mole() const {
    updateStandardStateThermo();
    const vector_fp &entrop_R = m_VPSS_ptr->entropy_R();
    return GasConstant * (mean_X(DATA_PTR(entrop_R)) - sum_xlogx());

  }
Exemple #8
0
doublereal IdealGasPhase::entropy_mole() const
{
    return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx() - std::log(pressure() / m_spthermo->refPressure()));
}
Exemple #9
0
 /*
  * Molar internal energy. J/kmol. For an ideal gas mixture,
  * \f[
  * \hat u(T) = \sum_k X_k \hat h^0_k(T) - \hat R T,
  * \f]
  * and is a function only of temperature.
  * The reference-state pure-species enthalpies 
  * \f$ \hat h^0_k(T) \f$ are computed by the species thermodynamic 
  * property manager.
  * @see SpeciesThermo
  */
 doublereal PecosGasPhase::intEnergy_mole() const {
   return GasConstant * temperature()
     * ( mean_X(&enthalpy_RT_ref()[0]) - 1.0);
 }
doublereal LatticePhase::entropy_mole() const
{
    return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx());
}
doublereal IdealSolidSolnPhase::gibbs_mole() const
{
    return GasConstant * temperature() * (mean_X(gibbs_RT_ref()) + sum_xlogx());
}
doublereal IdealSolidSolnPhase::entropy_mole() const
{
    return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx());
}
doublereal IdealSolidSolnPhase::enthalpy_mole() const
{
    doublereal htp = GasConstant * temperature() * mean_X(enthalpy_RT_ref());
    return htp + (pressure() - m_Pref)/molarDensity();
}
Exemple #14
0
doublereal SurfPhase::cp_mole() const
{
    _updateThermo();
    return mean_X(&m_cp0[0]);
}
Exemple #15
0
 /// Molar heat capacity at constant pressure. Units: J/kmol/K. 
 doublereal IdealSolnGasVPSS::cp_mole() const {
   updateStandardStateThermo();
   const vector_fp &cp_R = m_VPSS_ptr->cp_R();
   return  GasConstant * (mean_X(DATA_PTR(cp_R)));
 }
Exemple #16
0
doublereal IdealMolalSoln::intEnergy_mole() const
{
    getPartialMolarEnthalpies(m_tmpV.data());
    return mean_X(m_tmpV);
}
doublereal LatticePhase::enthalpy_mole() const
{
    return RT() * mean_X(enthalpy_RT_ref()) +
            (pressure() - m_Pref)/molarDensity();
}
 doublereal ConstDensityThermo::intEnergy_mole() const {
     doublereal p0 = m_spthermo->refPressure();
     return GasConstant * temperature() * 
         mean_X(&enthalpy_RT()[0]) 
         - p0/molarDensity();
 }
doublereal LatticePhase::cp_mole() const
{
    return GasConstant * mean_X(cp_R_ref());
}
 doublereal ConstDensityThermo::entropy_mole() const {
     return GasConstant * (mean_X(&entropy_R()[0]) -
         sum_xlogx());
 }
Exemple #21
0
 /*
  * Molar heat capacity at constant pressure. Units: J/kmol/K.
  * For an ideal gas mixture, 
  * \f[
  * \hat c_p(t) = \sum_k \hat c^0_{p,k}(T).
  * \f]
  * The reference-state pure-species heat capacities  
  * \f$ \hat c^0_{p,k}(T) \f$ are computed by the species thermodynamic 
  * property manager.
  * @see SpeciesThermo
  */
 doublereal PecosGasPhase::cp_mole() const {
   return GasConstant * mean_X(&cp_R_ref()[0]);
 }
 doublereal ConstDensityThermo::cp_mole() const {
     return GasConstant * mean_X(&cp_R()[0]);
 }
Exemple #23
0
doublereal IdealMolalSoln::entropy_mole() const
{
    getPartialMolarEntropies(m_tmpV.data());
    return mean_X(m_tmpV);
}
Exemple #24
0
doublereal IdealMolalSoln::gibbs_mole() const
{
    getChemPotentials(m_tmpV.data());
    return mean_X(m_tmpV);
}
Exemple #25
0
doublereal IdealGasPhase::cp_mole() const
{
    return GasConstant * mean_X(cp_R_ref());
}
Exemple #26
0
  /// Molar enthalpy. Units: J/kmol. 
  doublereal IdealSolnGasVPSS::enthalpy_mole() const {
    updateStandardStateThermo();
    const vector_fp &enth_RT = m_VPSS_ptr->enthalpy_RT();
    return (GasConstant * temperature() *
	    mean_X(DATA_PTR(enth_RT)));
  }