Exemple #1
0
static void write_pmem(void *pmem_addr, struct page *page,
		unsigned int off, unsigned int len)
{
	void *mem = kmap_atomic(page);

	memcpy_to_pmem(pmem_addr, mem + off, len);
	kunmap_atomic(mem);
}
Exemple #2
0
static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
			unsigned int len, unsigned int off, int rw,
			sector_t sector)
{
	int rc = 0;
	bool bad_pmem = false;
	void *mem = kmap_atomic(page);
	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;

	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
		bad_pmem = true;

	if (rw == READ) {
		if (unlikely(bad_pmem))
			rc = -EIO;
		else {
			rc = memcpy_from_pmem(mem + off, pmem_addr, len);
			flush_dcache_page(page);
		}
	} else {
		/*
		 * Note that we write the data both before and after
		 * clearing poison.  The write before clear poison
		 * handles situations where the latest written data is
		 * preserved and the clear poison operation simply marks
		 * the address range as valid without changing the data.
		 * In this case application software can assume that an
		 * interrupted write will either return the new good
		 * data or an error.
		 *
		 * However, if pmem_clear_poison() leaves the data in an
		 * indeterminate state we need to perform the write
		 * after clear poison.
		 */
		flush_dcache_page(page);
		memcpy_to_pmem(pmem_addr, mem + off, len);
		if (unlikely(bad_pmem)) {
			pmem_clear_poison(pmem, pmem_off, len);
			memcpy_to_pmem(pmem_addr, mem + off, len);
		}
	}

	kunmap_atomic(mem);
	return rc;
}
Exemple #3
0
static void pmem_do_bvec(struct pmem_device *pmem, struct page *page,
			unsigned int len, unsigned int off, int rw,
			sector_t sector)
{
	void *mem = kmap_atomic(page);
	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
	void __pmem *pmem_addr = pmem->virt_addr + pmem_off;

	if (rw == READ) {
		memcpy_from_pmem(mem + off, pmem_addr, len);
		flush_dcache_page(page);
	} else {
		flush_dcache_page(page);
		memcpy_to_pmem(pmem_addr, mem + off, len);
	}

	kunmap_atomic(mem);
}
Exemple #4
0
static int pmem_rw_bytes(struct nd_namespace_common *ndns,
		resource_size_t offset, void *buf, size_t size, int rw)
{
	struct pmem_device *pmem = dev_get_drvdata(ndns->claim);

	if (unlikely(offset + size > pmem->size)) {
		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
		return -EFAULT;
	}

	if (rw == READ)
		memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
	else {
		memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
		wmb_pmem();
	}

	return 0;
}
Exemple #5
0
static int nsio_rw_bytes(struct nd_namespace_common *ndns,
		resource_size_t offset, void *buf, size_t size, int rw)
{
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);

	if (unlikely(offset + size > nsio->size)) {
		dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
		return -EFAULT;
	}

	if (rw == READ) {
		unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);

		if (unlikely(is_bad_pmem(&nsio->bb, offset / 512, sz_align)))
			return -EIO;
		return memcpy_from_pmem(buf, nsio->addr + offset, size);
	} else {
		memcpy_to_pmem(nsio->addr + offset, buf, size);
		nvdimm_flush(to_nd_region(ndns->dev.parent));
	}

	return 0;
}