size_t integrate_times(
        Stepper stepper , System system , State &start_state ,
        TimeIterator start_time , TimeIterator end_time , Time dt ,
        Observer observer , stepper_tag
)
{
    typename odeint::unwrap_reference< Observer >::type &obs = observer;
    typename odeint::unwrap_reference< Stepper >::type &st = stepper;
    typedef typename unit_value_type<Time>::type time_type;

    size_t steps = 0;
    Time current_dt = dt;
    while( true )
    {
        Time current_time = *start_time++;
        obs( start_state , current_time );
        if( start_time == end_time )
            break;
        while( less_with_sign( current_time , static_cast<time_type>(*start_time) , current_dt ) )
        {
            current_dt = min_abs( dt , *start_time - current_time );
            st.do_step( system , start_state , current_time , current_dt );
            current_time += current_dt;
            steps++;
        }
    }
    return steps;
}
size_t integrate_times(
        Stepper stepper , System system , State &start_state ,
        TimeIterator start_time , TimeIterator end_time , Time dt ,
        Observer observer , controlled_stepper_tag
)
{
    typename odeint::unwrap_reference< Observer >::type &obs = observer;
    typename odeint::unwrap_reference< Stepper >::type &st = stepper;
    typedef typename unit_value_type<Time>::type time_type;

    const size_t max_attempts = 1000;
    const char *error_string = "Integrate adaptive : Maximal number of iterations reached. A step size could not be found.";
    size_t steps = 0;
    while( true )
    {
        size_t fail_steps = 0;
        Time current_time = *start_time++;
        obs( start_state , current_time );
        if( start_time == end_time )
            break;
        while( less_with_sign( current_time , static_cast<time_type>(*start_time) , dt ) )
        {
            // adjust stepsize to end up exactly at the observation point
            Time current_dt = min_abs( dt , *start_time - current_time );
            if( st.try_step( system , start_state , current_time , current_dt ) == success )
            {
                ++steps;
                // continue with the original step size if dt was reduced due to observation
                dt = max_abs( dt , current_dt );
            }
            else
            {
                ++fail_steps;
                dt = current_dt;
            }
            if( fail_steps == max_attempts ) throw std::overflow_error( error_string );
        }
    }
    return steps;
}
size_t integrate_times(
        Stepper stepper , System system , State &start_state ,
        TimeIterator start_time , TimeIterator end_time , Time dt ,
        Observer observer , controlled_stepper_tag
)
{
    typename odeint::unwrap_reference< Observer >::type &obs = observer;
    typename odeint::unwrap_reference< Stepper >::type &st = stepper;
    typedef typename unit_value_type<Time>::type time_type;

    failed_step_checker fail_checker;  // to throw a runtime_error if step size adjustment fails
    size_t steps = 0;
    while( true )
    {
        Time current_time = *start_time++;
        obs( start_state , current_time );
        if( start_time == end_time )
            break;
        while( less_with_sign( current_time , static_cast<time_type>(*start_time) , dt ) )
        {
            // adjust stepsize to end up exactly at the observation point
            Time current_dt = min_abs( dt , *start_time - current_time );
            if( st.try_step( system , start_state , current_time , current_dt ) == success )
            {
                ++steps;
                // successful step -> reset the fail counter, see #173
                fail_checker.reset();
                // continue with the original step size if dt was reduced due to observation
                dt = max_abs( dt , current_dt );
            }
            else
            {
                fail_checker();  // check for possible overflow of failed steps in step size adjustment
                dt = current_dt;
            }
        }
    }
    return steps;
}