static tactic * mk_quant_preprocessor(ast_manager & m, bool disable_gaussian = false) { params_ref pull_ite_p; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); tactic * solve_eqs; if (disable_gaussian) solve_eqs = mk_skip_tactic(); else solve_eqs = when(mk_not(mk_has_pattern_probe()), mk_solve_eqs_tactic(m)); // remark: investigate if gaussian elimination is useful when patterns are not provided. return and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p), solve_eqs, mk_elim_uncnstr_tactic(m), mk_simplify_tactic(m)); }
tactic * mk_qfufbv_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool(":elim-and", true); main_p.set_bool(":blast-distinct", true); tactic * preamble_st = and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), if_no_proofs(if_no_unsat_cores(mk_reduce_args_tactic(m))), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), mk_max_bv_sharing_tactic(m) ); tactic * st = using_params(and_then(preamble_st, mk_smt_tactic()), main_p); //cond(is_qfbv(), // and_then(mk_bit_blaster(m), // mk_sat_solver(m)), // mk_smt_solver()) st->updt_params(p); return st; }
tactic * mk_qfauflia_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool(":elim-and", true); main_p.set_bool(":som", true); main_p.set_bool(":sort-store", true); params_ref ctx_simp_p; ctx_simp_p.set_uint(":max-depth", 30); ctx_simp_p.set_uint(":max-steps", 5000000); params_ref solver_p; solver_p.set_bool(":array-old-simplifier", false); tactic * preamble_st = and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), mk_simplify_tactic(m) ); tactic * st = and_then(using_params(preamble_st, main_p), using_params(mk_smt_tactic(), solver_p)); st->updt_params(p); return st; }
tactic * mk_qfnra_nlsat_tactic(ast_manager & m, params_ref const & p) { params_ref main_p = p; main_p.set_bool("elim_and", true); main_p.set_bool("blast_distinct", true); params_ref purify_p = p; purify_p.set_bool("complete", false); // temporary hack, solver does not support uninterpreted functions for encoding (div0 x) applications. So, we replace it application of this kind with an uninterpreted function symbol. tactic * factor; if (p.get_bool("factor", true)) factor = mk_factor_tactic(m, p); else factor = mk_skip_tactic(); return and_then(and_then(using_params(mk_simplify_tactic(m, p), main_p), using_params(mk_purify_arith_tactic(m, p), purify_p), mk_propagate_values_tactic(m, p), mk_solve_eqs_tactic(m, p), mk_elim_uncnstr_tactic(m, p), mk_elim_term_ite_tactic(m, p)), and_then(/* mk_degree_shift_tactic(m, p), */ // may affect full dimensionality detection factor, mk_solve_eqs_tactic(m, p), using_params(mk_simplify_tactic(m, p), main_p), mk_tseitin_cnf_core_tactic(m, p), using_params(mk_simplify_tactic(m, p), main_p), mk_nlsat_tactic(m, p))); }
tactic * mk_qflra_tactic(ast_manager & m, params_ref const & p) { params_ref pivot_p; pivot_p.set_bool("arith.greatest_error_pivot", true); params_ref main_p = p; main_p.set_bool("elim_and", true); main_p.set_bool("som", true); main_p.set_bool("blast_distinct", true); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref lhs_p; lhs_p.set_bool("arith_lhs", true); lhs_p.set_bool("eq2ineq", true); params_ref elim_to_real_p; elim_to_real_p.set_bool("elim_to_real", true); #if 0 tactic * mip = and_then(fail_if(mk_produce_proofs_probe()), fail_if(mk_produce_unsat_cores_probe()), using_params(and_then(and_then(mk_simplify_tactic(m), mk_recover_01_tactic(m), using_params(mk_simplify_tactic(m), elim_to_real_p), mk_propagate_values_tactic(m)), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), mk_elim_uncnstr_tactic(m), mk_solve_eqs_tactic(m), using_params(mk_simplify_tactic(m), lhs_p), using_params(mk_simplify_tactic(m), elim_to_real_p) ), main_p), fail_if(mk_not(mk_is_mip_probe())), try_for(mk_mip_tactic(m), 30000), mk_fail_if_undecided_tactic()); #endif // return using_params(or_else(mip, // using_params(mk_smt_tactic(m), pivot_p)), // p); #if 0 params_ref simplex_0, simplex_1, simplex_2; simplex_0.set_uint("lp.simplex_strategy", 0); simplex_1.set_uint("lp.simplex_strategy", 1); simplex_2.set_uint("lp.simplex_strategy", 2); return par(using_params(mk_smt_tactic(), simplex_0), using_params(mk_smt_tactic(), simplex_1), using_params(mk_smt_tactic(), simplex_2)); #else return using_params(using_params(mk_smt_tactic(m), pivot_p), p); #endif }
tactic * mk_qfnia_premable(ast_manager & m, params_ref const & p_ref) { params_ref pull_ite_p = p_ref; pull_ite_p.set_bool(":pull-cheap-ite", true); pull_ite_p.set_bool(":local-ctx", true); pull_ite_p.set_uint(":local-ctx-limit", 10000000); params_ref ctx_simp_p = p_ref; ctx_simp_p.set_uint(":max-depth", 30); ctx_simp_p.set_uint(":max-steps", 5000000); params_ref simp_p = p_ref; simp_p.set_bool(":hoist-mul", true); params_ref elim_p = p_ref; elim_p.set_uint(":max-memory",20); return and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p), mk_elim_uncnstr_tactic(m), skip_if_failed(using_params(mk_cofactor_term_ite_tactic(m), elim_p)), using_params(mk_simplify_tactic(m), simp_p)); }
tactic * mk_qfauflia_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("som", true); main_p.set_bool("sort_store", true); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref solver_p; solver_p.set_bool("array.simplify", false); // disable array simplifications at old_simplify module tactic * preamble_st = and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), mk_simplify_tactic(m) ); tactic * st = and_then(using_params(preamble_st, main_p), using_params(mk_smt_tactic(), solver_p)); st->updt_params(p); return st; }
tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("som", true); main_p.set_bool("blast_distinct", true); main_p.set_uint("blast_distinct_threshold", 128); // main_p.set_bool("push_ite_arith", true); params_ref pull_ite_p; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("push_ite_arith", false); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref lhs_p; lhs_p.set_bool("arith_lhs", true); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p)), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), using_params(mk_simplify_tactic(m), lhs_p) ); params_ref quasi_pb_p; quasi_pb_p.set_uint("lia2pb_max_bits", 64); params_ref no_cut_p; no_cut_p.set_uint("arith.branch_cut_ratio", 10000000); tactic * st = using_params(and_then(preamble_st, or_else(mk_ilp_model_finder_tactic(m), mk_pb_tactic(m), and_then(fail_if_not(mk_quasi_pb_probe()), using_params(mk_lia2sat_tactic(m), quasi_pb_p), mk_fail_if_undecided_tactic()), mk_bounded_tactic(m), mk_smt_tactic())), main_p); st->updt_params(p); return st; }
tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool(":elim-and", true); main_p.set_bool(":som", true); // main_p.set_bool(":push-ite-arith", true); params_ref pull_ite_p; pull_ite_p.set_bool(":pull-cheap-ite", true); pull_ite_p.set_bool(":push-ite-arith", false); pull_ite_p.set_bool(":local-ctx", true); pull_ite_p.set_uint(":local-ctx-limit", 10000000); params_ref ctx_simp_p; ctx_simp_p.set_uint(":max-depth", 30); ctx_simp_p.set_uint(":max-steps", 5000000); params_ref lhs_p; lhs_p.set_bool(":arith-lhs", true); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p)), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), using_params(mk_simplify_tactic(m), lhs_p) ); params_ref quasi_pb_p; quasi_pb_p.set_uint(":lia2pb-max-bits", 64); params_ref no_cut_p; no_cut_p.set_uint(":arith-branch-cut-ratio", 10000000); tactic * st = using_params(and_then(preamble_st, or_else(mk_ilp_model_finder_tactic(m), mk_pb_tactic(m), and_then(fail_if_not(mk_quasi_pb_probe()), using_params(mk_lia2sat_tactic(m), quasi_pb_p), mk_fail_if_undecided_tactic()), mk_bounded_tactic(m), mk_smt_tactic())), main_p); st->updt_params(p); return st; }
static tactic * mk_qfaufbv_preamble(ast_manager & m, params_ref const & p) { params_ref simp2_p = p; simp2_p.set_bool("som", true); simp2_p.set_bool("pull_cheap_ite", true); simp2_p.set_bool("push_ite_bv", false); simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); return and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_elim_uncnstr_tactic(m), // sound to use? if_no_proofs(if_no_unsat_cores(mk_reduce_args_tactic(m))), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), using_params(mk_simplify_tactic(m), simp2_p), mk_max_bv_sharing_tactic(m), if_no_proofs(if_no_unsat_cores(mk_ackermannize_bv_tactic(m, p))) ); }
static tactic * mk_qfbv_preamble(ast_manager& m, params_ref const& p) { params_ref solve_eq_p; // conservative guassian elimination. solve_eq_p.set_uint("solve_eqs_max_occs", 2); params_ref simp2_p = p; simp2_p.set_bool("som", true); simp2_p.set_bool("pull_cheap_ite", true); simp2_p.set_bool("push_ite_bv", false); simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); simp2_p.set_bool("flat", true); // required by som simp2_p.set_bool("hoist_mul", false); // required by som params_ref hoist_p; hoist_p.set_bool("hoist_mul", true); hoist_p.set_bool("som", false); return and_then( mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_solve_eqs_tactic(m), solve_eq_p), mk_elim_uncnstr_tactic(m), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), using_params(mk_simplify_tactic(m), simp2_p), // // Z3 can solve a couple of extra benchmarks by using hoist_mul // but the timeout in SMT-COMP is too small. // Moreover, it impacted negatively some easy benchmarks. // We should decide later, if we keep it or not. // using_params(mk_simplify_tactic(m), hoist_p), mk_max_bv_sharing_tactic(m), if_no_proofs(if_no_unsat_cores(mk_ackermannize_bv_tactic(m,p))) ); }
static tactic * mk_qfnia_premable(ast_manager & m, params_ref const & p_ref) { params_ref pull_ite_p = p_ref; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); params_ref ctx_simp_p = p_ref; ctx_simp_p.set_uint("max_depth", 30); ctx_simp_p.set_uint("max_steps", 5000000); params_ref elim_p = p_ref; elim_p.set_uint("max_memory",20); return and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_ctx_simplify_tactic(m), ctx_simp_p), using_params(mk_simplify_tactic(m), pull_ite_p), mk_elim_uncnstr_tactic(m), mk_lia2card_tactic(m), skip_if_failed(using_params(mk_cofactor_term_ite_tactic(m), elim_p))); }
tactic * mk_qfidl_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("blast_distinct", true); main_p.set_bool("som", true); params_ref lhs_p; lhs_p.set_bool("arith_lhs", true); params_ref lia2pb_p; lia2pb_p.set_uint("lia2pb_max_bits", 4); params_ref pb2bv_p; pb2bv_p.set_uint("pb2bv_all_clauses_limit", 8); params_ref pull_ite_p; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_fix_dl_var_tactic(m), mk_propagate_values_tactic(m), mk_elim_uncnstr_tactic(m) ), and_then(mk_solve_eqs_tactic(m), using_params(mk_simplify_tactic(m), lhs_p), mk_propagate_values_tactic(m), mk_normalize_bounds_tactic(m), mk_solve_eqs_tactic(m))); params_ref bv_solver_p; // The cardinality constraint encoding generates a lot of shared if-then-else's that can be flattened. // Several of them are simplified to and/or. If we flat them, we increase a lot the memory consumption. bv_solver_p.set_bool("flat", false); bv_solver_p.set_bool("som", false); // dynamic psm seems to work well. bv_solver_p.set_sym("gc", symbol("dyn_psm")); tactic * bv_solver = using_params(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_max_bv_sharing_tactic(m), mk_bit_blaster_tactic(m), mk_aig_tactic(), mk_sat_tactic(m)), bv_solver_p); tactic * try2bv = and_then(using_params(mk_lia2pb_tactic(m), lia2pb_p), mk_propagate_ineqs_tactic(m), using_params(mk_pb2bv_tactic(m), pb2bv_p), fail_if(mk_not(mk_is_qfbv_probe())), bv_solver); params_ref diff_neq_p; diff_neq_p.set_uint("diff_neq_max_k", 25); tactic * st = cond(mk_and(mk_lt(mk_num_consts_probe(), mk_const_probe(static_cast<double>(BIG_PROBLEM))), mk_and(mk_not(mk_produce_proofs_probe()), mk_not(mk_produce_unsat_cores_probe()))), using_params(and_then(preamble_st, or_else(using_params(mk_diff_neq_tactic(m), diff_neq_p), try2bv, mk_smt_tactic())), main_p), mk_smt_tactic()); st->updt_params(p); return st; }
tactic * mk_qfbv_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("push_ite_bv", true); main_p.set_bool("blast_distinct", true); params_ref simp2_p = p; simp2_p.set_bool("som", true); simp2_p.set_bool("pull_cheap_ite", true); simp2_p.set_bool("push_ite_bv", false); simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); simp2_p.set_bool("flat", true); // required by som simp2_p.set_bool("hoist_mul", false); // required by som params_ref local_ctx_p = p; local_ctx_p.set_bool("local_ctx", true); params_ref solver_p; solver_p.set_bool("preprocess", false); // preprocessor of smt::context is not needed. params_ref no_flat_p; no_flat_p.set_bool("flat", false); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 32); ctx_simp_p.set_uint("max_steps", 50000000); params_ref hoist_p; hoist_p.set_bool("hoist_mul", true); hoist_p.set_bool("som", false); params_ref solve_eq_p; // conservative guassian elimination. solve_eq_p.set_uint("solve_eqs_max_occs", 2); params_ref big_aig_p; big_aig_p.set_bool("aig_per_assertion", false); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_solve_eqs_tactic(m), solve_eq_p), mk_elim_uncnstr_tactic(m), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), using_params(mk_simplify_tactic(m), simp2_p)), // Z3 can solve a couple of extra benchmarks by using hoist_mul // but the timeout in SMT-COMP is too small. // Moreover, it impacted negatively some easy benchmarks. // We should decide later, if we keep it or not. using_params(mk_simplify_tactic(m), hoist_p), mk_max_bv_sharing_tactic(m)); #ifdef USE_OLD_SAT_SOLVER tactic * new_sat = and_then(mk_simplify_tactic(m), mk_smt_tactic()); #else tactic * new_sat = cond(mk_or(mk_produce_proofs_probe(), mk_produce_unsat_cores_probe()), and_then(mk_simplify_tactic(m), mk_smt_tactic()), mk_sat_tactic(m)); #endif tactic * st = using_params(and_then(preamble_st, // If the user sets HI_DIV0=false, then the formula may contain uninterpreted function // symbols. In this case, we should not use cond(mk_is_qfbv_probe(), cond(mk_is_qfbv_eq_probe(), and_then(mk_bv1_blaster_tactic(m), using_params(mk_smt_tactic(), solver_p)), and_then(mk_bit_blaster_tactic(m), when(mk_lt(mk_memory_probe(), mk_const_probe(MEMLIMIT)), and_then(using_params(and_then(mk_simplify_tactic(m), mk_solve_eqs_tactic(m)), local_ctx_p), if_no_proofs(cond(mk_produce_unsat_cores_probe(), mk_aig_tactic(), using_params(mk_aig_tactic(), big_aig_p))))), new_sat)), mk_smt_tactic())), main_p); st->updt_params(p); return st; }