Z3_probe Z3_API Z3_probe_lt(Z3_context c, Z3_probe p1, Z3_probe p2) { Z3_TRY; LOG_Z3_probe_lt(c, p1, p2); RESET_ERROR_CODE(); probe * new_p = mk_lt(to_probe_ref(p1), to_probe_ref(p2)); RETURN_PROBE(new_p); Z3_CATCH_RETURN(0); }
br_status factor_rewriter::mk_app_core( func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { if (m().is_eq(f)) { SASSERT(num_args == 2); return mk_eq(args[0], args[1], result); } if(f->get_family_id() == a().get_family_id()) { switch (f->get_decl_kind()) { case OP_LE: SASSERT(num_args == 2); return mk_le(args[0], args[1], result); case OP_GE: SASSERT(num_args == 2); return mk_ge(args[0], args[1], result); case OP_LT: SASSERT(num_args == 2); return mk_lt(args[0], args[1], result); case OP_GT: SASSERT(num_args == 2); return mk_gt(args[0], args[1], result); default: return BR_FAILED; } } return BR_FAILED; }
tactic * mk_qfbv_tactic(ast_manager& m, params_ref const & p, tactic* sat, tactic* smt) { params_ref local_ctx_p = p; local_ctx_p.set_bool("local_ctx", true); params_ref solver_p; solver_p.set_bool("preprocess", false); // preprocessor of smt::context is not needed. params_ref no_flat_p; no_flat_p.set_bool("flat", false); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 32); ctx_simp_p.set_uint("max_steps", 50000000); params_ref big_aig_p; big_aig_p.set_bool("aig_per_assertion", false); tactic* preamble_st = mk_qfbv_preamble(m, p); tactic * st = main_p(and_then(preamble_st, // If the user sets HI_DIV0=false, then the formula may contain uninterpreted function // symbols. In this case, we should not use the `sat', but instead `smt'. Alternatively, // the UFs can be eliminated by eager ackermannization in the preamble. cond(mk_is_qfbv_eq_probe(), and_then(mk_bv1_blaster_tactic(m), using_params(smt, solver_p)), cond(mk_is_qfbv_probe(), and_then(mk_bit_blaster_tactic(m), when(mk_lt(mk_memory_probe(), mk_const_probe(MEMLIMIT)), and_then(using_params(and_then(mk_simplify_tactic(m), mk_solve_eqs_tactic(m)), local_ctx_p), if_no_proofs(cond(mk_produce_unsat_cores_probe(), mk_aig_tactic(), using_params(mk_aig_tactic(), big_aig_p))))), sat), smt)))); st->updt_params(p); return st; }
br_status float_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { br_status st = BR_FAILED; SASSERT(f->get_family_id() == get_fid()); switch (f->get_decl_kind()) { case OP_TO_FLOAT: st = mk_to_fp(f, num_args, args, result); break; case OP_FLOAT_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break; case OP_FLOAT_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break; case OP_FLOAT_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break; case OP_FLOAT_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break; case OP_FLOAT_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break; case OP_FLOAT_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break; case OP_FLOAT_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break; case OP_FLOAT_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break; case OP_FLOAT_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break; case OP_FLOAT_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break; case OP_FLOAT_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break; case OP_FLOAT_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round(args[0], args[1], result); break; case OP_FLOAT_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break; case OP_FLOAT_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break; case OP_FLOAT_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break; case OP_FLOAT_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break; case OP_FLOAT_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break; case OP_FLOAT_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break; case OP_FLOAT_IS_NZERO: SASSERT(num_args == 1); st = mk_is_nzero(args[0], result); break; case OP_FLOAT_IS_PZERO: SASSERT(num_args == 1); st = mk_is_pzero(args[0], result); break; case OP_FLOAT_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break; case OP_FLOAT_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break; case OP_FLOAT_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break; case OP_FLOAT_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break; case OP_FLOAT_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break; case OP_FLOAT_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break; case OP_FLOAT_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(args[0], result); break; case OP_FLOAT_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break; case OP_FLOAT_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(args[0], args[1], result); break; case OP_FLOAT_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(args[0], args[1], result); break; case OP_FLOAT_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break; } return st; }
br_status fpa_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) { br_status st = BR_FAILED; SASSERT(f->get_family_id() == get_fid()); fpa_op_kind k = (fpa_op_kind)f->get_decl_kind(); switch (k) { case OP_FPA_RM_NEAREST_TIES_TO_EVEN: case OP_FPA_RM_NEAREST_TIES_TO_AWAY: case OP_FPA_RM_TOWARD_POSITIVE: case OP_FPA_RM_TOWARD_NEGATIVE: case OP_FPA_RM_TOWARD_ZERO: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_PLUS_INF: case OP_FPA_MINUS_INF: case OP_FPA_NAN: case OP_FPA_PLUS_ZERO: case OP_FPA_MINUS_ZERO: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_NUM: SASSERT(num_args == 0); result = m().mk_app(f, (expr * const *)0); st = BR_DONE; break; case OP_FPA_ADD: SASSERT(num_args == 3); st = mk_add(args[0], args[1], args[2], result); break; case OP_FPA_SUB: SASSERT(num_args == 3); st = mk_sub(args[0], args[1], args[2], result); break; case OP_FPA_NEG: SASSERT(num_args == 1); st = mk_neg(args[0], result); break; case OP_FPA_MUL: SASSERT(num_args == 3); st = mk_mul(args[0], args[1], args[2], result); break; case OP_FPA_DIV: SASSERT(num_args == 3); st = mk_div(args[0], args[1], args[2], result); break; case OP_FPA_REM: SASSERT(num_args == 2); st = mk_rem(args[0], args[1], result); break; case OP_FPA_ABS: SASSERT(num_args == 1); st = mk_abs(args[0], result); break; case OP_FPA_MIN: SASSERT(num_args == 2); st = mk_min(args[0], args[1], result); break; case OP_FPA_MAX: SASSERT(num_args == 2); st = mk_max(args[0], args[1], result); break; case OP_FPA_FMA: SASSERT(num_args == 4); st = mk_fma(args[0], args[1], args[2], args[3], result); break; case OP_FPA_SQRT: SASSERT(num_args == 2); st = mk_sqrt(args[0], args[1], result); break; case OP_FPA_ROUND_TO_INTEGRAL: SASSERT(num_args == 2); st = mk_round_to_integral(args[0], args[1], result); break; case OP_FPA_EQ: SASSERT(num_args == 2); st = mk_float_eq(args[0], args[1], result); break; case OP_FPA_LT: SASSERT(num_args == 2); st = mk_lt(args[0], args[1], result); break; case OP_FPA_GT: SASSERT(num_args == 2); st = mk_gt(args[0], args[1], result); break; case OP_FPA_LE: SASSERT(num_args == 2); st = mk_le(args[0], args[1], result); break; case OP_FPA_GE: SASSERT(num_args == 2); st = mk_ge(args[0], args[1], result); break; case OP_FPA_IS_ZERO: SASSERT(num_args == 1); st = mk_is_zero(args[0], result); break; case OP_FPA_IS_NAN: SASSERT(num_args == 1); st = mk_is_nan(args[0], result); break; case OP_FPA_IS_INF: SASSERT(num_args == 1); st = mk_is_inf(args[0], result); break; case OP_FPA_IS_NORMAL: SASSERT(num_args == 1); st = mk_is_normal(args[0], result); break; case OP_FPA_IS_SUBNORMAL: SASSERT(num_args == 1); st = mk_is_subnormal(args[0], result); break; case OP_FPA_IS_NEGATIVE: SASSERT(num_args == 1); st = mk_is_negative(args[0], result); break; case OP_FPA_IS_POSITIVE: SASSERT(num_args == 1); st = mk_is_positive(args[0], result); break; case OP_FPA_FP: SASSERT(num_args == 3); st = mk_fp(args[0], args[1], args[2], result); break; case OP_FPA_TO_FP: st = mk_to_fp(f, num_args, args, result); break; case OP_FPA_TO_FP_UNSIGNED: SASSERT(num_args == 2); st = mk_to_fp_unsigned(f, args[0], args[1], result); break; case OP_FPA_TO_UBV: SASSERT(num_args == 2); st = mk_to_ubv(f, args[0], args[1], result); break; case OP_FPA_TO_SBV: SASSERT(num_args == 2); st = mk_to_sbv(f, args[0], args[1], result); break; case OP_FPA_TO_IEEE_BV: SASSERT(num_args == 1); st = mk_to_ieee_bv(f, args[0], result); break; case OP_FPA_TO_REAL: SASSERT(num_args == 1); st = mk_to_real(args[0], result); break; case OP_FPA_INTERNAL_MIN_I: case OP_FPA_INTERNAL_MAX_I: case OP_FPA_INTERNAL_MIN_UNSPECIFIED: case OP_FPA_INTERNAL_MAX_UNSPECIFIED: SASSERT(num_args == 2); st = BR_FAILED; break; case OP_FPA_INTERNAL_RM: SASSERT(num_args == 1); st = mk_rm(args[0], result); break; case OP_FPA_INTERNAL_TO_UBV_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_ubv_unspecified(f, result); break; case OP_FPA_INTERNAL_TO_SBV_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_sbv_unspecified(f, result); break; case OP_FPA_INTERNAL_TO_REAL_UNSPECIFIED: SASSERT(num_args == 0); st = mk_to_real_unspecified(result); break; case OP_FPA_INTERNAL_BVWRAP: case OP_FPA_INTERNAL_BVUNWRAP: st = BR_FAILED; break; default: NOT_IMPLEMENTED_YET(); } return st; }
tactic * mk_qfidl_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("blast_distinct", true); main_p.set_bool("som", true); params_ref lhs_p; lhs_p.set_bool("arith_lhs", true); params_ref lia2pb_p; lia2pb_p.set_uint("lia2pb_max_bits", 4); params_ref pb2bv_p; pb2bv_p.set_uint("pb2bv_all_clauses_limit", 8); params_ref pull_ite_p; pull_ite_p.set_bool("pull_cheap_ite", true); pull_ite_p.set_bool("local_ctx", true); pull_ite_p.set_uint("local_ctx_limit", 10000000); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_fix_dl_var_tactic(m), mk_propagate_values_tactic(m), mk_elim_uncnstr_tactic(m) ), and_then(mk_solve_eqs_tactic(m), using_params(mk_simplify_tactic(m), lhs_p), mk_propagate_values_tactic(m), mk_normalize_bounds_tactic(m), mk_solve_eqs_tactic(m))); params_ref bv_solver_p; // The cardinality constraint encoding generates a lot of shared if-then-else's that can be flattened. // Several of them are simplified to and/or. If we flat them, we increase a lot the memory consumption. bv_solver_p.set_bool("flat", false); bv_solver_p.set_bool("som", false); // dynamic psm seems to work well. bv_solver_p.set_sym("gc", symbol("dyn_psm")); tactic * bv_solver = using_params(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), mk_solve_eqs_tactic(m), mk_max_bv_sharing_tactic(m), mk_bit_blaster_tactic(m), mk_aig_tactic(), mk_sat_tactic(m)), bv_solver_p); tactic * try2bv = and_then(using_params(mk_lia2pb_tactic(m), lia2pb_p), mk_propagate_ineqs_tactic(m), using_params(mk_pb2bv_tactic(m), pb2bv_p), fail_if(mk_not(mk_is_qfbv_probe())), bv_solver); params_ref diff_neq_p; diff_neq_p.set_uint("diff_neq_max_k", 25); tactic * st = cond(mk_and(mk_lt(mk_num_consts_probe(), mk_const_probe(static_cast<double>(BIG_PROBLEM))), mk_and(mk_not(mk_produce_proofs_probe()), mk_not(mk_produce_unsat_cores_probe()))), using_params(and_then(preamble_st, or_else(using_params(mk_diff_neq_tactic(m), diff_neq_p), try2bv, mk_smt_tactic())), main_p), mk_smt_tactic()); st->updt_params(p); return st; }
tactic * mk_qfbv_tactic(ast_manager & m, params_ref const & p) { params_ref main_p; main_p.set_bool("elim_and", true); main_p.set_bool("push_ite_bv", true); main_p.set_bool("blast_distinct", true); params_ref simp2_p = p; simp2_p.set_bool("som", true); simp2_p.set_bool("pull_cheap_ite", true); simp2_p.set_bool("push_ite_bv", false); simp2_p.set_bool("local_ctx", true); simp2_p.set_uint("local_ctx_limit", 10000000); simp2_p.set_bool("flat", true); // required by som simp2_p.set_bool("hoist_mul", false); // required by som params_ref local_ctx_p = p; local_ctx_p.set_bool("local_ctx", true); params_ref solver_p; solver_p.set_bool("preprocess", false); // preprocessor of smt::context is not needed. params_ref no_flat_p; no_flat_p.set_bool("flat", false); params_ref ctx_simp_p; ctx_simp_p.set_uint("max_depth", 32); ctx_simp_p.set_uint("max_steps", 50000000); params_ref hoist_p; hoist_p.set_bool("hoist_mul", true); hoist_p.set_bool("som", false); params_ref solve_eq_p; // conservative guassian elimination. solve_eq_p.set_uint("solve_eqs_max_occs", 2); params_ref big_aig_p; big_aig_p.set_bool("aig_per_assertion", false); tactic * preamble_st = and_then(and_then(mk_simplify_tactic(m), mk_propagate_values_tactic(m), using_params(mk_solve_eqs_tactic(m), solve_eq_p), mk_elim_uncnstr_tactic(m), if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))), using_params(mk_simplify_tactic(m), simp2_p)), // Z3 can solve a couple of extra benchmarks by using hoist_mul // but the timeout in SMT-COMP is too small. // Moreover, it impacted negatively some easy benchmarks. // We should decide later, if we keep it or not. using_params(mk_simplify_tactic(m), hoist_p), mk_max_bv_sharing_tactic(m)); #ifdef USE_OLD_SAT_SOLVER tactic * new_sat = and_then(mk_simplify_tactic(m), mk_smt_tactic()); #else tactic * new_sat = cond(mk_or(mk_produce_proofs_probe(), mk_produce_unsat_cores_probe()), and_then(mk_simplify_tactic(m), mk_smt_tactic()), mk_sat_tactic(m)); #endif tactic * st = using_params(and_then(preamble_st, // If the user sets HI_DIV0=false, then the formula may contain uninterpreted function // symbols. In this case, we should not use cond(mk_is_qfbv_probe(), cond(mk_is_qfbv_eq_probe(), and_then(mk_bv1_blaster_tactic(m), using_params(mk_smt_tactic(), solver_p)), and_then(mk_bit_blaster_tactic(m), when(mk_lt(mk_memory_probe(), mk_const_probe(MEMLIMIT)), and_then(using_params(and_then(mk_simplify_tactic(m), mk_solve_eqs_tactic(m)), local_ctx_p), if_no_proofs(cond(mk_produce_unsat_cores_probe(), mk_aig_tactic(), using_params(mk_aig_tactic(), big_aig_p))))), new_sat)), mk_smt_tactic())), main_p); st->updt_params(p); return st; }
probe * mk_gt(probe * p1, probe * p2) { return mk_lt(p2, p1); }