/** Allocate a new ECC point @return A newly allocated point or NULL on error */ ecc_point *ltc_ecc_new_point(void) { ecc_point *p; p = XCALLOC(1, sizeof(*p)); if (p == NULL) { return NULL; } if (mp_init_multi(&p->x, &p->y, &p->z, NULL) != CRYPT_OK) { XFREE(p); return NULL; } return p; }
int cli_crt_init(cli_crt *x509) { int ret; if((ret = mp_init_multi(&x509->n, &x509->e, &x509->sig, NULL))) { cli_errmsg("cli_crt_init: mp_init_multi failed with %d\n", ret); return 1; } x509->name = NULL; x509->isBlacklisted = 0; x509->not_before = x509->not_after = 0; x509->prev = x509->next = NULL; x509->certSign = x509->codeSign = x509->timeSign = 0; return 0; }
int pkcs_1_pss_test(void) { struct ltc_prng_descriptor* no_prng_desc = no_prng_desc_get(); int prng_idx = register_prng(no_prng_desc); int hash_idx = find_hash("sha1"); unsigned int i; unsigned int j; DO(prng_is_valid(prng_idx)); DO(hash_is_valid(hash_idx)); for (i = 0; i < sizeof(testcases_pss)/sizeof(testcases_pss[0]); ++i) { testcase_t* t = &testcases_pss[i]; rsa_key k, *key = &k; DOX(mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL), t->name); DOX(mp_read_unsigned_bin(key->e, t->rsa.e, t->rsa.e_l), t->name); DOX(mp_read_unsigned_bin(key->d, t->rsa.d, t->rsa.d_l), t->name); DOX(mp_read_unsigned_bin(key->N, t->rsa.n, t->rsa.n_l), t->name); DOX(mp_read_unsigned_bin(key->dQ, t->rsa.dQ, t->rsa.dQ_l), t->name); DOX(mp_read_unsigned_bin(key->dP, t->rsa.dP, t->rsa.dP_l), t->name); DOX(mp_read_unsigned_bin(key->qP, t->rsa.qInv, t->rsa.qInv_l), t->name); DOX(mp_read_unsigned_bin(key->q, t->rsa.q, t->rsa.q_l), t->name); DOX(mp_read_unsigned_bin(key->p, t->rsa.p, t->rsa.p_l), t->name); key->type = PK_PRIVATE; for (j = 0; j < sizeof(t->data)/sizeof(t->data[0]); ++j) { rsaData_t* s = &t->data[j]; unsigned char buf[20], obuf[256]; unsigned long buflen = sizeof(buf), obuflen = sizeof(obuf); int stat; prng_descriptor[prng_idx].add_entropy(s->o2, s->o2_l, (prng_state*)no_prng_desc); DOX(hash_memory(hash_idx, s->o1, s->o1_l, buf, &buflen), s->name); DOX(rsa_sign_hash(buf, buflen, obuf, &obuflen, (prng_state*)no_prng_desc, prng_idx, hash_idx, s->o2_l, key), s->name); DOX(obuflen == (unsigned long)s->o3_l?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(memcmp(s->o3, obuf, s->o3_l)==0?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(rsa_verify_hash(obuf, obuflen, buf, buflen, hash_idx, s->o2_l, &stat, key), s->name); DOX(stat == 1?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); } /* for */ mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); } /* for */ unregister_prng(no_prng_desc); no_prng_desc_free(no_prng_desc); return 0; }
int ltc_ecc_is_point(const ltc_ecc_set_type *dp, void *x, void *y) { void *prime, *a, *b, *t1, *t2; int err; if ((err = mp_init_multi(&prime, &a, &b, &t1, &t2, NULL)) != CRYPT_OK) { return err; } /* load prime, a and b */ if ((err = mp_read_radix(prime, dp->prime, 16)) != CRYPT_OK) goto cleanup; if ((err = mp_read_radix(b, dp->B, 16)) != CRYPT_OK) goto cleanup; if ((err = mp_read_radix(a, dp->A, 16)) != CRYPT_OK) goto cleanup; /* compute y^2 */ if ((err = mp_sqr(y, t1)) != CRYPT_OK) goto cleanup; /* compute x^3 */ if ((err = mp_sqr(x, t2)) != CRYPT_OK) goto cleanup; if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK) goto cleanup; if ((err = mp_mul(x, t2, t2)) != CRYPT_OK) goto cleanup; /* compute y^2 - x^3 */ if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK) goto cleanup; /* compute y^2 - x^3 - a*x */ if ((err = mp_submod(prime, a, prime, t2)) != CRYPT_OK) goto cleanup; if ((err = mp_mulmod(t2, x, prime, t2)) != CRYPT_OK) goto cleanup; if ((err = mp_addmod(t1, t2, prime, t1)) != CRYPT_OK) goto cleanup; /* adjust range (0, prime) */ while (mp_cmp_d(t1, 0) == LTC_MP_LT) { if ((err = mp_add(t1, prime, t1)) != CRYPT_OK) goto cleanup; } while (mp_cmp(t1, prime) != LTC_MP_LT) { if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK) goto cleanup; } /* compare to b */ if (mp_cmp(t1, b) != LTC_MP_EQ) { err = CRYPT_INVALID_PACKET; } else { err = CRYPT_OK; } cleanup: mp_clear_multi(prime, b, t1, t2, NULL); return err; }
/** Import an KatjaPublicKey or KatjaPrivateKey [two-prime only, only support >= 1024-bit keys, defined in PKCS #1 v2.1] @param in The packet to import from @param inlen It's length (octets) @param key [out] Destination for newly imported key @return CRYPT_OK if successful, upon error allocated memory is freed */ int katja_import(const unsigned char *in, unsigned long inlen, katja_key *key) { int err; void *zero; LTC_ARGCHK(in != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init key */ if ((err = mp_init_multi(&zero, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, &key->pq, NULL)) != CRYPT_OK) { return err; } if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto LBL_ERR; } if (mp_cmp_d(key->N, 0) == LTC_MP_EQ) { /* it's a private key */ if ((err = der_decode_sequence_multi(in, inlen, LTC_ASN1_INTEGER, 1UL, zero, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->d, LTC_ASN1_INTEGER, 1UL, key->p, LTC_ASN1_INTEGER, 1UL, key->q, LTC_ASN1_INTEGER, 1UL, key->dP, LTC_ASN1_INTEGER, 1UL, key->dQ, LTC_ASN1_INTEGER, 1UL, key->qP, LTC_ASN1_INTEGER, 1UL, key->pq, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto LBL_ERR; } key->type = PK_PRIVATE; } else { /* public we have N */ key->type = PK_PUBLIC; } mp_clear(zero); return CRYPT_OK; LBL_ERR: mp_clear_multi(zero, key->d, key->N, key->dQ, key->dP, key->qP, key->p, key->q, key->pq, NULL); return err; }
static int mulmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); void *tmpa, *tmpb; mp_init_multi(&tmpa, &tmpb, NULL); mod(a, c, tmpa); mod(b, c, tmpb); mpa_mul_mod((mpanum) d, (const mpanum) tmpa, (const mpanum) tmpb, (const mpanum) c, external_mem_pool); mp_clear_multi(tmpa, tmpb, NULL); return CRYPT_OK; }
/* Allocate a new ECC point @return A newly allocated point or NULL on error */ ecc_point * ecc_new_point (void) { ecc_point *p; p = calloc (1, sizeof (*p)); if (p == NULL) { return NULL; } if (mp_init_multi (&p->x, &p->y, &p->z, NULL) != 0) { free (p); return NULL; } return p; }
static int is_point(ecc_key *key) { void *prime, *b, *t1, *t2; int err; if ((err = mp_init_multi(&prime, &b, &t1, &t2, NULL)) != CRYPT_OK) { return err; } /* load prime and b */ if ((err = mp_read_radix(prime, key->dp->prime, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(b, key->dp->B, 16)) != CRYPT_OK) { goto error; } /* compute y^2 */ if ((err = mp_sqr(key->pubkey.y, t1)) != CRYPT_OK) { goto error; } /* compute x^3 */ if ((err = mp_sqr(key->pubkey.x, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t2, prime, t2)) != CRYPT_OK) { goto error; } if ((err = mp_mul(key->pubkey.x, t2, t2)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 */ if ((err = mp_sub(t1, t2, t1)) != CRYPT_OK) { goto error; } /* compute y^2 - x^3 + 3x */ if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_add(t1, key->pubkey.x, t1)) != CRYPT_OK) { goto error; } if ((err = mp_mod(t1, prime, t1)) != CRYPT_OK) { goto error; } while (mp_cmp_d(t1, 0) == LTC_MP_LT) { if ((err = mp_add(t1, prime, t1)) != CRYPT_OK) { goto error; } } while (mp_cmp(t1, prime) != LTC_MP_LT) { if ((err = mp_sub(t1, prime, t1)) != CRYPT_OK) { goto error; } } /* compare to b */ if (mp_cmp(t1, b) != LTC_MP_EQ) { err = CRYPT_INVALID_PACKET; } else { err = CRYPT_OK; } error: mp_clear_multi(prime, b, t1, t2, NULL); return err; }
int pkcs_1_eme_test(void) { int prng_idx = register_prng(&no_prng_desc); int hash_idx = find_hash("sha1"); unsigned int i; DO(prng_is_valid(prng_idx)); DO(hash_is_valid(hash_idx)); for (i = 0; i < sizeof(testcases_eme)/sizeof(testcases_eme[0]); ++i) { testcase_t* t = &testcases_eme[i]; rsa_key k, *key = &k; DOX(mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL), t->name); DOX(mp_read_unsigned_bin(key->e, t->rsa.e, t->rsa.e_l), t->name); DOX(mp_read_unsigned_bin(key->d, t->rsa.d, t->rsa.d_l), t->name); DOX(mp_read_unsigned_bin(key->N, t->rsa.n, t->rsa.n_l), t->name); DOX(mp_read_unsigned_bin(key->dQ, t->rsa.dQ, t->rsa.dQ_l), t->name); DOX(mp_read_unsigned_bin(key->dP, t->rsa.dP, t->rsa.dP_l), t->name); DOX(mp_read_unsigned_bin(key->qP, t->rsa.qInv, t->rsa.qInv_l), t->name); DOX(mp_read_unsigned_bin(key->q, t->rsa.q, t->rsa.q_l), t->name); DOX(mp_read_unsigned_bin(key->p, t->rsa.p, t->rsa.p_l), t->name); key->type = PK_PRIVATE; unsigned int j; for (j = 0; j < sizeof(t->data)/sizeof(t->data[0]); ++j) { rsaData_t* s = &t->data[j]; unsigned char buf[256], obuf[256]; unsigned long buflen = sizeof(buf), obuflen = sizeof(obuf); int stat; prng_descriptor[prng_idx].add_entropy(s->o2, s->o2_l, NULL); DOX(rsa_encrypt_key_ex(s->o1, s->o1_l, obuf, &obuflen, NULL, 0, NULL, prng_idx, -1, LTC_PKCS_1_V1_5, key), s->name); DOX(obuflen == (unsigned long)s->o3_l?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(memcmp(s->o3, obuf, s->o3_l)==0?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(rsa_decrypt_key_ex(obuf, obuflen, buf, &buflen, NULL, 0, -1, LTC_PKCS_1_V1_5, &stat, key), s->name); DOX(stat == 1?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); } /* for */ mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); } /* for */ unregister_prng(&no_prng_desc); return 0; }
/** Non-complex part (no primality testing) of the validation of DSA params (p, q, g) @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_pqg(dsa_key *key, int *stat) { void *tmp1, *tmp2; int err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); *stat = 0; /* check q-order */ if ( key->qord >= LTC_MDSA_MAX_GROUP || key->qord <= 15 || (unsigned long)key->qord >= mp_unsigned_bin_size(key->p) || (mp_unsigned_bin_size(key->p) - key->qord) >= LTC_MDSA_DELTA ) { return CRYPT_OK; } /* FIPS 186-4 chapter 4.1: 1 < g < p */ if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) { return CRYPT_OK; } if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; } /* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */ if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; } if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; } if (mp_iszero(tmp2) != LTC_MP_YES) { err = CRYPT_OK; goto error; } /* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in * the multiplicative group of GF(p) - so we make sure that g^q mod p = 1 */ if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } err = CRYPT_OK; *stat = 1; error: mp_clear_multi(tmp2, tmp1, NULL); return err; }
int ecc_verify_key(ecc_key *key) { int err; void *prime = NULL; void *order = NULL; void *a = NULL; ecc_point *test_output = NULL; test_output = malloc(sizeof(ecc_point)); if (mp_init_multi(&(test_output->x), &(test_output->y), &(test_output->z), &order, &prime, NULL) != CRYPT_OK) { return CRYPT_MEM; } /* Test 1: Are the x amd y points of the public key in the field? */ if((err = ltc_mp.read_radix(prime, key->dp->prime, 16)) != CRYPT_OK) { goto error;} if(ltc_mp.compare_d(key->pubkey.z, 1) == LTC_MP_EQ) { if( (ltc_mp.compare(key->pubkey.x, prime) != LTC_MP_LT) || (ltc_mp.compare(key->pubkey.y, prime) != LTC_MP_LT) || (ltc_mp.compare_d(key->pubkey.x, 0) != LTC_MP_GT) || (ltc_mp.compare_d(key->pubkey.y, 0) != LTC_MP_GT) ) { err = CRYPT_INVALID_PACKET; goto error; } } /* Test 2: is the public key on the curve? */ if((err = ltc_ecc_is_point(key->dp, key->pubkey.x, key->pubkey.y)) != CRYPT_OK) { goto error;} /* Test 3: does nG = O? (n = order, 0 = point at infinity, G = public key) */ if((err = ltc_mp.read_radix(order, key->dp->order, 16)) != CRYPT_OK) { goto error;} if((err = ltc_mp.read_radix(a, key->dp->A, 16)) != CRYPT_OK) { goto error;} if((err = ltc_ecc_mulmod(order, &(key->pubkey), test_output, a, prime, 1)) != CRYPT_OK) { goto error; } err = CRYPT_OK; error: mp_clear_multi(prime, order, test_output->z, test_output->y, test_output->x, NULL); return err; }
int pkcs_1_emsa_test(void) { int hash_idx = find_hash("sha1"); unsigned int i; unsigned int j; DO(hash_is_valid(hash_idx)); for (i = 0; i < sizeof(testcases_emsa)/sizeof(testcases_emsa[0]); ++i) { testcase_t* t = &testcases_emsa[i]; rsa_key k, *key = &k; DOX(mp_init_multi(&key->e, &key->d, &key->N, &key->dQ, &key->dP, &key->qP, &key->p, &key->q, NULL), t->name); DOX(mp_read_unsigned_bin(key->e, t->rsa.e, t->rsa.e_l), t->name); DOX(mp_read_unsigned_bin(key->d, t->rsa.d, t->rsa.d_l), t->name); DOX(mp_read_unsigned_bin(key->N, t->rsa.n, t->rsa.n_l), t->name); DOX(mp_read_unsigned_bin(key->dQ, t->rsa.dQ, t->rsa.dQ_l), t->name); DOX(mp_read_unsigned_bin(key->dP, t->rsa.dP, t->rsa.dP_l), t->name); DOX(mp_read_unsigned_bin(key->qP, t->rsa.qInv, t->rsa.qInv_l), t->name); DOX(mp_read_unsigned_bin(key->q, t->rsa.q, t->rsa.q_l), t->name); DOX(mp_read_unsigned_bin(key->p, t->rsa.p, t->rsa.p_l), t->name); key->type = PK_PRIVATE; for (j = 0; j < sizeof(t->data)/sizeof(t->data[0]); ++j) { rsaData_t* s = &t->data[j]; unsigned char buf[20], obuf[256]; unsigned long buflen = sizeof(buf), obuflen = sizeof(obuf); int stat; DOX(hash_memory(hash_idx, s->o1, s->o1_l, buf, &buflen), s->name); DOX(rsa_sign_hash_ex(buf, buflen, obuf, &obuflen, LTC_PKCS_1_V1_5, NULL, -1, hash_idx, 0, key), s->name); DOX(obuflen == (unsigned long)s->o2_l?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(memcmp(s->o2, obuf, s->o2_l)==0?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); DOX(rsa_verify_hash_ex(obuf, obuflen, buf, buflen, LTC_PKCS_1_V1_5, hash_idx, 0, &stat, key), s->name); DOX(stat == 1?CRYPT_OK:CRYPT_FAIL_TESTVECTOR, s->name); } /* for */ mp_clear_multi(key->d, key->e, key->N, key->dQ, key->dP, key->qP, key->p, key->q, NULL); } /* for */ return 0; }
/** Create a DSA key (with given params) @param prng An active PRNG state @param wprng The index of the PRNG desired @param group_size Size of the multiplicative group (octets) @param modulus_size Size of the modulus (octets) @param key [out] Where to store the created key @param p_hex Hexadecimal string 'p' @param q_hex Hexadecimal string 'q' @param g_hex Hexadecimal string 'g' @return CRYPT_OK if successful, upon error this function will free all allocated memory */ static int dsa_make_key_ex(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key, char* p_hex, char* q_hex, char* g_hex) { int err, qbits; LTC_ARGCHK(key != NULL); /* init mp_ints */ if ((err = mp_init_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) { return err; } if (p_hex == NULL || q_hex == NULL || g_hex == NULL) { /* generate params */ err = dsa_make_params(prng, wprng, group_size, modulus_size, key->p, key->q, key->g); if (err != CRYPT_OK) { goto cleanup; } } else { /* read params */ if ((err = mp_read_radix(key->p, p_hex, 16)) != CRYPT_OK) { goto cleanup; } if ((err = mp_read_radix(key->q, q_hex, 16)) != CRYPT_OK) { goto cleanup; } if ((err = mp_read_radix(key->g, g_hex, 16)) != CRYPT_OK) { goto cleanup; } /* XXX-TODO maybe do some validity check for p, q, g */ } /* so now we have our DH structure, generator g, order q, modulus p Now we need a random exponent [mod q] and it's power g^x mod p */ qbits = mp_count_bits(key->q); do { if ((err = rand_bn_bits(key->x, qbits, prng, wprng)) != CRYPT_OK) { goto cleanup; } /* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */ } while (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT); if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK) { goto cleanup; } key->type = PK_PRIVATE; key->qord = group_size; return CRYPT_OK; cleanup: mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL); return err; }
int __private_eccdh_shared_secret(const ltc_ecc_set_type *dp, const char *pub_key_x, const char *pub_key_y, const char *pub_key_z, const char *priv_key, unsigned char *out, unsigned long *outlen) { int err; ecc_key public_key; ecc_key private_key; memset(&public_key, 0, sizeof(ecc_key)); memset(&private_key, 0, sizeof(ecc_key)); if (mp_init_multi(&public_key.pubkey.x, &public_key.pubkey.y, &public_key.pubkey.z, &private_key.k, NULL)) return -1; if ((err = mp_read_radix(public_key.pubkey.x, pub_key_x, 16)) != 0) { mp_clear_multi(public_key.pubkey.x, public_key.pubkey.y, public_key.pubkey.z, private_key.k, NULL); return -1; } if ((err = mp_read_radix(public_key.pubkey.y, pub_key_y, 16)) != 0) { mp_clear_multi(public_key.pubkey.x, public_key.pubkey.y, public_key.pubkey.z, private_key.k, NULL); return -1; } if ((err = mp_read_radix(public_key.pubkey.z, pub_key_z, 16)) != 0) { mp_clear_multi(public_key.pubkey.x, public_key.pubkey.y, public_key.pubkey.z, private_key.k, NULL); return -1; } if ((err = mp_read_radix(private_key.k, priv_key, 16)) != 0) { mp_clear_multi(public_key.pubkey.x, public_key.pubkey.y, public_key.pubkey.z, private_key.k, NULL); return -1; } public_key.idx = -1; public_key.dp = dp; public_key.type = PK_PUBLIC; private_key.idx = -1; private_key.dp = dp; private_key.type = PK_PRIVATE; err = ecc_shared_secret(&private_key, &public_key, out, outlen); mp_clear_multi(public_key.pubkey.x, public_key.pubkey.y, public_key.pubkey.z, private_key.k, NULL); return err; }
static int _prime_test(void) { void *p, *g, *tmp; int x, err, primality; if ((err = mp_init_multi(&p, &g, &tmp, NULL)) != CRYPT_OK) { goto error; } for (x = 0; ltc_dh_sets[x].size != 0; x++) { if ((err = mp_read_radix(g, ltc_dh_sets[x].base, 16)) != CRYPT_OK) { goto error; } if ((err = mp_read_radix(p, ltc_dh_sets[x].prime, 16)) != CRYPT_OK) { goto error; } /* ensure p is prime */ if ((err = mp_prime_is_prime(p, 8, &primality)) != CRYPT_OK) { goto done; } if (primality != LTC_MP_YES ) { err = CRYPT_FAIL_TESTVECTOR; goto done; } if ((err = mp_sub_d(p, 1, tmp)) != CRYPT_OK) { goto error; } if ((err = mp_div_2(tmp, tmp)) != CRYPT_OK) { goto error; } /* ensure (p-1)/2 is prime */ if ((err = mp_prime_is_prime(tmp, 8, &primality)) != CRYPT_OK) { goto done; } if (primality == 0) { err = CRYPT_FAIL_TESTVECTOR; goto done; } /* now see if g^((p-1)/2) mod p is in fact 1 */ if ((err = mp_exptmod(g, tmp, p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp, 1)) { err = CRYPT_FAIL_TESTVECTOR; goto done; } } err = CRYPT_OK; error: done: mp_clear_multi(tmp, g, p, NULL); return err; }
/* Check DH Public Key for invalid numbers * * key DH key group parameters. * pub Public Key. * pubSz Public Key size. * * returns 0 on success or error code */ int wc_DhCheckPubKey(DhKey* key, const byte* pub, word32 pubSz) { int ret = 0; mp_int x; mp_int y; if (key == NULL || pub == NULL) { return BAD_FUNC_ARG; } if (mp_init_multi(&x, &y, NULL, NULL, NULL, NULL) != MP_OKAY) { return MP_INIT_E; } if (mp_read_unsigned_bin(&x, pub, pubSz) != MP_OKAY) { ret = MP_READ_E; } /* pub should not be 0 or 1 */ if (ret == 0 && mp_cmp_d(&x, 2) == MP_LT) { ret = MP_CMP_E; } /* pub shouldn't be greater than or equal to p - 1 */ if (ret == 0 && mp_copy(&key->p, &y) != MP_OKAY) { ret = MP_INIT_E; } if (ret == 0 && mp_sub_d(&y, 2, &y) != MP_OKAY) { ret = MP_SUB_E; } if (ret == 0 && mp_cmp(&x, &y) == MP_GT) { ret = MP_CMP_E; } mp_clear(&y); mp_clear(&x); return ret; }
static int ltm_dh_compute_key(unsigned char *shared, const BIGNUM * pub, DH *dh) { mp_int s, priv_key, p, peer_pub; int ret; if (dh->pub_key == NULL || dh->g == NULL || dh->priv_key == NULL) return -1; mp_init_multi(&s, &priv_key, &p, &peer_pub, NULL); BN2mpz(&p, dh->p); BN2mpz(&peer_pub, pub); /* check if peers pubkey is reasonable */ if (mp_isneg(&peer_pub) || mp_cmp(&peer_pub, &p) >= 0 || mp_cmp_d(&peer_pub, 1) <= 0) { ret = -1; goto out; } BN2mpz(&priv_key, dh->priv_key); ret = mp_exptmod(&peer_pub, &priv_key, &p, &s); if (ret != 0) { ret = -1; goto out; } ret = mp_unsigned_bin_size(&s); mp_to_unsigned_bin(&s, shared); out: mp_clear_multi(&s, &priv_key, &p, &peer_pub, NULL); return ret; }
/** Import DSA's p, q & g from dsaparam dsaparam data: openssl dsaparam -outform DER -out dsaparam.der 2048 @param dsaparam The DSA param DER encoded data @param dsaparamlen The length of dhparam data @param key [out] the destination for the imported key @return CRYPT_OK if successful. */ int dsa_set_pqg_dsaparam(const unsigned char *dsaparam, unsigned long dsaparamlen, dsa_key *key) { int err, stat; LTC_ARGCHK(dsaparam != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init key */ err = mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL); if (err != CRYPT_OK) return err; if ((err = der_decode_sequence_multi(dsaparam, dsaparamlen, LTC_ASN1_INTEGER, 1UL, key->p, LTC_ASN1_INTEGER, 1UL, key->q, LTC_ASN1_INTEGER, 1UL, key->g, LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) { goto LBL_ERR; } key->qord = mp_unsigned_bin_size(key->q); /* quick p, q, g validation, without primality testing */ if ((err = dsa_int_validate_pqg(key, &stat)) != CRYPT_OK) { goto LBL_ERR; } if (stat == 0) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } return CRYPT_OK; LBL_ERR: dsa_free(key); return err; }
int main(void) { mp_int modulus, R, p, pp; mp_digit mp; long x, y; srand(time(NULL)); mp_init_multi(&modulus, &R, &p, &pp, NULL); /* loop through various sizes */ for (x = 4; x < 256; x++) { printf("DIGITS == %3ld...", x); fflush(stdout); /* make up the odd modulus */ mp_rand(&modulus, x); modulus.dp[0] |= 1; /* now find the R value */ mp_montgomery_calc_normalization(&R, &modulus); mp_montgomery_setup(&modulus, &mp); /* now run through a bunch tests */ for (y = 0; y < 1000; y++) { mp_rand(&p, x/2); /* p = random */ mp_mul(&p, &R, &pp); /* pp = R * p */ mp_montgomery_reduce(&pp, &modulus, mp); /* should be equal to p */ if (mp_cmp(&pp, &p) != MP_EQ) { printf("FAILURE!\n"); exit(-1); } } printf("PASSED\n"); } return 0; }
int wc_DhAgree(DhKey* key, byte* agree, word32* agreeSz, const byte* priv, word32 privSz, const byte* otherPub, word32 pubSz) { int ret = 0; mp_int x; mp_int y; mp_int z; if (wc_DhCheckPubKey(key, otherPub, pubSz) != 0) { WOLFSSL_MSG("wc_DhAgree wc_DhCheckPubKey failed"); return DH_CHECK_PUB_E; } if (mp_init_multi(&x, &y, &z, 0, 0, 0) != MP_OKAY) return MP_INIT_E; if (mp_read_unsigned_bin(&x, priv, privSz) != MP_OKAY) ret = MP_READ_E; if (ret == 0 && mp_read_unsigned_bin(&y, otherPub, pubSz) != MP_OKAY) ret = MP_READ_E; if (ret == 0 && mp_exptmod(&y, &x, &key->p, &z) != MP_OKAY) ret = MP_EXPTMOD_E; if (ret == 0 && mp_to_unsigned_bin(&z, agree) != MP_OKAY) ret = MP_TO_E; if (ret == 0) *agreeSz = mp_unsigned_bin_size(&z); mp_clear(&z); mp_clear(&y); mp_clear(&x); return ret; }
/** Import DH key parts p and g from built-in DH groups @param groupsize The size of the DH group to use @param key [out] Where the newly created DH key will be stored @return CRYPT_OK if successful, note: on error all allocated memory will be freed automatically. */ int dh_set_pg_groupsize(int groupsize, dh_key *key) { int err, i; LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); LTC_ARGCHK(groupsize > 0); for (i = 0; (groupsize > ltc_dh_sets[i].size) && (ltc_dh_sets[i].size != 0); i++); if (ltc_dh_sets[i].size == 0) return CRYPT_INVALID_KEYSIZE; if ((err = mp_init_multi(&key->x, &key->y, &key->base, &key->prime, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_radix(key->base, ltc_dh_sets[i].base, 16)) != CRYPT_OK) { goto LBL_ERR; } if ((err = mp_read_radix(key->prime, ltc_dh_sets[i].prime, 16)) != CRYPT_OK) { goto LBL_ERR; } return CRYPT_OK; LBL_ERR: dh_free(key); return err; }
lnc_key_t *lnc_gen_client_key(const size_t size, int *status) { lnc_key_t *out = malloc(sizeof(lnc_key_t)); if(!out) { *status = LNC_ERR_MALLOC; return NULL; } mp_init_multi(&(out->generator), &(out->modulus), &(out->secret_key), &(out->public_key), NULL); if(mp_random(&(out->secret_key), size) != MP_OKAY) { *status = LNC_ERR_LTM; free(out); return NULL; } mp_set(&(out->generator), 0); mp_set(&(out->modulus), 0); mp_set(&(out->public_key), 0); *status = LNC_OK; return out; }
int _dsa_verify_hash (mp_int *r, mp_int *s, mp_int *hash, mp_int *keyG, mp_int *keyP, mp_int *keyQ, mp_int *keyY) { mp_int w, v, u1, u2; int ret; MP_OP(mp_init_multi(&w, &v, &u1, &u2, NULL)); // neither r or s can be 0 or >q if (mp_iszero(r) == MP_YES || mp_iszero(s) == MP_YES || mp_cmp(r, keyQ) != MP_LT || mp_cmp(s, keyQ) != MP_LT) { ret = -1; goto error; } // w = 1/s mod q MP_OP(mp_invmod(s, keyQ, &w)); // u1 = m * w mod q MP_OP(mp_mulmod(hash, &w, keyQ, &u1)); // u2 = r*w mod q MP_OP(mp_mulmod(r, &w, keyQ, &u2)); // v = g^u1 * y^u2 mod p mod q MP_OP(mp_exptmod(keyG, &u1, keyP, &u1)); MP_OP(mp_exptmod(keyY, &u2, keyP, &u2)); MP_OP(mp_mulmod(&u1, &u2, keyP, &v)); MP_OP(mp_mod(&v, keyQ, &v)); // if r = v then we're set ret = 0; if (mp_cmp(r, &v) == MP_EQ) ret = 1; error: mp_clear_multi(&w, &v, &u1, &u2, NULL); return ret; }
/** Map a projective jacbobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_map(ecc_point *P, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return CRYPT_MEM; } /* first map z back to normal */ if ((err = mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; } /* get 1/z */ if ((err = mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; } /* get 1/z^2 and 1/z^3 */ if ((err = mp_sqr(t1, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; } if ((err = mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; } if ((err = mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; } /* multiply against x/y */ if ((err = mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = mp_set(P->z, 1)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; }
/* Map a projective jacobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return 0 on success */ int ecc_map (ecc_point * P, mpz_t modulus) { mpz_t t1, t2; int err; if (P == NULL) return -1; if ((err = mp_init_multi (&t1, &t2, NULL)) != 0) { return -1; } mpz_mod (P->z, P->z, modulus); /* get 1/z */ mpz_invert (t1, P->z, modulus); /* get 1/z^2 and 1/z^3 */ mpz_mul (t2, t1, t1); mpz_mod (t2, t2, modulus); mpz_mul (t1, t1, t2); mpz_mod (t1, t1, modulus); /* multiply against x/y */ mpz_mul (P->x, P->x, t2); mpz_mod (P->x, P->x, modulus); mpz_mul (P->y, P->y, t1); mpz_mod (P->y, P->y, modulus); mpz_set_ui (P->z, 1); err = 0; mp_clear_multi (&t1, &t2, NULL); return err; }
/* computes least common multiple as |a*b|/(a, b) */ int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) { int res; mp_int t1, t2; if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) { return res; } /* t1 = get the GCD of the two inputs */ if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) { goto LBL_T; } /* divide the smallest by the GCD */ if (mp_cmp_mag(a, b) == MP_LT) { /* store quotient in t2 such that t2 * b is the LCM */ if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } res = mp_mul(b, &t2, c); } else { /* store quotient in t2 such that t2 * a is the LCM */ if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { goto LBL_T; } res = mp_mul(a, &t2, c); } /* fix the sign to positive */ c->sign = MP_ZPOS; LBL_T: mp_clear_multi(&t1, &t2, NULL); return res; }
/** Import DSA's p, q & g from raw numbers @param p DSA's p in binary representation @param plen The length of p @param q DSA's q in binary representation @param qlen The length of q @param g DSA's g in binary representation @param glen The length of g @param key [out] the destination for the imported key @return CRYPT_OK if successful. */ int dsa_set_pqg(const unsigned char *p, unsigned long plen, const unsigned char *q, unsigned long qlen, const unsigned char *g, unsigned long glen, dsa_key *key) { int err, stat; LTC_ARGCHK(p != NULL); LTC_ARGCHK(q != NULL); LTC_ARGCHK(g != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); /* init key */ err = mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL); if (err != CRYPT_OK) return err; if ((err = mp_read_unsigned_bin(key->p, (unsigned char *)p , plen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = mp_read_unsigned_bin(key->g, (unsigned char *)g , glen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = mp_read_unsigned_bin(key->q, (unsigned char *)q , qlen)) != CRYPT_OK) { goto LBL_ERR; } key->qord = mp_unsigned_bin_size(key->q); /* do only a quick validation, without primality testing */ if ((err = dsa_int_validate_pqg(key, &stat)) != CRYPT_OK) { goto LBL_ERR; } if (stat == 0) { err = CRYPT_INVALID_PACKET; goto LBL_ERR; } return CRYPT_OK; LBL_ERR: dsa_free(key); return err; }
void bn_double2int (double a, mp_int *b) { const unsigned int FRAC_BITS = 52; int ret, exp; long int val; double frac; mp_int upper, number; assert (a >= 0); ret = mp_init_multi (b, &number, &upper, NULL); if (ret != MP_OKAY) Fatal (1, error, "Error initializing number"); mp_set (&upper, 1); frac = frexp (a, &exp); ret = mp_mul_2d (&upper, exp, &upper); if (ret != MP_OKAY) Fatal (1, error, "Error initializing number"); for (unsigned int i = 0; i < FRAC_BITS; i++) { frac = frac * 2; val = lround (floor (frac)); assert (val == 0 || val == 1); frac = frac - lround (floor (frac)); if (val == 1) { mp_div_2d (&upper, i + 1, &number, NULL); if (ret != MP_OKAY) Fatal (1, error, "Error dividing numbers"); mp_add (b, &number, b); if (ret != MP_OKAY) Fatal (1, error, "Error adding numbers"); } } mp_clear_multi (&number, &upper, NULL); }
/** Import DH key parts p and g from raw numbers @param p DH's p (prime) @param plen DH's p's length @param g DH's g (group) @param glen DH's g's length @param key [out] the destination for the imported key @return CRYPT_OK if successful */ int dh_set_pg(const unsigned char *p, unsigned long plen, const unsigned char *g, unsigned long glen, dh_key *key) { int err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(p != NULL); LTC_ARGCHK(g != NULL); LTC_ARGCHK(ltc_mp.name != NULL); if ((err = mp_init_multi(&key->x, &key->y, &key->base, &key->prime, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_unsigned_bin(key->base, (unsigned char*)g, glen)) != CRYPT_OK) { goto LBL_ERR; } if ((err = mp_read_unsigned_bin(key->prime, (unsigned char*)p, plen)) != CRYPT_OK) { goto LBL_ERR; } return CRYPT_OK; LBL_ERR: dh_free(key); return err; }
/** Verify a DSA key for validity @param key The key to verify @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_verify_key(dsa_key *key, int *stat) { void *tmp, *tmp2; int res, err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* default to an invalid key */ *stat = 0; /* first make sure key->q and key->p are prime */ if ((err = mp_prime_is_prime(key->q, 8, &res)) != CRYPT_OK) { return err; } if (res == 0) { return CRYPT_OK; } if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK) { return err; } if (res == 0) { return CRYPT_OK; } /* now make sure that g is not -1, 0 or 1 and <p */ if (mp_cmp_d(key->g, 0) == LTC_MP_EQ || mp_cmp_d(key->g, 1) == LTC_MP_EQ) { return CRYPT_OK; } if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != CRYPT_OK) { return err; } if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp(tmp, key->g) == LTC_MP_EQ || mp_cmp(key->g, key->p) != LTC_MP_LT) { err = CRYPT_OK; goto error; } /* 1 < y < p-1 */ if (!(mp_cmp_d(key->y, 1) == LTC_MP_GT && mp_cmp(key->y, tmp) == LTC_MP_LT)) { err = CRYPT_OK; goto error; } /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */ if ((err = mp_div(tmp, key->q, tmp, tmp2)) != CRYPT_OK) { goto error; } if (mp_iszero(tmp2) != LTC_MP_YES) { err = CRYPT_OK; goto error; } if ((err = mp_exptmod(key->g, key->q, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */ if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } /* at this point we are out of tests ;-( */ err = CRYPT_OK; *stat = 1; error: mp_clear_multi(tmp, tmp2, NULL); return err; }