mp_result rsa_key_init(rsa_key *kp) { mp_int_init(&(kp->p)); mp_int_init(&(kp->q)); mp_int_init(&(kp->n)); mp_int_init(&(kp->e)); mp_int_init(&(kp->d)); return MP_OK; }
mp_result find_strong_prime(mp_int seed, FILE *fb) { mp_result res; mpz_t t; mp_int_init(&t); for(;;) { if ((res = find_prime(seed, fb)) != MP_TRUE) break; if ((res = mp_int_copy(seed, &t)) != MP_OK) break; if ((res = mp_int_mul_pow2(&t, 1, &t)) != MP_OK || (res = mp_int_add_value(&t, 1, &t)) != MP_OK) break; if ((res = mp_int_is_prime(&t)) == MP_TRUE) { if (fb != NULL) fputc('!', fb); res = mp_int_copy(&t, seed); break; } else if (res != MP_FALSE) break; if (fb != NULL) fputc('x', fb); if ((res = mp_int_add_value(seed, 2, seed)) != MP_OK) break; } mp_int_clear(&t); return res; }
/* Compute mul * atan(1/x) to prec digits of precision, and store the result in sum. Computes atan(1/x) using the formula: 1 1 1 1 atan(1/x) = --- - ---- + ---- - ---- + ... x 3x^3 5x^5 7x^7 */ mp_result arctan(mp_small radix, mp_small mul, mp_small x, mp_small prec, mp_int sum) { mpz_t t, v; mp_result res; mp_small rem, sign = 1, coeff = 1; mp_int_init(&t); mp_int_init(&v); ++prec; /* Compute mul * radix^prec * x The initial multiplication by x saves a special case in the loop for the first term of the series. */ if ((res = mp_int_expt_value(radix, prec, &t)) != MP_OK || (res = mp_int_mul_value(&t, mul, &t)) != MP_OK || (res = mp_int_mul_value(&t, x, &t)) != MP_OK) goto CLEANUP; x *= x; /* assumes x <= sqrt(MP_SMALL_MAX) */ mp_int_zero(sum); do { if ((res = mp_int_div_value(&t, x, &t, &rem)) != MP_OK) goto CLEANUP; if ((res = mp_int_div_value(&t, coeff, &v, &rem)) != MP_OK) goto CLEANUP; /* Add or subtract the result depending on the current sign (1 = add) */ if (sign > 0) res = mp_int_add(sum, &v, sum); else res = mp_int_sub(sum, &v, sum); if (res != MP_OK) goto CLEANUP; sign = -sign; coeff += 2; } while (mp_int_compare_zero(&t) != 0); res = mp_int_div_value(sum, radix, sum, NULL); CLEANUP: mp_int_clear(&v); mp_int_clear(&t); return res; }
void init_testing(void) { static int is_done = 0; int i; if(is_done) return; for(i = 0; i < NUM_REGS; ++i) { assert(mp_int_init(g_zreg + i) == MP_OK); assert(mp_rat_init(g_qreg + i) == MP_OK); } imath_errmsg = g_output; assert(atexit(done_testing) == 0); is_done = 1; }
/* Test whether z is likely to be prime: MP_TRUE means it is probably prime MP_FALSE means it is definitely composite */ mp_result mp_int_is_prime(mp_int z) { int i, rem; mp_result res; /* First check for divisibility by small primes; this eliminates a large number of composite candidates quickly */ for(i = 0; i < s_ptab_size; ++i) { if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK) return res; if(rem == 0) return MP_FALSE; } /* Now try Fermat's test for several prime witnesses (since we now know from the above that z is not a multiple of any of them) */ { mpz_t tmp; if((res = mp_int_init(&tmp)) != MP_OK) return res; for(i = 0; i < 10 && i < s_ptab_size; ++i) { if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK) return res; if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) { mp_int_clear(&tmp); return MP_FALSE; } } mp_int_clear(&tmp); } return MP_TRUE; }
char* IP2Location_read128(FILE *handle, uint32_t position) { uint32_t b96_127 = IP2Location_read32(handle, position); uint32_t b64_95 = IP2Location_read32(handle, position + 4); uint32_t b32_63 = IP2Location_read32(handle, position + 8); uint32_t b1_31 = IP2Location_read32(handle, position + 12); mpz_t result, multiplier, mp96_127, mp64_95, mp32_63, mp1_31; mp_int_init(&result); mp_int_init(&multiplier); mp_int_init(&mp96_127); mp_int_init(&mp64_95); mp_int_init(&mp32_63); mp_int_init(&mp1_31); mp_int_init_value(&multiplier, 65536); mp_int_mul(&multiplier, &multiplier, &multiplier); mp_int_init_value(&mp96_127, b96_127); mp_int_init_value(&mp64_95, b64_95); mp_int_init_value(&mp32_63, b32_63); mp_int_init_value(&mp1_31, b1_31); mp_int_mul(&mp1_31, &multiplier, &mp1_31); mp_int_mul(&mp1_31, &multiplier, &mp1_31); mp_int_mul(&mp1_31, &multiplier, &mp1_31); mp_int_mul(&mp32_63, &multiplier, &mp32_63); mp_int_mul(&mp32_63, &multiplier, &mp32_63); mp_int_mul(&mp64_95, &multiplier, &mp64_95); mp_int_add(&mp1_31, &mp32_63, &result); mp_int_add(&result, &mp64_95, &result); mp_int_add(&result, &mp96_127, &result); return IP2Location_mp2string(result); }
int main(int argc, char *argv[]) { int opt, modbits; FILE *ofp = stdout; mp_result res; find_f find_func = find_prime; char tag = 'p'; mpz_t value; /* Process command-line arguments */ while((opt = getopt(argc, argv, "s")) != EOF) { switch(opt) { case 's': find_func = find_strong_prime; tag = 'P'; break; default: fprintf(stderr, "Usage: randprime [-s] <bits> [<outfile>]\n"); return 1; } } if(optind >= argc) { fprintf(stderr, "Error: You must specify the number of significant bits.\n"); fprintf(stderr, "Usage: randprime [-s] <bits> [<outfile>]\n"); return 1; } modbits = (int) strtol(argv[optind++], NULL, 0); if(modbits < CHAR_BIT) { fprintf(stderr, "Error: Invalid value for number of significant bits.\n"); return 1; } if(modbits % 2 == 1) ++modbits; /* Check if output file is specified */ if(optind < argc) { if((ofp = fopen(argv[optind], "wt")) == NULL) { fprintf(stderr, "Error: Unable to open output file for writing.\n" " - Filename: %s\n" " - Error: %s\n", argv[optind], strerror(errno)); return 1; } } mp_int_init(&value); if ((res = mp_int_randomize(&value, modbits - 1)) != MP_OK) { fprintf(stderr, "Error: Unable to generate random start value.\n" " - %s (%d)\n", mp_error_string(res), res); goto EXIT; } fprintf(stderr, "%c: ", tag); find_func(&value, stderr); fputc('\n', stderr); /* Write the completed value to the specified output file */ { int len; char *obuf; len = mp_int_string_len(&value, 10); obuf = malloc(len); mp_int_to_string(&value, 10, obuf, len); fputs(obuf, ofp); fputc('\n', ofp); free(obuf); } EXIT: fclose(ofp); mp_int_clear(&value); return 0; }
int main(int argc, char *argv[]) { mp_result res; mpz_t sum1, sum2; int ndigits, out = 0; clock_t start, end; if (argc < 2) { fprintf(stderr, "Usage: %s <num-digits> [<radix>]\n", argv[0]); return 1; } if ((ndigits = abs(atoi(argv[1]))) == 0) { fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]); return 1; } else if ((mp_word)ndigits > MP_DIGIT_MAX) { fprintf(stderr, "%s: you may request at most %u digits\n", argv[0], (unsigned int)MP_DIGIT_MAX); return 1; } if (argc > 2) { int radix = atoi(argv[2]); if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) { fprintf(stderr, "%s: you may only specify a radix between %d and %d\n", argv[0], MP_MIN_RADIX, MP_MAX_RADIX); return 1; } g_radix = radix; } mp_int_init(&sum1); mp_int_init(&sum2); start = clock(); /* sum1 = 16 * arctan(1/5) */ if ((res = arctan(g_radix, 16, 5, ndigits, &sum1)) != MP_OK) { fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res); out = 1; goto CLEANUP; } /* sum2 = 4 * arctan(1/239) */ if ((res = arctan(g_radix, 4, 239, ndigits, &sum2)) != MP_OK) { fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res); out = 1; goto CLEANUP; } /* pi = sum1 - sum2 */ if ((res = mp_int_sub(&sum1, &sum2, &sum1)) != MP_OK) { fprintf(stderr, "%s: error computing pi: %d\n", argv[0], res); out = 1; goto CLEANUP; } end = clock(); mp_int_to_string(&sum1, g_radix, g_buf, sizeof(g_buf)); printf("%c.%s\n", g_buf[0], g_buf + 1); fprintf(stderr, "Computation took %.2f sec.\n", (double)(end - start) / CLOCKS_PER_SEC); CLEANUP: mp_int_clear(&sum1); mp_int_clear(&sum2); return out; }