Exemple #1
0
mp_result rsa_key_init(rsa_key *kp)
{
  mp_int_init(&(kp->p));
  mp_int_init(&(kp->q));
  mp_int_init(&(kp->n));
  mp_int_init(&(kp->e));
  mp_int_init(&(kp->d));

  return MP_OK;
}
Exemple #2
0
mp_result find_strong_prime(mp_int seed, FILE *fb)
{
  mp_result res;
  mpz_t     t;

  mp_int_init(&t);
  for(;;) {
    if ((res = find_prime(seed, fb)) != MP_TRUE)
      break;
    if ((res = mp_int_copy(seed, &t)) != MP_OK)
      break;

    if ((res = mp_int_mul_pow2(&t, 1, &t)) != MP_OK ||
	(res = mp_int_add_value(&t, 1, &t)) != MP_OK) 
      break;

    if ((res = mp_int_is_prime(&t)) == MP_TRUE) {
      if (fb != NULL)
	fputc('!', fb);

      res = mp_int_copy(&t, seed);
      break;
    }
    else if (res != MP_FALSE) 
      break;

    if (fb != NULL)
      fputc('x', fb);
    if ((res = mp_int_add_value(seed, 2, seed)) != MP_OK)
      break;
  }

  mp_int_clear(&t);
  return res;
}
Exemple #3
0
/*
  Compute mul * atan(1/x) to prec digits of precision, and store the
  result in sum.

  Computes atan(1/x) using the formula:

               1     1      1      1
  atan(1/x) = --- - ---- + ---- - ---- + ...
               x    3x^3   5x^5   7x^7

 */
mp_result arctan(mp_small radix, mp_small mul, mp_small x, mp_small prec,
                 mp_int sum) {
  mpz_t t, v;
  mp_result res;
  mp_small rem, sign = 1, coeff = 1;

  mp_int_init(&t);
  mp_int_init(&v);
  ++prec;

  /* Compute mul * radix^prec * x
     The initial multiplication by x saves a special case in the loop for
     the first term of the series.
   */
  if ((res = mp_int_expt_value(radix, prec, &t)) != MP_OK ||
      (res = mp_int_mul_value(&t, mul, &t)) != MP_OK ||
      (res = mp_int_mul_value(&t, x, &t)) != MP_OK)
    goto CLEANUP;

  x *= x; /* assumes x <= sqrt(MP_SMALL_MAX) */
  mp_int_zero(sum);

  do {
    if ((res = mp_int_div_value(&t, x, &t, &rem)) != MP_OK) goto CLEANUP;

    if ((res = mp_int_div_value(&t, coeff, &v, &rem)) != MP_OK) goto CLEANUP;

    /* Add or subtract the result depending on the current sign (1 = add) */
    if (sign > 0)
      res = mp_int_add(sum, &v, sum);
    else
      res = mp_int_sub(sum, &v, sum);

    if (res != MP_OK) goto CLEANUP;
    sign = -sign;
    coeff += 2;

  } while (mp_int_compare_zero(&t) != 0);

  res = mp_int_div_value(sum, radix, sum, NULL);

CLEANUP:
  mp_int_clear(&v);
  mp_int_clear(&t);

  return res;
}
void init_testing(void)
{
  static int is_done = 0;
  int i;

  if(is_done)
    return;

  for(i = 0; i < NUM_REGS; ++i) {
    assert(mp_int_init(g_zreg + i) == MP_OK);
    assert(mp_rat_init(g_qreg + i) == MP_OK);
  }
  
  imath_errmsg = g_output;

  assert(atexit(done_testing) == 0);
  is_done = 1;
}
Exemple #5
0
/* Test whether z is likely to be prime:
   MP_TRUE  means it is probably prime
   MP_FALSE means it is definitely composite
 */
mp_result mp_int_is_prime(mp_int z)
{
  int       i, rem;
  mp_result res;

  /* First check for divisibility by small primes; this eliminates a
     large number of composite candidates quickly
   */
  for(i = 0; i < s_ptab_size; ++i) {
    if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)
      return res;

    if(rem == 0)
      return MP_FALSE;
  }

  /* Now try Fermat's test for several prime witnesses (since we now
     know from the above that z is not a multiple of any of them)
   */
  {
    mpz_t  tmp;

    if((res = mp_int_init(&tmp)) != MP_OK) return res;

    for(i = 0; i < 10 && i < s_ptab_size; ++i) {
      if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)
	return res;

      if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {
	mp_int_clear(&tmp);
	return MP_FALSE;
      }
    }

    mp_int_clear(&tmp);
  }

  return MP_TRUE;
}
char* IP2Location_read128(FILE *handle, uint32_t position) 
{
	uint32_t b96_127 = IP2Location_read32(handle, position);
	uint32_t b64_95 = IP2Location_read32(handle, position + 4); 
	uint32_t b32_63 = IP2Location_read32(handle, position + 8);
	uint32_t b1_31 = IP2Location_read32(handle, position + 12);

	mpz_t result, multiplier, mp96_127, mp64_95, mp32_63, mp1_31;
	mp_int_init(&result);
	mp_int_init(&multiplier);
	mp_int_init(&mp96_127);
	mp_int_init(&mp64_95);
	mp_int_init(&mp32_63);
	mp_int_init(&mp1_31);
	
	mp_int_init_value(&multiplier, 65536);
	mp_int_mul(&multiplier, &multiplier, &multiplier);
	mp_int_init_value(&mp96_127, b96_127);
	mp_int_init_value(&mp64_95, b64_95);
	mp_int_init_value(&mp32_63, b32_63);
	mp_int_init_value(&mp1_31, b1_31);

	mp_int_mul(&mp1_31, &multiplier, &mp1_31);
	mp_int_mul(&mp1_31, &multiplier, &mp1_31);
	mp_int_mul(&mp1_31, &multiplier, &mp1_31);

	mp_int_mul(&mp32_63, &multiplier, &mp32_63);
	mp_int_mul(&mp32_63, &multiplier, &mp32_63);

	mp_int_mul(&mp64_95, &multiplier, &mp64_95);
	
	mp_int_add(&mp1_31, &mp32_63, &result);
	mp_int_add(&result, &mp64_95, &result);
	mp_int_add(&result, &mp96_127, &result);
	return IP2Location_mp2string(result);
}
Exemple #7
0
int main(int argc, char *argv[])
{
  int       opt, modbits;
  FILE     *ofp = stdout;
  mp_result res;
  find_f    find_func = find_prime;
  char      tag = 'p';
  mpz_t     value;

  /* Process command-line arguments */
  while((opt = getopt(argc, argv, "s")) != EOF) {
    switch(opt) {
    case 's':
      find_func = find_strong_prime;
      tag = 'P';
      break;
    default:
      fprintf(stderr, "Usage: randprime [-s] <bits> [<outfile>]\n");
      return 1;
    }
  }
  
  if(optind >= argc) {
    fprintf(stderr, "Error:  You must specify the number of significant bits.\n");
    fprintf(stderr, "Usage: randprime [-s] <bits> [<outfile>]\n");
    return 1;
  }
  modbits = (int) strtol(argv[optind++], NULL, 0);
  if(modbits < CHAR_BIT) {
    fprintf(stderr, "Error:  Invalid value for number of significant bits.\n");
    return 1;
  }
  if(modbits % 2 == 1)
    ++modbits;

  /* Check if output file is specified */
  if(optind < argc) {
    if((ofp = fopen(argv[optind], "wt")) == NULL) {
      fprintf(stderr, "Error:  Unable to open output file for writing.\n"
	      " - Filename: %s\n"
	      " - Error:    %s\n", argv[optind], strerror(errno));
      return 1;
    }
  }
  
  mp_int_init(&value);
  if ((res = mp_int_randomize(&value, modbits - 1)) != MP_OK) {
    fprintf(stderr, "Error:  Unable to generate random start value.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  fprintf(stderr, "%c: ", tag);
  find_func(&value, stderr);
  fputc('\n', stderr);

  /* Write the completed value to the specified output file */
  {
    int len;
    char *obuf;

    len = mp_int_string_len(&value, 10);
    obuf = malloc(len);
    mp_int_to_string(&value, 10, obuf, len);
    fputs(obuf, ofp);
    fputc('\n', ofp);

    free(obuf);
  }

 EXIT:
  fclose(ofp);
  mp_int_clear(&value);
  return 0;
}
Exemple #8
0
int main(int argc, char *argv[]) {
  mp_result res;
  mpz_t sum1, sum2;
  int ndigits, out = 0;
  clock_t start, end;

  if (argc < 2) {
    fprintf(stderr, "Usage: %s <num-digits> [<radix>]\n", argv[0]);
    return 1;
  }

  if ((ndigits = abs(atoi(argv[1]))) == 0) {
    fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);
    return 1;
  } else if ((mp_word)ndigits > MP_DIGIT_MAX) {
    fprintf(stderr, "%s: you may request at most %u digits\n", argv[0],
            (unsigned int)MP_DIGIT_MAX);
    return 1;
  }

  if (argc > 2) {
    int radix = atoi(argv[2]);

    if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) {
      fprintf(stderr, "%s: you may only specify a radix between %d and %d\n",
              argv[0], MP_MIN_RADIX, MP_MAX_RADIX);
      return 1;
    }
    g_radix = radix;
  }

  mp_int_init(&sum1);
  mp_int_init(&sum2);
  start = clock();

  /* sum1 = 16 * arctan(1/5) */
  if ((res = arctan(g_radix, 16, 5, ndigits, &sum1)) != MP_OK) {
    fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }

  /* sum2 = 4 * arctan(1/239) */
  if ((res = arctan(g_radix, 4, 239, ndigits, &sum2)) != MP_OK) {
    fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }

  /* pi = sum1 - sum2 */
  if ((res = mp_int_sub(&sum1, &sum2, &sum1)) != MP_OK) {
    fprintf(stderr, "%s: error computing pi: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }
  end = clock();

  mp_int_to_string(&sum1, g_radix, g_buf, sizeof(g_buf));
  printf("%c.%s\n", g_buf[0], g_buf + 1);

  fprintf(stderr, "Computation took %.2f sec.\n",
          (double)(end - start) / CLOCKS_PER_SEC);

CLEANUP:
  mp_int_clear(&sum1);
  mp_int_clear(&sum2);

  return out;
}