Exemple #1
0
mp_size_t
mpn_hgcd_step (mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t s,
	       struct hgcd_matrix *M, mp_ptr tp)
{
  struct hgcd_matrix1 M1;
  mp_limb_t mask;
  mp_limb_t ah, al, bh, bl;

  ASSERT (n > s);

  mask = ap[n-1] | bp[n-1];
  ASSERT (mask > 0);

  if (n == s + 1)
    {
      if (mask < 4)
	goto subtract;

      ah = ap[n-1]; al = ap[n-2];
      bh = bp[n-1]; bl = bp[n-2];
    }
  else if (mask & GMP_NUMB_HIGHBIT)
    {
      ah = ap[n-1]; al = ap[n-2];
      bh = bp[n-1]; bl = bp[n-2];
    }
  else
    {
      int shift;

      count_leading_zeros (shift, mask);
      ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);
      al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);
      bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);
      bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);
    }

  /* Try an mpn_hgcd2 step */
  if (mpn_hgcd2 (ah, al, bh, bl, &M1))
    {
      /* Multiply M <- M * M1 */
      mpn_hgcd_matrix_mul_1 (M, &M1, tp);

      /* Can't swap inputs, so we need to copy. */
      MPN_COPY (tp, ap, n);
      /* Multiply M1^{-1} (a;b) */
      return mpn_matrix22_mul1_inverse_vector (&M1, ap, tp, bp, n);
    }

 subtract:

  return mpn_gcd_subdiv_step (ap, bp, n, s, hgcd_hook, M, tp);
}
Exemple #2
0
static mp_size_t
hgcd_step (mp_size_t n, mp_ptr ap, mp_ptr bp, mp_size_t s,
       struct hgcd_matrix *M, mp_ptr tp)
{
  struct hgcd_matrix1 M1;
  mp_limb_t mask;
  mp_limb_t ah, al, bh, bl;
  mp_size_t an, bn, qn;
  int col;

  ASSERT (n > s);

  mask = ap[n-1] | bp[n-1];
  ASSERT (mask > 0);

  if (n == s + 1)
    {
      if (mask < 4)
    goto subtract;

      ah = ap[n-1]; al = ap[n-2];
      bh = bp[n-1]; bl = bp[n-2];
    }
  else if (mask & GMP_NUMB_HIGHBIT)
    {
      ah = ap[n-1]; al = ap[n-2];
      bh = bp[n-1]; bl = bp[n-2];
    }
  else
    {
      int shift;

      count_leading_zeros (shift, mask);
      ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);
      al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);
      bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);
      bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);
    }

  /* Try an mpn_hgcd2 step */
  if (mpn_hgcd2 (ah, al, bh, bl, &M1))
    {
      /* Multiply M <- M * M1 */
      hgcd_matrix_mul_1 (M, &M1, tp);

      /* Can't swap inputs, so we need to copy. */
      MPN_COPY (tp, ap, n);
      /* Multiply M1^{-1} (a;b) */
      return mpn_hgcd_mul_matrix1_inverse_vector (&M1, ap, tp, bp, n);
    }

 subtract:
  /* There are two ways in which mpn_hgcd2 can fail. Either one of ah and
     bh was too small, or ah, bh were (almost) equal. Perform one
     subtraction step (for possible cancellation of high limbs),
     followed by one division. */

  /* Since we must ensure that #(a-b) > s, we handle cancellation of
     high limbs explicitly up front. (FIXME: Or is it better to just
     subtract, normalize, and use an addition to undo if it turns out
     the the difference is too small?) */
  for (an = n; an > s; an--)
    if (ap[an-1] != bp[an-1])
      break;

  if (an == s)
    return 0;

  /* Maintain a > b. When needed, swap a and b, and let col keep track
     of how to update M. */
  if (ap[an-1] > bp[an-1])
    {
      /* a is largest. In the subtraction step, we need to update
     column 1 of M */
      col = 1;
    }
  else
    {
      MP_PTR_SWAP (ap, bp);
      col = 0;
    }

  bn = n;
  MPN_NORMALIZE (bp, bn);
  if (bn <= s)
    return 0;

  /* We have #a, #b > s. When is it possible that #(a-b) < s? For
     cancellation to happen, the numbers must be of the form

       a = x + 1, 0,            ..., 0,            al
       b = x    , GMP_NUMB_MAX, ..., GMP_NUMB_MAX, bl

     where al, bl denotes the least significant k limbs. If al < bl,
     then #(a-b) < k, and if also high(al) != 0, high(bl) != GMP_NUMB_MAX,
     then #(a-b) = k. If al >= bl, then #(a-b) = k + 1. */

  if (ap[an-1] == bp[an-1] + 1)
    {
      mp_size_t k;
      int c;
      for (k = an-1; k > s; k--)
    if (ap[k-1] != 0 || bp[k-1] != GMP_NUMB_MAX)
      break;

      MPN_CMP (c, ap, bp, k);
      if (c < 0)
    {
      mp_limb_t cy;

      /* The limbs from k and up are cancelled. */
      if (k == s)
        return 0;
      cy = mpn_sub_n (ap, ap, bp, k);
      ASSERT (cy == 1);
      an = k;
    }
      else
    {
      ASSERT_NOCARRY (mpn_sub_n (ap, ap, bp, k));
      ap[k] = 1;
      an = k + 1;
    }
    }
  else
    ASSERT_NOCARRY (mpn_sub_n (ap, ap, bp, an));

  ASSERT (an > s);
  ASSERT (ap[an-1] > 0);
  ASSERT (bn > s);
  ASSERT (bp[bn-1] > 0);

  hgcd_matrix_update_1 (M, col);

  if (an < bn)
    {
      MPN_PTR_SWAP (ap, an, bp, bn);
      col ^= 1;
    }
  else if (an == bn)
    {
      int c;
      MPN_CMP (c, ap, bp, an);
      if (c < 0)
    {
      MP_PTR_SWAP (ap, bp);
      col ^= 1;
    }
    }

  /* Divide a / b. */
  qn = an + 1 - bn;

  /* FIXME: We could use an approximate division, that may return a
     too small quotient, and only guarantee that the size of r is
     almost the size of b. FIXME: Let ap and remainder overlap. */
  mpn_tdiv_qr (tp, ap, 0, ap, an, bp, bn);
  qn -= (tp[qn -1] == 0);

  /* Normalize remainder */
  an = bn;
  for ( ; an > s; an--)
    if (ap[an-1] > 0)
      break;

  if (an <= s)
    {
      /* Quotient is too large */
      mp_limb_t cy;

      cy = mpn_add (ap, bp, bn, ap, an);

      if (cy > 0)
    {
      ASSERT (bn < n);
      ap[bn] = cy;
      bp[bn] = 0;
      bn++;
    }

      MPN_DECR_U (tp, qn, 1);
      qn -= (tp[qn-1] == 0);
    }

  if (qn > 0)
    hgcd_matrix_update_q (M, tp, qn, col, tp + qn);

  return bn;
}
Exemple #3
0
/* Destroys inputs. */
int
mpn_hgcd_appr (mp_ptr ap, mp_ptr bp, mp_size_t n,
	       struct hgcd_matrix *M, mp_ptr tp)
{
  mp_size_t s;
  int success = 0;

  ASSERT (n > 0);

  ASSERT ((ap[n-1] | bp[n-1]) != 0);

  if (n <= 2)
    /* Implies s = n. A fairly uninteresting case but exercised by the
       random inputs of the testsuite. */
    return 0;

  ASSERT ((n+1)/2 - 1 < M->alloc);

  /* We aim for reduction of to GMP_NUMB_BITS * s bits. But each time
     we discard some of the least significant limbs, we must keep one
     additional bit to account for the truncation error. We maintain
     the GMP_NUMB_BITS * s - extra_bits as the current target size. */

  s = n/2 + 1;
  if (BELOW_THRESHOLD (n, HGCD_APPR_THRESHOLD))
    {
      unsigned extra_bits = 0;

      while (n > 2)
	{
	  mp_size_t nn;

	  ASSERT (n > s);
	  ASSERT (n <= 2*s);

	  nn = mpn_hgcd_step (n, ap, bp, s, M, tp);
	  if (!nn)
	    break;

	  n = nn;
	  success = 1;

	  /* We can truncate and discard the lower p bits whenever nbits <=
	     2*sbits - p. To account for the truncation error, we must
	     adjust

	     sbits <-- sbits + 1 - p,

	     rather than just sbits <-- sbits - p. This adjustment makes
	     the produced matrix sligthly smaller than it could be. */

	  if (GMP_NUMB_BITS * (n + 1) + 2 * extra_bits <= 2*GMP_NUMB_BITS * s)
	    {
	      mp_size_t p = (GMP_NUMB_BITS * (2*s - n) - 2*extra_bits) / GMP_NUMB_BITS;

	      if (extra_bits == 0)
		{
		  /* We cross a limb boundary and bump s. We can't do that
		     if the result is that it makes makes min(U, V)
		     smaller than 2^{GMP_NUMB_BITS} s. */
		  if (s + 1 == n
		      || mpn_zero_p (ap + s + 1, n - s - 1)
		      || mpn_zero_p (bp + s + 1, n - s - 1))
		    continue;

		  extra_bits = GMP_NUMB_BITS - 1;
		  s++;
		}
	      else
		{
		  extra_bits--;
		}

	      /* Drop the p least significant limbs */
	      ap += p; bp += p; n -= p; s -= p;
	    }
	}

      ASSERT (s > 0);

      if (extra_bits > 0)
	{
	  /* We can get here only of we have dropped at least one of the
	     least significant bits, so we can decrement ap and bp. We can
	     then shift left extra bits using mpn_shiftr. */
	  /* NOTE: In the unlikely case that n is large, it would be
	     preferable to do an initial subdiv step to reduce the size
	     before shifting, but that would mean daplicating
	     mpn_gcd_subdiv_step with a bit count rather than a limb
	     count. */
	  ap--; bp--;
	  ap[0] = mpn_rshift (ap+1, ap+1, n, GMP_NUMB_BITS - extra_bits);
	  bp[0] = mpn_rshift (bp+1, bp+1, n, GMP_NUMB_BITS - extra_bits);
	  n += (ap[n] | bp[n]) > 0;

	  ASSERT (success);

	  while (n > 2)
	    {
	      mp_size_t nn;

	      ASSERT (n > s);
	      ASSERT (n <= 2*s);

	      nn = mpn_hgcd_step (n, ap, bp, s, M, tp);

	      if (!nn)
		return 1;

	      n = nn;
	    }
	}

      if (n == 2)
	{
	  struct hgcd_matrix1 M1;
	  ASSERT (s == 1);

	  if (mpn_hgcd2 (ap[1], ap[0], bp[1], bp[0], &M1))
	    {
	      /* Multiply M <- M * M1 */
	      mpn_hgcd_matrix_mul_1 (M, &M1, tp);
	      success = 1;
	    }
	}
      return success;
    }
  else
    {
      mp_size_t n2 = (3*n)/4 + 1;
      mp_size_t p = n/2;
      mp_size_t nn;

      nn = mpn_hgcd_reduce (M, ap, bp, n, p, tp);
      if (nn)
	{
	  n = nn;
	  /* FIXME: Discard some of the low limbs immediately? */
	  success = 1;
	}

      while (n > n2)
	{
	  mp_size_t nn;

	  /* Needs n + 1 storage */
	  nn = mpn_hgcd_step (n, ap, bp, s, M, tp);
	  if (!nn)
	    return success;

	  n = nn;
	  success = 1;
	}
      if (n > s + 2)
	{
	  struct hgcd_matrix M1;
	  mp_size_t scratch;

	  p = 2*s - n + 1;
	  scratch = MPN_HGCD_MATRIX_INIT_ITCH (n-p);

	  mpn_hgcd_matrix_init(&M1, n - p, tp);
	  if (mpn_hgcd_appr (ap + p, bp + p, n - p, &M1, tp + scratch))
	    {
	      /* We always have max(M) > 2^{-(GMP_NUMB_BITS + 1)} max(M1) */
	      ASSERT (M->n + 2 >= M1.n);

	      /* Furthermore, assume M ends with a quotient (1, q; 0, 1),
		 then either q or q + 1 is a correct quotient, and M1 will
		 start with either (1, 0; 1, 1) or (2, 1; 1, 1). This
		 rules out the case that the size of M * M1 is much
		 smaller than the expected M->n + M1->n. */

	      ASSERT (M->n + M1.n < M->alloc);

	      /* We need a bound for of M->n + M1.n. Let n be the original
		 input size. Then

		 ceil(n/2) - 1 >= size of product >= M.n + M1.n - 2

		 and it follows that

		 M.n + M1.n <= ceil(n/2) + 1

		 Then 3*(M.n + M1.n) + 5 <= 3 * ceil(n/2) + 8 is the
		 amount of needed scratch space. */
	      mpn_hgcd_matrix_mul (M, &M1, tp + scratch);
	      return 1;
	    }
	}

      for(;;)
	{
	  mp_size_t nn;

	  ASSERT (n > s);
	  ASSERT (n <= 2*s);

	  nn = mpn_hgcd_step (n, ap, bp, s, M, tp);

	  if (!nn)
	    return success;

	  n = nn;
	  success = 1;
	}
    }
}