Exemple #1
0
Error, error, unsupported BITS_PER_MP_LIMB
#endif


int
mpz_kronecker_ui (mpz_srcptr a, unsigned long b)
{
  mp_srcptr  a_ptr = PTR(a);
  mp_size_t  a_size;
  mp_limb_t  a_rem;
  int        result_bit1;

  a_size = SIZ(a);
  if (a_size == 0)
    return JACOBI_0U (b);

  if (b > GMP_NUMB_MAX)
    {
      mp_limb_t  blimbs[2];
      mpz_t      bz;
      ALLOC(bz) = numberof (blimbs);
      PTR(bz) = blimbs;
      mpz_set_ui (bz, b);
      return mpz_kronecker (a, bz);
    }

  if ((b & 1) != 0)
    {
      result_bit1 = JACOBI_ASGN_SU_BIT1 (a_size, b);
    }
  else
    {
      mp_limb_t  a_low = a_ptr[0];
      int        twos;

      if (b == 0)
        return JACOBI_LS0 (a_low, a_size);   /* (a/0) */

      if (! (a_low & 1))
        return 0;  /* (even/even)=0 */

      /* (a/2)=(2/a) for a odd */
      count_trailing_zeros (twos, b);
      b >>= twos;
      result_bit1 = (JACOBI_TWOS_U_BIT1 (twos, a_low)
                     ^ JACOBI_ASGN_SU_BIT1 (a_size, b));
    }

  if (b == 1)
    return JACOBI_BIT1_TO_PN (result_bit1);  /* (a/1)=1 for any a */

  a_size = ABS(a_size);

  /* (a/b) = (a mod b / b) */
  JACOBI_MOD_OR_MODEXACT_1_ODD (result_bit1, a_rem, a_ptr, a_size, b);
  return mpn_jacobi_base (a_rem, (mp_limb_t) b, result_bit1);
}
Exemple #2
0
int
mpz_si_kronecker (long a, mpz_srcptr b)
{
  mp_srcptr  b_ptr;
  mp_limb_t  b_low;
  mp_size_t  b_size;
  mp_size_t  b_abs_size;
  mp_limb_t  a_limb, b_rem;
  unsigned   twos;
  int        result_bit1;

#if GMP_NUMB_BITS < BITS_PER_ULONG
  if (a > GMP_NUMB_MAX || a < -GMP_NUMB_MAX)
    {
      mp_limb_t  alimbs[2];
      mpz_t      az;
      ALLOC(az) = numberof (alimbs);
      PTR(az) = alimbs;
      mpz_set_si (az, a);
      return mpz_kronecker (az, b);
    }
#endif

  b_size = SIZ (b);
  if (b_size == 0)
    return JACOBI_S0 (a);  /* (a/0) */

  /* account for the effect of the sign of b, then ignore it */
  result_bit1 = JACOBI_BSGN_SS_BIT1 (a, b_size);

  b_ptr = PTR(b);
  b_low = b_ptr[0];
  b_abs_size = ABS (b_size);

  if ((b_low & 1) != 0)
    {
      /* b odd */

      result_bit1 ^= JACOBI_ASGN_SU_BIT1 (a, b_low);
      a_limb = (unsigned long) ABS(a);

      if ((a_limb & 1) == 0)
	{
	  /* (0/b)=1 for b=+/-1, 0 otherwise */
	  if (a_limb == 0)
	    return (b_abs_size == 1 && b_low == 1);

	  /* a even, b odd */
	  count_trailing_zeros (twos, a_limb);
	  a_limb >>= twos;
	  /* (a*2^n/b) = (a/b) * twos(n,a) */
	  result_bit1 ^= JACOBI_TWOS_U_BIT1 (twos, b_low);
	}
    }
Exemple #3
0
int
mpz_kronecker_si (mpz_srcptr a, long b)
{
  mp_srcptr  a_ptr;
  mp_size_t  a_size;
  mp_limb_t  a_rem, b_limb;
  int        result_bit1;

  a_size = SIZ(a);
  if (a_size == 0)
    return JACOBI_0S (b);

#if GMP_NUMB_BITS < BITS_PER_ULONG
  if (b > GMP_NUMB_MAX || b < -GMP_NUMB_MAX)
    {
      mp_limb_t  blimbs[2];
      mpz_t      bz;
      ALLOC(bz) = numberof (blimbs);
      PTR(bz) = blimbs;
      mpz_set_si (bz, b);
      return mpz_kronecker (a, bz);
    }
#endif

  result_bit1 = JACOBI_BSGN_SS_BIT1 (a_size, b);
  b_limb = (unsigned long) ABS (b);
  a_ptr = PTR(a);

  if ((b_limb & 1) == 0)
    {
      mp_limb_t  a_low = a_ptr[0];
      int        twos;

      if (b_limb == 0)
        return JACOBI_LS0 (a_low, a_size);   /* (a/0) */

      if (! (a_low & 1))
        return 0;  /* (even/even)=0 */

      /* (a/2)=(2/a) for a odd */
      count_trailing_zeros (twos, b_limb);
      b_limb >>= twos;
      result_bit1 ^= JACOBI_TWOS_U_BIT1 (twos, a_low);
    }
int checkpoly_siqs(siqs_poly *poly, mpz_t n)
{
	//check that b^2 == N mod a
	//and that c == (b*b - n)/a
	mpz_t t1,t2,t3,t4;

	mpz_init(t1);
	mpz_init(t2);
	mpz_init(t3);
	mpz_init(t4);

	mpz_set(t1, n);
	mpz_tdiv_r(t3, t1, poly->mpz_poly_a); //zDiv(&t1,&poly->poly_a,&t2,&t3);

	mpz_mul(t2, poly->mpz_poly_b, poly->mpz_poly_b); //zMul(&poly->poly_b,&poly->poly_b,&t2);
	mpz_tdiv_r(t4, t2, poly->mpz_poly_a); //zDiv(&t2,&poly->poly_a,&t1,&t4);

	if (mpz_cmp(t3,t4) != 0)
	{
		printf("\nError in checkpoly: %s^2 !== N mod %s\n", 
			mpz_conv2str(&gstr1.s, 10, poly->mpz_poly_b),
			mpz_conv2str(&gstr2.s, 10, poly->mpz_poly_a));
		if (mpz_sgn(poly->mpz_poly_b) < 0)
			printf("b is negative\n");
	}

	if (mpz_kronecker(n, poly->mpz_poly_a) != 1)
		printf("\nError in checkpoly: (a|N) != 1\n");

	mpz_mul(t2, poly->mpz_poly_b, poly->mpz_poly_b); //zMul(&poly->poly_b,&poly->poly_b,&t2);
	mpz_sub(t2, t2, n);
	mpz_tdiv_q(t4, t2, poly->mpz_poly_a); //zDiv(&t2,&poly->poly_a,&t1,&t4);

	if (mpz_cmp(t4,poly->mpz_poly_c) != 0)
		printf("\nError in checkpoly: c != (b^2 - n)/a\n");
	
	mpz_clear(t1);
	mpz_clear(t2);
	mpz_clear(t3);
	mpz_clear(t4);
	return 0;
}
Exemple #5
0
static PyObject *
GMPy_MPZ_Function_Kronecker(PyObject *self, PyObject *args)
{
    MPZ_Object *tempx = NULL, *tempy = NULL;
    long res;

    if (PyTuple_GET_SIZE(args) != 2) {
        TYPE_ERROR("kronecker() requires 'mpz','mpz' arguments");
        return NULL;
    }

    if (!(tempx = GMPy_MPZ_From_Integer(PyTuple_GET_ITEM(args, 0), NULL)) ||
        !(tempy = GMPy_MPZ_From_Integer(PyTuple_GET_ITEM(args, 1), NULL))) {

        Py_XDECREF((PyObject*)tempx);
        Py_XDECREF((PyObject*)tempy);
        return NULL;
    }

    res = (long)(mpz_kronecker(tempx->z, tempy->z));
    Py_DECREF((PyObject*)tempx);
    Py_DECREF((PyObject*)tempy);
    return PyIntOrLong_FromLong(res);
}
int
mpz_ui_kronecker (unsigned long a, mpz_srcptr b)
{
  mp_srcptr  b_ptr;
  mp_limb_t  b_low;
  int        b_abs_size;
  mp_limb_t  b_rem;
  int        twos;
  int        result_bit1;

  /* (a/-1)=1 when a>=0, so the sign of b is ignored */
  b_abs_size = ABSIZ (b);

  if (b_abs_size == 0)
    return JACOBI_U0 (a);  /* (a/0) */

  if (a > GMP_NUMB_MAX)
    {
      mp_limb_t  alimbs[2];
      mpz_t      az;
      ALLOC(az) = numberof (alimbs);
      PTR(az) = alimbs;
      mpz_set_ui (az, a);
      return mpz_kronecker (az, b);
    }

  b_ptr = PTR(b);
  b_low = b_ptr[0];
  result_bit1 = 0;

  if (! (b_low & 1))
    {
      /* (0/b)=0 for b!=+/-1; and (even/even)=0 */
      if (! (a & 1))
        return 0;

      /* a odd, b even

         Establish shifted b_low with valid bit1 for the RECIP below.  Zero
         limbs stripped are accounted for, but zero bits on b_low are not
         because they remain in {b_ptr,b_abs_size} for
         JACOBI_MOD_OR_MODEXACT_1_ODD. */

      JACOBI_STRIP_LOW_ZEROS (result_bit1, a, b_ptr, b_abs_size, b_low);
      if (! (b_low & 1))
        {
          if (UNLIKELY (b_low == GMP_NUMB_HIGHBIT))
            {
              /* need b_ptr[1] to get bit1 in b_low */
              if (b_abs_size == 1)
                {
                  /* (a/0x80...00) == (a/2)^(NUMB-1) */
                  if ((GMP_NUMB_BITS % 2) == 0)
                    {
                      /* JACOBI_STRIP_LOW_ZEROS does nothing to result_bit1
                         when GMP_NUMB_BITS is even, so it's still 0. */
                      ASSERT (result_bit1 == 0);
                      result_bit1 = JACOBI_TWO_U_BIT1 (a);
                    }
                  return JACOBI_BIT1_TO_PN (result_bit1);
                }

              /* b_abs_size > 1 */
              b_low = b_ptr[1] << 1;
            }
          else
            {
              count_trailing_zeros (twos, b_low);
              b_low >>= twos;
            }
        }
    }
  else
    {
      if (a == 0)        /* (0/b)=1 for b=+/-1, 0 otherwise */
Exemple #7
0
/* See Cohen section 1.5.
 * See http://www.math.vt.edu/people/brown/doc/sqrts.pdf
 */
int sqrtmod(mpz_t x, mpz_t a, mpz_t p,
            mpz_t t, mpz_t q, mpz_t b, mpz_t z) /* 4 temp variables */
{
    int r, e, m;

    /* Easy cases from page 31 (or Menezes 3.36, 3.37) */
    if (mpz_congruent_ui_p(p, 3, 4)) {
        mpz_add_ui(t, p, 1);
        mpz_tdiv_q_2exp(t, t, 2);
        mpz_powm(x, a, t, p);
        return verify_sqrt(x, a, p, t, q);
    }

    if (mpz_congruent_ui_p(p, 5, 8)) {
        mpz_sub_ui(t, p, 1);
        mpz_tdiv_q_2exp(t, t, 2);
        mpz_powm(q, a, t, p);
        if (mpz_cmp_si(q, 1) == 0) { /* s = a^((p+3)/8) mod p */
            mpz_add_ui(t, p, 3);
            mpz_tdiv_q_2exp(t, t, 3);
            mpz_powm(x, a, t, p);
        } else {                      /* s = 2a * (4a)^((p-5)/8) mod p */
            mpz_sub_ui(t, p, 5);
            mpz_tdiv_q_2exp(t, t, 3);
            mpz_mul_ui(q, a, 4);
            mpz_powm(x, q, t, p);
            mpz_mul_ui(x, x, 2);
            mpz_mulmod(x, x, a, p, x);
        }
        return verify_sqrt(x, a, p, t, q);
    }

    if (mpz_kronecker(a, p) != 1) {
        /* Possible no solution exists.  Check Euler criterion. */
        mpz_sub_ui(t, p, 1);
        mpz_tdiv_q_2exp(t, t, 1);
        mpz_powm(x, a, t, p);
        if (mpz_cmp_si(x, 1) != 0) {
            mpz_set_ui(x, 0);
            return 0;
        }
    }

    mpz_sub_ui(q, p, 1);
    e = mpz_scan1(q, 0);              /* Remove 2^e from q */
    mpz_tdiv_q_2exp(q, q, e);
    mpz_set_ui(t, 2);
    while (mpz_legendre(t, p) != -1)  /* choose t "at random" */
        mpz_add_ui(t, t, 1);
    mpz_powm(z, t, q, p);                     /* Step 1 complete */
    r = e;

    mpz_powm(b, a, q, p);
    mpz_add_ui(q, q, 1);
    mpz_divexact_ui(q, q, 2);
    mpz_powm(x, a, q, p);   /* Done with q, will use it for y now */

    while (mpz_cmp_ui(b, 1)) {
        /* calculate how many times b^2 mod p == 1 */
        mpz_set(t, b);
        m = 0;
        do {
            mpz_powm_ui(t, t, 2, p);
            m++;
        } while (m < r && mpz_cmp_ui(t, 1));
        if (m >= r) break;
        mpz_ui_pow_ui(t, 2, r-m-1);
        mpz_powm(t, z, t, p);
        mpz_mulmod(x, x, t, p, x);
        mpz_powm_ui(z, t, 2, p);
        mpz_mulmod(b, b, z, p, b);
        r = m;
    }
    return verify_sqrt(x, a, p, t, q);
}