/************************************************************************
 * msr_decode_int16:
 *
 * Decode 16-bit integer data and place in supplied buffer as 32-bit
 * integers.
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_int16 (int16_t *input, int samplecount, int32_t *output,
                  int outputlength, int swapflag)
{
  int16_t sample;
  int idx;

  if (samplecount <= 0)
    return 0;

  if (!input || !output || outputlength <= 0)
    return -1;

  for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
  {
    sample = input[idx];

    if (swapflag)
      ms_gswap2a (&sample);

    output[idx] = (int32_t)sample;

    outputlength -= sizeof (int32_t);
  }

  return idx;
} /* End of msr_decode_int16() */
/************************************************************************
 * msr_decode_dwwssn:
 *
 * Decode DWWSSN encoded miniSEED data and place in supplied buffer
 * as 32-bit integers.
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_dwwssn (int16_t *input, int samplecount, int32_t *output,
                   int outputlength, int swapflag)
{
  int32_t idx = 0;
  int32_t sample;
  uint16_t sint;

  if (samplecount < 0)
    return 0;

  for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
  {
    memcpy (&sint, &input[idx], sizeof (uint16_t));
    if (swapflag)
      ms_gswap2a (&sint);
    sample = (int32_t)sint;

    /* Take 2's complement for sample */
    if (sample > MAX16)
      sample -= 2 * (MAX16 + 1);

    /* Save sample in output array */
    output[idx] = sample;
    outputlength -= sizeof (int32_t);
  }

  return idx;
} /* End of msr_decode_dwwssn() */
/************************************************************************
 * msr_decode_sro:
 *
 * Decode SRO gain ranged data encoded miniSEED data and place in
 * supplied buffer as 32-bit integers.
 *
 * Notes from original rdseed routine:
 * SRO data are represented according to the formula
 *
 * sample = M * (b exp {[m * (G + agr)] + ar})
 *
 * where
 *     sample = seismic data sample
 *     M      = mantissa
 *     G      = gain range factor
 *     b      = base to be exponentiated = 2 for SRO
 *     m      = multiplier  = -1 for SRO
 *     agr    = term to be added to gain range factor = 0 for SRO
 *     ar     = term to be added to [m * (gr + agr)]  = 10 for SRO
 *     exp    = exponentiation operation
 *     Data are stored in two bytes as follows:
 *     	fedc ba98 7654 3210 = bit number, power of two
 *     	GGGG MMMM MMMM MMMM = form of SEED data
 *     	where G = gain range factor and M = mantissa
 *     Masks to recover gain range and mantissa:
 *     	fedc ba98 7654 3210 = bit number = power of two
 *     	0000 1111 1111 1111 = 0x0fff     = mask for mantissa
 *     	1111 0000 0000 0000 = 0xf000     = mask for gain range
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_sro (int16_t *input, int samplecount, int32_t *output,
                int outputlength, char *srcname, int swapflag)
{
  int32_t idx = 0;
  int32_t mantissa;   /* mantissa */
  int32_t gainrange;  /* gain range factor */
  int32_t add2gr;     /* added to gainrage factor */
  int32_t mult;       /* multiplier for gain range */
  int32_t add2result; /* added to multiplied gain rage */
  int32_t exponent;   /* total exponent */
  uint16_t sint;
  int32_t sample;

  if (samplecount <= 0)
    return 0;

  add2gr     = 0;
  mult       = -1;
  add2result = 10;

  for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
  {
    memcpy (&sint, &input[idx], sizeof (int16_t));
    if (swapflag)
      ms_gswap2a (&sint);

    /* Recover mantissa and gain range factor */
    mantissa  = (sint & SRO_MANTISSA_MASK);
    gainrange = (sint & SRO_GAINRANGE_MASK) >> SRO_SHIFT;

    /* Take 2's complement for mantissa */
    if (mantissa > MAX12)
      mantissa -= 2 * (MAX12 + 1);

    /* Calculate exponent, SRO exponent = 0..10 */
    exponent = (mult * (gainrange + add2gr)) + add2result;

    if (exponent < 0 || exponent > 10)
    {
      ms_log (2, "msr_decode_sro(%s): SRO gain ranging exponent out of range: %d\n",
              srcname, exponent);
      return MS_GENERROR;
    }

    /* Calculate sample as mantissa * 2^exponent */
    sample = mantissa * ((uint64_t)1 << exponent);

    /* Save sample in output array */
    output[idx] = sample;
    outputlength -= sizeof (int32_t);
  }

  return idx;
} /* End of msr_decode_sro() */
/************************************************************************
 * msr_decode_cdsn:
 *
 * Decode CDSN gain ranged data encoded miniSEED data and place in
 * supplied buffer as 32-bit integers.
 *
 * Notes from original rdseed routine:
 * CDSN data are compressed according to the formula
 *
 * sample = M * (2 exp G)
 *
 * where
 *    sample = seismic data sample
 *    M      = mantissa; biased mantissa B is written to tape
 *    G      = exponent of multiplier (i.e. gain range factor);
 *                     key K is written to tape
 *    exp    = exponentiation operation
 *    B      = M + 8191, biased mantissa, written to tape
 *    K      = key to multiplier exponent, written to tape
 *                     K may have any of the values 0 - 3, as follows:
 *                     0 => G = 0, multiplier = 2 exp 0 = 1
 *                     1 => G = 2, multiplier = 2 exp 2 = 4
 *                     2 => G = 4, multiplier = 2 exp 4 = 16
 *                     3 => G = 7, multiplier = 2 exp 7 = 128
 *    Data are stored on tape in two bytes as follows:
 *            fedc ba98 7654 3210 = bit number, power of two
 *            KKBB BBBB BBBB BBBB = form of SEED data
 *            where K = key to multiplier exponent and B = biased mantissa
 *
 *    Masks to recover key to multiplier exponent and biased mantissa
 *    from tape are:
 *            fedc ba98 7654 3210 = bit number = power of two
 *            0011 1111 1111 1111 = 0x3fff     = mask for biased mantissa
 *            1100 0000 0000 0000 = 0xc000     = mask for gain range key
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_cdsn (int16_t *input, int samplecount, int32_t *output,
                 int outputlength, int swapflag)
{
  int32_t idx = 0;
  int32_t mantissa;  /* mantissa */
  int32_t gainrange; /* gain range factor */
  int32_t mult = -1; /* multiplier for gain range */
  uint16_t sint;
  int32_t sample;

  if (samplecount <= 0)
    return 0;

  for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
  {
    memcpy (&sint, &input[idx], sizeof (int16_t));
    if (swapflag)
      ms_gswap2a (&sint);

    /* Recover mantissa and gain range factor */
    mantissa  = (sint & CDSN_MANTISSA_MASK);
    gainrange = (sint & CDSN_GAINRANGE_MASK) >> CDSN_SHIFT;

    /* Determine multiplier from the gain range factor and format definition
       * because shift operator is used later, these are powers of two */
    if (gainrange == 0)
      mult = 0;
    else if (gainrange == 1)
      mult = 2;
    else if (gainrange == 2)
      mult = 4;
    else if (gainrange == 3)
      mult = 7;

    /* Unbias the mantissa */
    mantissa -= MAX14;

    /* Calculate sample from mantissa and multiplier using left shift
       * mantissa << mult is equivalent to mantissa * (2 exp (mult)) */
    sample = (mantissa << mult);

    /* Save sample in output array */
    output[idx] = sample;
    outputlength -= sizeof (int32_t);
  }

  return idx;
} /* End of msr_decode_cdsn() */
/************************************************************************
 * msr_decode_geoscope:
 *
 * Decode GEOSCOPE gain ranged data (demultiplexed only) encoded
 * miniSEED data and place in supplied buffer as 32-bit floats.
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_geoscope (char *input, int samplecount, float *output,
                     int outputlength, int encoding,
                     char *srcname, int swapflag)
{
  int idx = 0;
  int mantissa;  /* mantissa from SEED data */
  int gainrange; /* gain range factor */
  int exponent;  /* total exponent */
  int k;
  uint64_t exp2val;
  int16_t sint;
  double dsample = 0.0;

  union {
    uint8_t b[4];
    uint32_t i;
  } sample32;

  if (!input || !output)
    return -1;

  if (samplecount <= 0 || outputlength <= 0)
    return -1;

  /* Make sure we recognize this as a GEOSCOPE encoding format */
  if (encoding != DE_GEOSCOPE24 &&
      encoding != DE_GEOSCOPE163 &&
      encoding != DE_GEOSCOPE164)
  {
    ms_log (2, "msr_decode_geoscope(%s): unrecognized GEOSCOPE encoding: %d\n",
            srcname, encoding);
    return -1;
  }

  for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (float); idx++)
  {
    switch (encoding)
    {
    case DE_GEOSCOPE24:
      sample32.i = 0;
      if (swapflag)
        for (k              = 0; k < 3; k++)
          sample32.b[2 - k] = input[k];
      else
        for (k              = 0; k < 3; k++)
          sample32.b[1 + k] = input[k];

      mantissa = sample32.i;

      /* Take 2's complement for mantissa for overflow */
      if (mantissa > MAX24)
        mantissa -= 2 * (MAX24 + 1);

      /* Store */
      dsample = (double)mantissa;

      break;
    case DE_GEOSCOPE163:
      memcpy (&sint, input, sizeof (int16_t));
      if (swapflag)
        ms_gswap2a (&sint);

      /* Recover mantissa and gain range factor */
      mantissa  = (sint & GEOSCOPE_MANTISSA_MASK);
      gainrange = (sint & GEOSCOPE_GAIN3_MASK) >> GEOSCOPE_SHIFT;

      /* Exponent is just gainrange for GEOSCOPE */
      exponent = gainrange;

      /* Calculate sample as mantissa / 2^exponent */
      exp2val = (uint64_t)1 << exponent;
      dsample = ((double)(mantissa - 2048)) / exp2val;

      break;
    case DE_GEOSCOPE164:
      memcpy (&sint, input, sizeof (int16_t));
      if (swapflag)
        ms_gswap2a (&sint);

      /* Recover mantissa and gain range factor */
      mantissa  = (sint & GEOSCOPE_MANTISSA_MASK);
      gainrange = (sint & GEOSCOPE_GAIN4_MASK) >> GEOSCOPE_SHIFT;

      /* Exponent is just gainrange for GEOSCOPE */
      exponent = gainrange;

      /* Calculate sample as mantissa / 2^exponent */
      exp2val = (uint64_t)1 << exponent;
      dsample = ((double)(mantissa - 2048)) / exp2val;

      break;
    }

    /* Save sample in output array */
    output[idx] = (float)dsample;
    outputlength -= sizeof (float);

    /* Increment edata pointer depending on size */
    switch (encoding)
    {
    case DE_GEOSCOPE24:
      input += 3;
      break;
    case DE_GEOSCOPE163:
    case DE_GEOSCOPE164:
      input += 2;
      break;
    }
  }

  return idx;
} /* End of msr_decode_geoscope() */
/************************************************************************
 * msr_decode_steim1:
 *
 * Decode Steim1 encoded miniSEED data and place in supplied buffer
 * as 32-bit integers.
 *
 * Return number of samples in output buffer on success, -1 on error.
 ************************************************************************/
int
msr_decode_steim1 (int32_t *input, int inputlength, int samplecount,
                   int32_t *output, int outputlength, char *srcname,
                   int swapflag)
{
  int32_t *outputptr = output; /* Pointer to next output sample location */
  uint32_t frame[16];          /* Frame, 16 x 32-bit quantities = 64 bytes */
  int32_t X0    = 0;           /* Forward integration constant, aka first sample */
  int32_t Xn    = 0;           /* Reverse integration constant, aka last sample */
  int maxframes = inputlength / 64;
  int frameidx;
  int startnibble;
  int nibble;
  int widx;
  int diffcount;
  int idx;

  union dword {
    int8_t d8[4];
    int16_t d16[2];
    int32_t d32;
  } * word;

  if (inputlength <= 0)
    return 0;

  if (!input || !output || outputlength <= 0 || maxframes <= 0)
    return -1;

  if (decodedebug)
    ms_log (1, "Decoding %d Steim1 frames, swapflag: %d, srcname: %s\n",
            maxframes, swapflag, (srcname) ? srcname : "");

  for (frameidx = 0; frameidx < maxframes && samplecount > 0; frameidx++)
  {
    /* Copy frame, each is 16x32-bit quantities = 64 bytes */
    memcpy (frame, input + (16 * frameidx), 64);

    /* Save forward integration constant (X0) and reverse integration constant (Xn)
       and set the starting nibble index depending on frame. */
    if (frameidx == 0)
    {
      if (swapflag)
      {
        ms_gswap4a (&frame[1]);
        ms_gswap4a (&frame[2]);
      }

      X0 = frame[1];
      Xn = frame[2];

      startnibble = 3; /* First frame: skip nibbles, X0, and Xn */

      if (decodedebug)
        ms_log (1, "Frame %d: X0=%d  Xn=%d\n", frameidx, X0, Xn);
    }
    else
    {
      startnibble = 1; /* Subsequent frames: skip nibbles */

      if (decodedebug)
        ms_log (1, "Frame %d\n", frameidx);
    }

    /* Swap 32-bit word containing the nibbles */
    if (swapflag)
      ms_gswap4a (&frame[0]);

    /* Decode each 32-bit word according to nibble */
    for (widx = startnibble; widx < 16 && samplecount > 0; widx++)
    {
      /* W0: the first 32-bit contains 16 x 2-bit nibbles for each word */
      nibble = EXTRACTBITRANGE (frame[0], (30 - (2 * widx)), 2);

      word      = (union dword *)&frame[widx];
      diffcount = 0;

      switch (nibble)
      {
      case 0: /* 00: Special flag, no differences */
        if (decodedebug)
          ms_log (1, "  W%02d: 00=special\n", widx);
        break;

      case 1: /* 01: Four 1-byte differences */
        diffcount = 4;

        if (decodedebug)
          ms_log (1, "  W%02d: 01=4x8b  %d  %d  %d  %d\n",
                  widx, word->d8[0], word->d8[1], word->d8[2], word->d8[3]);
        break;

      case 2: /* 10: Two 2-byte differences */
        diffcount = 2;

        if (swapflag)
        {
          ms_gswap2a (&word->d16[0]);
          ms_gswap2a (&word->d16[1]);
        }

        if (decodedebug)
          ms_log (1, "  W%02d: 10=2x16b  %d  %d\n", widx, word->d16[0], word->d16[1]);
        break;

      case 3: /* 11: One 4-byte difference */
        diffcount = 1;
        if (swapflag)
          ms_gswap4a (&word->d32);

        if (decodedebug)
          ms_log (1, "  W%02d: 11=1x32b  %d\n", widx, word->d32);
        break;
      } /* Done with decoding 32-bit word based on nibble */

      /* Apply accumulated differences to calculate output samples */
      if (diffcount > 0)
      {
        for (idx = 0; idx < diffcount && samplecount > 0; idx++, outputptr++)
        {
          if (outputptr == output) /* Ignore first difference, instead store X0 */
            *outputptr = X0;
          else if (diffcount == 4) /* Otherwise store difference from previous sample */
            *outputptr = *(outputptr - 1) + word->d8[idx];
          else if (diffcount == 2)
            *outputptr = *(outputptr - 1) + word->d16[idx];
          else if (diffcount == 1)
            *outputptr = *(outputptr - 1) + word->d32;

          samplecount--;
        }
      }
    } /* Done looping over nibbles and 32-bit words */
  }   /* Done looping over frames */

  /* Check data integrity by comparing last sample to Xn (reverse integration constant) */
  if (outputptr != output && *(outputptr - 1) != Xn)
  {
    ms_log (1, "%s: Warning: Data integrity check for Steim1 failed, Last sample=%d, Xn=%d\n",
            srcname, *(outputptr - 1), Xn);
  }

  return (outputptr - output);
} /* End of msr_decode_steim1() */
Exemple #7
0
/***************************************************************************
 * ms_parse_raw:
 *
 * Parse and verify a SEED data record header (fixed section and
 * blockettes) at the lowest level, printing error messages for
 * invalid header values and optionally print raw header values.  The
 * memory at 'record' is assumed to be a Mini-SEED record.  Not every
 * possible test is performed, common errors and those causing
 * libmseed parsing to fail should be detected.
 *
 * The 'details' argument is interpreted as follows:
 *
 * details:
 *  0 = only print error messages for invalid header fields
 *  1 = print basic fields in addition to invalid field errors
 *  2 = print all fields in addition to invalid field errors
 *
 * The 'swapflag' argument is interpreted as follows:
 *
 * swapflag:
 *  1 = swap multibyte quantities
 *  0 = do no swapping
 * -1 = autodetect byte order using year test, swap if needed
 *
 * Any byte swapping performed by this routine is applied directly to
 * the memory reference by the record pointer.
 *
 * This routine is primarily intended to diagnose invalid Mini-SEED headers.
 *
 * Returns 0 when no errors were detected or a positive count of
 * errors detected.
 ***************************************************************************/
int
ms_parse_raw ( char *record, int maxreclen, flag details, flag swapflag )
{
  struct fsdh_s *fsdh;
  double nomsamprate;
  char srcname[50];
  char *X;
  char b;
  int retval = 0;
  int b1000encoding = -1;
  int b1000reclen = -1;
  int endofblockettes = -1;
  int idx;
  
  if ( ! record )
    return 1;
  
  /* Generate a source name string */
  srcname[0] = '\0';
  ms_recsrcname (record, srcname, 1);
  
  fsdh = (struct fsdh_s *) record;
  
  /* Check to see if byte swapping is needed by testing the year */
  if ( swapflag == -1 &&
       ((fsdh->start_time.year < 1900) ||
	(fsdh->start_time.year > 2050)) )
    swapflag = 1;
  else
    swapflag = 0;
  
  if ( details > 1 )
    {
      if ( swapflag == 1 )
	ms_log (0, "Swapping multi-byte quantities in header\n");
      else
	ms_log (0, "Not swapping multi-byte quantities in header\n");
    }
  
  /* Swap byte order */
  if ( swapflag )
    {
      MS_SWAPBTIME (&fsdh->start_time);
      ms_gswap2a (&fsdh->numsamples);
      ms_gswap2a (&fsdh->samprate_fact);
      ms_gswap2a (&fsdh->samprate_mult);
      ms_gswap4a (&fsdh->time_correct);
      ms_gswap2a (&fsdh->data_offset);
      ms_gswap2a (&fsdh->blockette_offset);
    }
  
  /* Validate fixed section header fields */
  X = record;  /* Pointer of convenience */
  
  /* Check record sequence number, 6 ASCII digits */
  if ( ! isdigit((unsigned char) *(X)) || ! isdigit ((unsigned char) *(X+1)) ||
       ! isdigit((unsigned char) *(X+2)) || ! isdigit ((unsigned char) *(X+3)) ||
       ! isdigit((unsigned char) *(X+4)) || ! isdigit ((unsigned char) *(X+5)) )
    {
      ms_log (2, "%s: Invalid sequence number: '%c%c%c%c%c%c'\n", srcname, X, X+1, X+2, X+3, X+4, X+5);
      retval++;
    }
  
  /* Check header/quality indicator */
  if ( ! MS_ISDATAINDICATOR(*(X+6)) )
    {
      ms_log (2, "%s: Invalid header indicator (DRQM): '%c'\n", srcname, X+6);
      retval++;
    }
  
  /* Check reserved byte, space or NULL */
  if ( ! (*(X+7) == ' ' || *(X+7) == '\0') )
    {
      ms_log (2, "%s: Invalid fixed section reserved byte (Space): '%c'\n", srcname, X+7);
      retval++;
    }
  
  /* Check station code, 5 alphanumerics or spaces */
  if ( ! (isalnum((unsigned char) *(X+8)) || *(X+8) == ' ') ||
       ! (isalnum((unsigned char) *(X+9)) || *(X+9) == ' ') ||
       ! (isalnum((unsigned char) *(X+10)) || *(X+10) == ' ') ||
       ! (isalnum((unsigned char) *(X+11)) || *(X+11) == ' ') ||
       ! (isalnum((unsigned char) *(X+12)) || *(X+12) == ' ') )
    {
      ms_log (2, "%s: Invalid station code: '%c%c%c%c%c'\n", srcname, X+8, X+9, X+10, X+11, X+12);
      retval++;
    }
  
  /* Check location ID, 2 alphanumerics or spaces */
  if ( ! (isalnum((unsigned char) *(X+13)) || *(X+13) == ' ') ||
       ! (isalnum((unsigned char) *(X+14)) || *(X+14) == ' ') )
    {
      ms_log (2, "%s: Invalid location ID: '%c%c'\n", srcname, X+13, X+14);
      retval++;
    }
  
  /* Check channel codes, 3 alphanumerics or spaces */
  if ( ! (isalnum((unsigned char) *(X+15)) || *(X+15) == ' ') ||
       ! (isalnum((unsigned char) *(X+16)) || *(X+16) == ' ') ||
       ! (isalnum((unsigned char) *(X+17)) || *(X+17) == ' ') )
    {
      ms_log (2, "%s: Invalid channel codes: '%c%c%c'\n", srcname, X+15, X+16, X+17);
      retval++;
    }
  
  /* Check network code, 2 alphanumerics or spaces */
  if ( ! (isalnum((unsigned char) *(X+18)) || *(X+18) == ' ') ||
       ! (isalnum((unsigned char) *(X+19)) || *(X+19) == ' ') )
    {
      ms_log (2, "%s: Invalid network code: '%c%c'\n", srcname, X+18, X+19);
      retval++;
    }
  
  /* Check start time fields */
  if ( fsdh->start_time.year < 1920 || fsdh->start_time.year > 2050 )
    {
      ms_log (2, "%s: Unlikely start year (1920-2050): '%d'\n", srcname, fsdh->start_time.year);
      retval++;
    }
  if ( fsdh->start_time.day < 1 || fsdh->start_time.day > 366 )
    {
      ms_log (2, "%s: Invalid start day (1-366): '%d'\n", srcname, fsdh->start_time.day);
      retval++;
    }
  if ( fsdh->start_time.hour > 23 )
    {
      ms_log (2, "%s: Invalid start hour (0-23): '%d'\n", srcname, fsdh->start_time.hour);
      retval++;
    }
  if ( fsdh->start_time.min > 59 )
    {
      ms_log (2, "%s: Invalid start minute (0-59): '%d'\n", srcname, fsdh->start_time.min);
      retval++;
    }
  if ( fsdh->start_time.sec > 60 )
    {
      ms_log (2, "%s: Invalid start second (0-60): '%d'\n", srcname, fsdh->start_time.sec);
      retval++;
    }
  if ( fsdh->start_time.fract > 9999 )
    {
      ms_log (2, "%s: Invalid start fractional seconds (0-9999): '%d'\n", srcname, fsdh->start_time.fract);
      retval++;
    }
  
  /* Check number of samples, max samples in 4096-byte Steim-2 encoded record: 6601 */
  if ( fsdh->numsamples > 20000 )
    {
      ms_log (2, "%s: Unlikely number of samples (>20000): '%d'\n", srcname, fsdh->numsamples);
      retval++;
    }
  
  /* Sanity check that there is space for blockettes when both data and blockettes are present */
  if ( fsdh->numsamples > 0 && fsdh->numblockettes > 0 && fsdh->data_offset <= fsdh->blockette_offset )
    {
      ms_log (2, "%s: No space for %d blockettes, data offset: %d, blockette offset: %d\n", srcname,
	      fsdh->numblockettes, fsdh->data_offset, fsdh->blockette_offset);
      retval++;
    }
  
  
  /* Print raw header details */
  if ( details >= 1 )
    {
      /* Determine nominal sample rate */
      nomsamprate = ms_nomsamprate (fsdh->samprate_fact, fsdh->samprate_mult);
  
      /* Print header values */
      ms_log (0, "RECORD -- %s\n", srcname);
      ms_log (0, "        sequence number: '%c%c%c%c%c%c'\n", fsdh->sequence_number[0], fsdh->sequence_number[1], fsdh->sequence_number[2],
	      fsdh->sequence_number[3], fsdh->sequence_number[4], fsdh->sequence_number[5]);
      ms_log (0, " data quality indicator: '%c'\n", fsdh->dataquality);
      if ( details > 0 )
        ms_log (0, "               reserved: '%c'\n", fsdh->reserved);
      ms_log (0, "           station code: '%c%c%c%c%c'\n", fsdh->station[0], fsdh->station[1], fsdh->station[2], fsdh->station[3], fsdh->station[4]);
      ms_log (0, "            location ID: '%c%c'\n", fsdh->location[0], fsdh->location[1]);
      ms_log (0, "          channel codes: '%c%c%c'\n", fsdh->channel[0], fsdh->channel[1], fsdh->channel[2]);
      ms_log (0, "           network code: '%c%c'\n", fsdh->network[0], fsdh->network[1]);
      ms_log (0, "             start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", fsdh->start_time.year, fsdh->start_time.day,
	      fsdh->start_time.hour, fsdh->start_time.min, fsdh->start_time.sec, fsdh->start_time.fract, fsdh->start_time.unused);
      ms_log (0, "      number of samples: %d\n", fsdh->numsamples);
      ms_log (0, "     sample rate factor: %d  (%.10g samples per second)\n",
              fsdh->samprate_fact, nomsamprate);
      ms_log (0, " sample rate multiplier: %d\n", fsdh->samprate_mult);
      
      /* Print flag details if requested */
      if ( details > 1 )
        {
          /* Activity flags */
	  b = fsdh->act_flags;
	  ms_log (0, "         activity flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
		  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
		  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
	  if ( b & 0x01 ) ms_log (0, "                         [Bit 0] Calibration signals present\n");
	  if ( b & 0x02 ) ms_log (0, "                         [Bit 1] Time correction applied\n");
	  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Beginning of an event, station trigger\n");
	  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] End of an event, station detrigger\n");
	  if ( b & 0x10 ) ms_log (0, "                         [Bit 4] A positive leap second happened in this record\n");
	  if ( b & 0x20 ) ms_log (0, "                         [Bit 5] A negative leap second happened in this record\n");
	  if ( b & 0x40 ) ms_log (0, "                         [Bit 6] Event in progress\n");
	  if ( b & 0x80 ) ms_log (0, "                         [Bit 7] Undefined bit set\n");
	  
	  /* I/O and clock flags */
	  b = fsdh->io_flags;
	  ms_log (0, "    I/O and clock flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
		  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
		  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
	  if ( b & 0x01 ) ms_log (0, "                         [Bit 0] Station volume parity error possibly present\n");
	  if ( b & 0x02 ) ms_log (0, "                         [Bit 1] Long record read (possibly no problem)\n");
	  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Short record read (record padded)\n");
	  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Start of time series\n");
	  if ( b & 0x10 ) ms_log (0, "                         [Bit 4] End of time series\n");
	  if ( b & 0x20 ) ms_log (0, "                         [Bit 5] Clock locked\n");
	  if ( b & 0x40 ) ms_log (0, "                         [Bit 6] Undefined bit set\n");
	  if ( b & 0x80 ) ms_log (0, "                         [Bit 7] Undefined bit set\n");
	  
	  /* Data quality flags */
	  b = fsdh->dq_flags;
	  ms_log (0, "     data quality flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
		  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
		  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
	  if ( b & 0x01 ) ms_log (0, "                         [Bit 0] Amplifier saturation detected\n");
	  if ( b & 0x02 ) ms_log (0, "                         [Bit 1] Digitizer clipping detected\n");
	  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Spikes detected\n");
	  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Glitches detected\n");
	  if ( b & 0x10 ) ms_log (0, "                         [Bit 4] Missing/padded data present\n");
	  if ( b & 0x20 ) ms_log (0, "                         [Bit 5] Telemetry synchronization error\n");
	  if ( b & 0x40 ) ms_log (0, "                         [Bit 6] A digital filter may be charging\n");
	  if ( b & 0x80 ) ms_log (0, "                         [Bit 7] Time tag is questionable\n");
	}
      
      ms_log (0, "   number of blockettes: %d\n", fsdh->numblockettes);
      ms_log (0, "        time correction: %ld\n", (long int) fsdh->time_correct);
      ms_log (0, "            data offset: %d\n", fsdh->data_offset);
      ms_log (0, " first blockette offset: %d\n", fsdh->blockette_offset);
    } /* Done printing raw header details */
  
  
  /* Validate and report information in the blockette chain */
  if ( fsdh->blockette_offset > 46 && fsdh->blockette_offset < maxreclen )
    {
      int blkt_offset = fsdh->blockette_offset;
      int blkt_count = 0;
      int blkt_length;
      uint16_t blkt_type;
      uint16_t next_blkt;
      char *blkt_desc;
      
      /* Traverse blockette chain */
      while ( blkt_offset != 0 && blkt_offset < maxreclen )
	{
	  /* Every blockette has a similar 4 byte header: type and next */
	  memcpy (&blkt_type, record + blkt_offset, 2);
	  memcpy (&next_blkt, record + blkt_offset+2, 2);
	  
	  if ( swapflag )
	    {
	      ms_gswap2 (&blkt_type);
	      ms_gswap2 (&next_blkt);
	    }
	  
	  /* Print common header fields */
	  if ( details >= 1 )
	    {
	      blkt_desc =  ms_blktdesc(blkt_type);
	      ms_log (0, "          BLOCKETTE %u: (%s)\n", blkt_type, (blkt_desc) ? blkt_desc : "Unknown");
	      ms_log (0, "              next blockette: %u\n", next_blkt);
	    }
	  
	  blkt_length = ms_blktlen (blkt_type, record + blkt_offset, swapflag);
	  if ( blkt_length == 0 )
	    {
	      ms_log (2, "%s: Unknown blockette length for type %d\n", srcname, blkt_type);
	      retval++;
	    }
	  
	  /* Track end of blockette chain */
	  endofblockettes = blkt_offset + blkt_length - 1;
	  
	  /* Sanity check that the blockette is contained in the record */
	  if ( endofblockettes > maxreclen )
	    {
	      ms_log (2, "%s: Blockette type %d at offset %d with length %d does not fix in record (%d)\n",
		      srcname, blkt_type, blkt_offset, blkt_length, maxreclen);
	      retval++;
	      break;
	    }
	  
	  if ( blkt_type == 100 )
	    {
	      struct blkt_100_s *blkt_100 = (struct blkt_100_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		ms_gswap4 (&blkt_100->samprate);
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "          actual sample rate: %.10g\n", blkt_100->samprate);
		  
		  if ( details > 1 )
		    {
		      b = blkt_100->flags;
		      ms_log (0, "             undefined flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			      bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			      bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		      
		      ms_log (0, "          reserved bytes (3): %u,%u,%u\n",
			      blkt_100->reserved[0], blkt_100->reserved[1], blkt_100->reserved[2]);
		    }
		}
	    }
	  
	  else if ( blkt_type == 200 )
	    {
	      struct blkt_200_s *blkt_200 = (struct blkt_200_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  ms_gswap4 (&blkt_200->amplitude);
		  ms_gswap4 (&blkt_200->period);
		  ms_gswap4 (&blkt_200->background_estimate);
		  MS_SWAPBTIME (&blkt_200->time);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "            signal amplitude: %g\n", blkt_200->amplitude);
		  ms_log (0, "               signal period: %g\n", blkt_200->period);
		  ms_log (0, "         background estimate: %g\n", blkt_200->background_estimate);
		  
		  if ( details > 1 )
		    {
		      b = blkt_200->flags;
		      ms_log (0, "       event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			      bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			      bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		      if ( b & 0x01 ) ms_log (0, "                         [Bit 0] 1: Dilatation wave\n");
		      else            ms_log (0, "                         [Bit 0] 0: Compression wave\n");
		      if ( b & 0x02 ) ms_log (0, "                         [Bit 1] 1: Units after deconvolution\n");
		      else            ms_log (0, "                         [Bit 1] 0: Units are digital counts\n");
		      if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Bit 0 is undetermined\n");
		      ms_log (0, "               reserved byte: %u\n", blkt_200->reserved);
		    }
		  
		  ms_log (0, "           signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_200->time.year, blkt_200->time.day,
			  blkt_200->time.hour, blkt_200->time.min, blkt_200->time.sec, blkt_200->time.fract, blkt_200->time.unused);
		  ms_log (0, "               detector name: %.24s\n", blkt_200->detector);
		}
	    }
	  
	  else if ( blkt_type == 201 )
	    {
	      struct blkt_201_s *blkt_201 = (struct blkt_201_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  ms_gswap4 (&blkt_201->amplitude);
		  ms_gswap4 (&blkt_201->period);
		  ms_gswap4 (&blkt_201->background_estimate);
		  MS_SWAPBTIME (&blkt_201->time);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "            signal amplitude: %g\n", blkt_201->amplitude);
		  ms_log (0, "               signal period: %g\n", blkt_201->period);
		  ms_log (0, "         background estimate: %g\n", blkt_201->background_estimate);
		  
		  b = blkt_201->flags;
		  ms_log (0, "       event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  if ( b & 0x01 ) ms_log (0, "                         [Bit 0] 1: Dilation wave\n");
		  else            ms_log (0, "                         [Bit 0] 0: Compression wave\n");
		  
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_201->reserved);
		  ms_log (0, "           signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_201->time.year, blkt_201->time.day,
			  blkt_201->time.hour, blkt_201->time.min, blkt_201->time.sec, blkt_201->time.fract, blkt_201->time.unused);
		  ms_log (0, "                  SNR values: ");
		  for (idx=0; idx < 6; idx++) ms_log (0, "%u  ", blkt_201->snr_values[idx]);
		  ms_log (0, "\n");
		  ms_log (0, "              loopback value: %u\n", blkt_201->loopback);
		  ms_log (0, "              pick algorithm: %u\n", blkt_201->pick_algorithm);
		  ms_log (0, "               detector name: %.24s\n", blkt_201->detector);
		}
	    }
	  
	  else if ( blkt_type == 300 )
	    {
	      struct blkt_300_s *blkt_300 = (struct blkt_300_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  MS_SWAPBTIME (&blkt_300->time);
		  ms_gswap4 (&blkt_300->step_duration);
		  ms_gswap4 (&blkt_300->interval_duration);
		  ms_gswap4 (&blkt_300->amplitude);
		  ms_gswap4 (&blkt_300->reference_amplitude);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "      calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_300->time.year, blkt_300->time.day,
			  blkt_300->time.hour, blkt_300->time.min, blkt_300->time.sec, blkt_300->time.fract, blkt_300->time.unused);
		  ms_log (0, "      number of calibrations: %u\n", blkt_300->numcalibrations);
		  
		  b = blkt_300->flags;
		  ms_log (0, "           calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  if ( b & 0x01 ) ms_log (0, "                         [Bit 0] First pulse is positive\n");
		  if ( b & 0x02 ) ms_log (0, "                         [Bit 1] Calibration's alternate sign\n");
		  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Calibration was automatic\n");
		  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Calibration continued from previous record(s)\n");
		  
		  ms_log (0, "               step duration: %u\n", blkt_300->step_duration);
		  ms_log (0, "           interval duration: %u\n", blkt_300->interval_duration);
		  ms_log (0, "            signal amplitude: %g\n", blkt_300->amplitude);
		  ms_log (0, "        input signal channel: %.3s", blkt_300->input_channel);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_300->reserved);
		  ms_log (0, "         reference amplitude: %u\n", blkt_300->reference_amplitude);
		  ms_log (0, "                    coupling: %.12s\n", blkt_300->coupling);
		  ms_log (0, "                     rolloff: %.12s\n", blkt_300->rolloff);
		}
	    }
	  
	  else if ( blkt_type == 310 )
	    {
	      struct blkt_310_s *blkt_310 = (struct blkt_310_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  MS_SWAPBTIME (&blkt_310->time);
		  ms_gswap4 (&blkt_310->duration);
		  ms_gswap4 (&blkt_310->period);
		  ms_gswap4 (&blkt_310->amplitude);
		  ms_gswap4 (&blkt_310->reference_amplitude);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "      calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_310->time.year, blkt_310->time.day,
			  blkt_310->time.hour, blkt_310->time.min, blkt_310->time.sec, blkt_310->time.fract, blkt_310->time.unused);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_310->reserved1);
		  
		  b = blkt_310->flags;
		  ms_log (0, "           calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Calibration was automatic\n");
		  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Calibration continued from previous record(s)\n");
		  if ( b & 0x10 ) ms_log (0, "                         [Bit 4] Peak-to-peak amplitude\n");
		  if ( b & 0x20 ) ms_log (0, "                         [Bit 5] Zero-to-peak amplitude\n");
		  if ( b & 0x40 ) ms_log (0, "                         [Bit 6] RMS amplitude\n");
		  
		  ms_log (0, "        calibration duration: %u\n", blkt_310->duration);
		  ms_log (0, "               signal period: %g\n", blkt_310->period);
		  ms_log (0, "            signal amplitude: %g\n", blkt_310->amplitude);
		  ms_log (0, "        input signal channel: %.3s", blkt_310->input_channel);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_310->reserved2);	      
		  ms_log (0, "         reference amplitude: %u\n", blkt_310->reference_amplitude);
		  ms_log (0, "                    coupling: %.12s\n", blkt_310->coupling);
		  ms_log (0, "                     rolloff: %.12s\n", blkt_310->rolloff);
		}
	    }
	  
	  else if ( blkt_type == 320 )
	    {
	      struct blkt_320_s *blkt_320 = (struct blkt_320_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  MS_SWAPBTIME (&blkt_320->time);
		  ms_gswap4 (&blkt_320->duration);
		  ms_gswap4 (&blkt_320->ptp_amplitude);
		  ms_gswap4 (&blkt_320->reference_amplitude);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "      calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_320->time.year, blkt_320->time.day,
			  blkt_320->time.hour, blkt_320->time.min, blkt_320->time.sec, blkt_320->time.fract, blkt_320->time.unused);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_320->reserved1);
		  
		  b = blkt_320->flags;
		  ms_log (0, "           calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Calibration was automatic\n");
		  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Calibration continued from previous record(s)\n");
		  if ( b & 0x10 ) ms_log (0, "                         [Bit 4] Random amplitudes\n");
		  
		  ms_log (0, "        calibration duration: %u\n", blkt_320->duration);
		  ms_log (0, "      peak-to-peak amplitude: %g\n", blkt_320->ptp_amplitude);
		  ms_log (0, "        input signal channel: %.3s", blkt_320->input_channel);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_320->reserved2);
		  ms_log (0, "         reference amplitude: %u\n", blkt_320->reference_amplitude);
		  ms_log (0, "                    coupling: %.12s\n", blkt_320->coupling);
		  ms_log (0, "                     rolloff: %.12s\n", blkt_320->rolloff);
		  ms_log (0, "                  noise type: %.8s\n", blkt_320->noise_type);
		}
	    }
	  
	  else if ( blkt_type == 390 )
	    {
	      struct blkt_390_s *blkt_390 = (struct blkt_390_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  MS_SWAPBTIME (&blkt_390->time);
		  ms_gswap4 (&blkt_390->duration);
		  ms_gswap4 (&blkt_390->amplitude);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "      calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_390->time.year, blkt_390->time.day,
			  blkt_390->time.hour, blkt_390->time.min, blkt_390->time.sec, blkt_390->time.fract, blkt_390->time.unused);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_390->reserved1);
		  
		  b = blkt_390->flags;
		  ms_log (0, "           calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  if ( b & 0x04 ) ms_log (0, "                         [Bit 2] Calibration was automatic\n");
		  if ( b & 0x08 ) ms_log (0, "                         [Bit 3] Calibration continued from previous record(s)\n");
		  
		  ms_log (0, "        calibration duration: %u\n", blkt_390->duration);
		  ms_log (0, "            signal amplitude: %g\n", blkt_390->amplitude);
		  ms_log (0, "        input signal channel: %.3s", blkt_390->input_channel);
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_390->reserved2);
		}
	    }

	  else if ( blkt_type == 395 )
	    {
	      struct blkt_395_s *blkt_395 = (struct blkt_395_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		MS_SWAPBTIME (&blkt_395->time);
	      
	      if ( details >= 1 )
		{ 
		  ms_log (0, "        calibration end time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_395->time.year, blkt_395->time.day,
			  blkt_395->time.hour, blkt_395->time.min, blkt_395->time.sec, blkt_395->time.fract, blkt_395->time.unused);
		  if ( details > 1 )
		    ms_log (0, "          reserved bytes (2): %u,%u\n",
			    blkt_395->reserved[0], blkt_395->reserved[1]);
		}
	    }
	  
	  else if ( blkt_type == 400 )
	    {
	      struct blkt_400_s *blkt_400 = (struct blkt_400_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  ms_gswap4 (&blkt_400->azimuth);
		  ms_gswap4 (&blkt_400->slowness);
		  ms_gswap4 (&blkt_400->configuration);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "      beam azimuth (degrees): %g\n", blkt_400->azimuth);
		  ms_log (0, "  beam slowness (sec/degree): %g\n", blkt_400->slowness);
		  ms_log (0, "               configuration: %u\n", blkt_400->configuration);
		  if ( details > 1 )
		    ms_log (0, "          reserved bytes (2): %u,%u\n",
			    blkt_400->reserved[0], blkt_400->reserved[1]);
		}
	    }

	  else if ( blkt_type == 405 )
	    {
	      struct blkt_405_s *blkt_405 = (struct blkt_405_s *) (record + blkt_offset + 4);
	      uint16_t firstvalue = blkt_405->delay_values[0];  /* Work on a private copy */
	      
	      if ( swapflag )
		ms_gswap2 (&firstvalue);
	      
	      if ( details >= 1 )
		ms_log (0, "           first delay value: %u\n", firstvalue);
	    }
	  
	  else if ( blkt_type == 500 )
	    {
	      struct blkt_500_s *blkt_500 = (struct blkt_500_s *) (record + blkt_offset + 4);
	      
	      if ( swapflag )
		{
		  ms_gswap4 (&blkt_500->vco_correction);
		  MS_SWAPBTIME (&blkt_500->time);
		  ms_gswap4 (&blkt_500->exception_count);
		}
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "              VCO correction: %g%%\n", blkt_500->vco_correction);
		  ms_log (0, "           time of exception: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_500->time.year, blkt_500->time.day,
			  blkt_500->time.hour, blkt_500->time.min, blkt_500->time.sec, blkt_500->time.fract, blkt_500->time.unused);
		  ms_log (0, "                        usec: %d\n", blkt_500->usec);
		  ms_log (0, "           reception quality: %u%%\n", blkt_500->reception_qual);
		  ms_log (0, "             exception count: %u\n", blkt_500->exception_count);
		  ms_log (0, "              exception type: %.16s\n", blkt_500->exception_type);
		  ms_log (0, "                 clock model: %.32s\n", blkt_500->clock_model);
		  ms_log (0, "                clock status: %.128s\n", blkt_500->clock_status);
		}
	    }
	  
	  else if ( blkt_type == 1000 )
	    {
	      struct blkt_1000_s *blkt_1000 = (struct blkt_1000_s *) (record + blkt_offset + 4);
	      char order[40];
	      
	      /* Calculate record size in bytes as 2^(blkt_1000->rec_len) */
	      b1000reclen = (unsigned int) 1 << blkt_1000->reclen;
	      
	      /* Big or little endian? */
	      if (blkt_1000->byteorder == 0)
		strncpy (order, "Little endian", sizeof(order)-1);
	      else if (blkt_1000->byteorder == 1)
		strncpy (order, "Big endian", sizeof(order)-1);
	      else
		strncpy (order, "Unknown value", sizeof(order)-1);
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "                    encoding: %s (val:%u)\n",
			  (char *) ms_encodingstr (blkt_1000->encoding), blkt_1000->encoding);
		  ms_log (0, "                  byte order: %s (val:%u)\n",
			  order, blkt_1000->byteorder);
		  ms_log (0, "               record length: %d (val:%u)\n",
			  b1000reclen, blkt_1000->reclen);
		  
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_1000->reserved);
		}
	      
	      /* Save encoding format */
	      b1000encoding = blkt_1000->encoding;
	      
	      /* Sanity check encoding format */
	      if ( ! (b1000encoding >= 0 && b1000encoding <= 5) &&
		   ! (b1000encoding >= 10 && b1000encoding <= 19) &&
		   ! (b1000encoding >= 30 && b1000encoding <= 33) )
		{
		  ms_log (2, "%s: Blockette 1000 encoding format invalid (0-5,10-19,30-33): %d\n", srcname, b1000encoding);
		  retval++;
		}
	      
	      /* Sanity check byte order flag */
	      if ( blkt_1000->byteorder != 0 && blkt_1000->byteorder != 1 )
		{
		  ms_log (2, "%s: Blockette 1000 byte order flag invalid (0 or 1): %d\n", srcname, blkt_1000->byteorder);
		  retval++;
		}
	    }
	  
	  else if ( blkt_type == 1001 )
	    {
	      struct blkt_1001_s *blkt_1001 = (struct blkt_1001_s *) (record + blkt_offset + 4);
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "              timing quality: %u%%\n", blkt_1001->timing_qual);
		  ms_log (0, "                micro second: %d\n", blkt_1001->usec);
		  
		  if ( details > 1 )
		    ms_log (0, "               reserved byte: %u\n", blkt_1001->reserved);
		  
		  ms_log (0, "                 frame count: %u\n", blkt_1001->framecnt);
		}
	    }
	  
	  else if ( blkt_type == 2000 )
	    {
	      struct blkt_2000_s *blkt_2000 = (struct blkt_2000_s *) (record + blkt_offset + 4);
	      char order[40];
	      
	      if ( swapflag )
		{
		  ms_gswap2 (&blkt_2000->length);
		  ms_gswap2 (&blkt_2000->data_offset);
		  ms_gswap4 (&blkt_2000->recnum);
		}
	      
	      /* Big or little endian? */
	      if (blkt_2000->byteorder == 0)
		strncpy (order, "Little endian", sizeof(order)-1);
	      else if (blkt_2000->byteorder == 1)
		strncpy (order, "Big endian", sizeof(order)-1);
	      else
		strncpy (order, "Unknown value", sizeof(order)-1);
	      
	      if ( details >= 1 )
		{
		  ms_log (0, "            blockette length: %u\n", blkt_2000->length);
		  ms_log (0, "                 data offset: %u\n", blkt_2000->data_offset);
		  ms_log (0, "               record number: %u\n", blkt_2000->recnum);
		  ms_log (0, "                  byte order: %s (val:%u)\n",
			  order, blkt_2000->byteorder);
		  b = blkt_2000->flags;
		  ms_log (0, "                  data flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
			  bit(b,0x01), bit(b,0x02), bit(b,0x04), bit(b,0x08),
			  bit(b,0x10), bit(b,0x20), bit(b,0x40), bit(b,0x80));
		  
		  if ( details > 1 )
		    {
		      if ( b & 0x01 ) ms_log (0, "                         [Bit 0] 1: Stream oriented\n");
		      else            ms_log (0, "                         [Bit 0] 0: Record oriented\n");
		      if ( b & 0x02 ) ms_log (0, "                         [Bit 1] 1: Blockette 2000s may NOT be packaged\n");
		      else            ms_log (0, "                         [Bit 1] 0: Blockette 2000s may be packaged\n");
		      if ( ! (b & 0x04) && ! (b & 0x08) )
			ms_log (0, "                      [Bits 2-3] 00: Complete blockette\n");
		      else if ( ! (b & 0x04) && (b & 0x08) )
			ms_log (0, "                      [Bits 2-3] 01: First blockette in span\n");
		      else if ( (b & 0x04) && (b & 0x08) )
			ms_log (0, "                      [Bits 2-3] 11: Continuation blockette in span\n");
		      else if ( (b & 0x04) && ! (b & 0x08) )
			ms_log (0, "                      [Bits 2-3] 10: Final blockette in span\n");
		      if ( ! (b & 0x10) && ! (b & 0x20) )
			ms_log (0, "                      [Bits 4-5] 00: Not file oriented\n");
		      else if ( ! (b & 0x10) && (b & 0x20) )
			ms_log (0, "                      [Bits 4-5] 01: First blockette of file\n");
		      else if ( (b & 0x10) && ! (b & 0x20) )
			ms_log (0, "                      [Bits 4-5] 10: Continuation of file\n");
		      else if ( (b & 0x10) && (b & 0x20) )
			ms_log (0, "                      [Bits 4-5] 11: Last blockette of file\n");
		    }
		  
		  ms_log (0, "           number of headers: %u\n", blkt_2000->numheaders);
		  
		  /* Crude display of the opaque data headers */
		  if ( details > 1 )
		    ms_log (0, "                     headers: %.*s\n",
			    (blkt_2000->data_offset - 15), blkt_2000->payload);
		}
	    }
	  
	  else
	    {
	      ms_log (2, "%s: Unrecognized blockette type: %d\n", srcname, blkt_type);
	      retval++;
	    }
	  
	  /* Sanity check the next blockette offset */
	  if ( next_blkt && next_blkt <= endofblockettes )
	    {
	      ms_log (2, "%s: Next blockette offset (%d) is within current blockette ending at byte %d\n",
		      srcname, next_blkt, endofblockettes);
	      blkt_offset = 0;
	    }
	  else
	    {
	      blkt_offset = next_blkt;
	    }
	  
	  blkt_count++;
	} /* End of looping through blockettes */
      
      /* Check that the blockette offset is within the maximum record size */
      if ( blkt_offset > maxreclen )
	{
	  ms_log (2, "%s: Blockette offset (%d) beyond maximum record length (%d)\n", srcname, blkt_offset, maxreclen);
	  retval++;
	}
      
      /* Check that the data and blockette offsets are within the record */
      if ( b1000reclen && fsdh->data_offset > b1000reclen )
	{
	  ms_log (2, "%s: Data offset (%d) beyond record length (%d)\n", srcname, fsdh->data_offset, b1000reclen);
	  retval++;
	}
      if ( b1000reclen && fsdh->blockette_offset > b1000reclen )
	{
	  ms_log (2, "%s: Blockette offset (%d) beyond record length (%d)\n", srcname, fsdh->blockette_offset, b1000reclen);
	  retval++;
	}
      
      /* Check that the data offset is beyond the end of the blockettes */
      if ( fsdh->numsamples && fsdh->data_offset <= endofblockettes )
	{
	  ms_log (2, "%s: Data offset (%d) is within blockette chain (end of blockettes: %d)\n", srcname, fsdh->data_offset, endofblockettes);
	  retval++;
	}
      
      /* Check that the correct number of blockettes were parsed */
      if ( fsdh->numblockettes != blkt_count )
	{
	  ms_log (2, "%s: Specified number of blockettes (%d) not equal to those parsed (%d)\n", srcname, fsdh->numblockettes, blkt_count);
	  retval++;
	}
    }
  
  return retval;
} /* End of ms_parse_raw() */