static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); struct msm_rpm_iv_pair iv = { r->rpm_status_id }; int rc; /* * Querying an RPM clock's status will return 0 unless the clock's * rate has previously been set through the RPM. When handing off, * assume these clocks are enabled (unless the RPM call fails) so * child clocks of these RPM clocks can still be handed off. */ rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return HANDOFF_DISABLED_CLK; if (!r->branch) { r->last_set_khz = iv.value; if (!r->active_only) r->last_set_sleep_khz = iv.value; clk->rate = iv.value * 1000; } return HANDOFF_ENABLED_CLK; }
static int rpm_change_memory_state(int retention_mask, int active_mask) { int ret; struct msm_rpm_iv_pair cmd[2]; struct msm_rpm_iv_pair status[2]; cmd[0].id = MSM_RPM_ID_DDR_DMM_0; cmd[1].id = MSM_RPM_ID_DDR_DMM_1; status[0].id = MSM_RPM_STATUS_ID_DDR_DMM_0; status[1].id = MSM_RPM_STATUS_ID_DDR_DMM_1; cmd[0].value = retention_mask; cmd[1].value = active_mask; ret = msm_rpm_set(MSM_RPM_CTX_SET_0, cmd, 2); if (ret < 0) { pr_err("rpm set failed"); return -EINVAL; } ret = msm_rpm_get_status(status, 2); if (ret < 0) { pr_err("rpm status failed"); return -EINVAL; } if (status[0].value == retention_mask && status[1].value == active_mask) return 0; else { pr_err("rpm failed to change memory state"); return -EINVAL; } }
bool msm_bus_rpm_is_mem_interleaved(void) { int status = 0; struct msm_rpm_iv_pair il[2]; uint16_t id[2]; il[0].value = 0; il[1].value = 0; status = msm_bus_board_rpm_get_il_ids(id); if (status) { MSM_BUS_DBG("Dynamic check not supported, " "default: Interleaved memory\n"); goto inter; } il[0].id = id[0]; il[1].id = id[1]; status = msm_rpm_get_status(il, ARRAY_SIZE(il)); if (status) { MSM_BUS_ERR("Status read for interleaving returned: %d\n" "Using interleaved memory by default\n", status); goto inter; } if ((il[0].value & 0xFFFF0000) != (il[1].value & 0xFFFF0000)) { MSM_BUS_DBG("Non-interleaved memory\n"); return false; } inter: MSM_BUS_DBG("Interleaved memory\n"); return true; }
static unsigned rpm_clk_get_rate(unsigned id) { struct msm_rpm_iv_pair iv = { rpm_clk[id].rpm_status_id }; int rc; rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; return iv.value * 1000; }
static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); struct msm_rpm_iv_pair iv = { r->rpm_status_id }; int rc; rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; return iv.value * 1000; }
static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); struct msm_rpm_iv_pair iv = { r->rpm_status_id }; int rc; rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return HANDOFF_DISABLED_CLK; if (!r->branch) { r->last_set_khz = iv.value; r->last_set_sleep_khz = iv.value; clk->rate = iv.value * r->factor; } return HANDOFF_ENABLED_CLK; }
bool msm_bus_rpm_is_mem_interleaved(void) { int status = 0; struct msm_rpm_iv_pair il[2]; uint16_t id[2]; il[0].value = 0; il[1].value = 0; status = msm_bus_board_rpm_get_il_ids(id); if (status) { MSM_BUS_DBG("Dynamic check not supported, " "default: Interleaved memory\n"); goto inter; } il[0].id = id[0]; il[1].id = id[1]; status = msm_rpm_get_status(il, ARRAY_SIZE(il)); if (status) { MSM_BUS_ERR("Status read for interleaving returned: %d\n" "Using interleaved memory by default\n", status); goto inter; } /* * If the start address of EBI1-CH0 is the same as * the start address of EBI1-CH1, the memory is interleaved. * The start addresses are stored in the 16 MSBs of the status * register */ if ((il[0].value & 0xFFFF0000) != (il[1].value & 0xFFFF0000)) { MSM_BUS_DBG("Non-interleaved memory\n"); return false; } inter: MSM_BUS_DBG("Interleaved memory\n"); return true; }
static void force_bus_clocks(bool enforce) { static struct msm_rpm_iv_pair iv; int ret; if (enforce) { iv.id = MSM_RPM_STATUS_ID_RPM_CTL; ret = msm_rpm_get_status(&iv, 1); if (ret) pr_err("Failed to read RPM_CTL resource status\n"); iv.id = MSM_RPM_ID_RPM_CTL; iv.value |= BIT(6); } else { iv.id = MSM_RPM_ID_RPM_CTL; iv.value &= ~BIT(6); } ret = msm_rpmrs_set(MSM_RPM_CTX_SET_0, &iv, 1); if (ret) pr_err("Force bus clocks request=%d failed\n", enforce); }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; if (noirq) return msm_rpmrs_set_noirq(context, &iv, 1); else return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * r->factor; } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; if (noirq) return msm_rpm_send_message_noirq(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); else return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq); int (*get_rate_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_SPINLOCK(rpm_clock_lock); static int rpm_clk_enable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; spin_lock_irqsave(&rpm_clock_lock, flags); this_khz = r->last_set_khz; /* Don't send requests to the RPM if the rate has not been set. */ if (this_khz == 0) goto out; this_sleep_khz = r->last_set_sleep_khz; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); if (rc) { /* Undo the active set vote and restore it to peer_khz */ value = peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); } out: if (!rc) r->enabled = true; spin_unlock_irqrestore(&rpm_clock_lock, flags); return rc; } static void rpm_clk_disable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); spin_lock_irqsave(&rpm_clock_lock, flags); if (r->last_set_khz) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); } r->enabled = false; out: spin_unlock_irqrestore(&rpm_clock_lock, flags); return; }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; if (noirq) return msm_rpmrs_set_noirq(context, &iv, 1); else return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * r->factor; } #define RPM_SMD_KEY_RATE 0x007A484B #define RPM_SMD_KEY_ENABLE 0x62616E45 static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { u32 rpm_key = r->branch ? RPM_SMD_KEY_ENABLE : RPM_SMD_KEY_RATE; struct msm_rpm_kvp kvp = { .key = rpm_key, .data = (void *)&value, .length = sizeof(value), }; if (noirq) return msm_rpm_send_message_noirq(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); else return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq); int (*get_rate_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_SPINLOCK(rpm_clock_lock); static int rpm_clk_enable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; spin_lock_irqsave(&rpm_clock_lock, flags); this_khz = r->last_set_khz; if (this_khz == 0) goto out; this_sleep_khz = r->last_set_sleep_khz; if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); if (rc) { value = peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); } out: if (!rc) r->enabled = true; spin_unlock_irqrestore(&rpm_clock_lock, flags); return rc; }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * 1000; } static int clk_rpmrs_handoff(struct rpm_clk *r) { struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; int rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; if (!r->branch) r->c.rate = iv.value * 1000; return 0; } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .handoff_fn = clk_rpmrs_handoff, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* Convert the rate (hz) to khz */ *active_khz = DIV_ROUND_UP(rate, 1000); /* * Active-only clocks don't care what the rate is during sleep. So, * they vote for zero. */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; } static int rpm_clk_prepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; mutex_lock(&rpm_clock_lock); to_active_sleep_khz(r, r->c.rate, &this_khz, &this_sleep_khz); /* Don't send requests to the RPM if the rate has not been set. */ if (this_khz == 0) goto out; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep(r, value); if (rc) { /* Undo the active set vote and restore it to peer_khz */ value = peer_khz; rc = clk_rpmrs_set_rate_active(r, value); } out: if (!rc) r->enabled = true; mutex_unlock(&rpm_clock_lock); return rc; } static void rpm_clk_unprepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); mutex_lock(&rpm_clock_lock); if (r->c.rate) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep(r, value); } r->enabled = false; out: mutex_unlock(&rpm_clock_lock); return; } static int rpm_clk_set_rate(struct clk *clk, unsigned long rate) { struct rpm_clk *r = to_rpm_clk(clk); unsigned long this_khz, this_sleep_khz; int rc = 0; mutex_lock(&rpm_clock_lock); if (r->enabled) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; to_active_sleep_khz(r, rate, &this_khz, &this_sleep_khz); /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); rc = clk_rpmrs_set_rate_sleep(r, value); } out: mutex_unlock(&rpm_clock_lock); return rc; } static int rpm_branch_clk_set_rate(struct clk *clk, unsigned long rate) { if (rate == clk->rate) return 0; return -EPERM; } static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); if (r->rpmrs_data->get_rate_fn) return r->rpmrs_data->get_rate_fn(r); else return clk->rate; } static int rpm_clk_is_enabled(struct clk *clk) { return !!(rpm_clk_get_rate(clk)); } static long rpm_clk_round_rate(struct clk *clk, unsigned long rate) { /* Not supported. */ return rate; } static bool rpm_clk_is_local(struct clk *clk) { return false; } static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); int rc; /* * Querying an RPM clock's status will return 0 unless the clock's * rate has previously been set through the RPM. When handing off, * assume these clocks are enabled (unless the RPM call fails) so * child clocks of these RPM clocks can still be handed off. */ rc = r->rpmrs_data->handoff_fn(r); if (rc < 0) return HANDOFF_DISABLED_CLK; /* * Since RPM handoff code may update the software rate of the clock by * querying the RPM, we need to make sure our request to RPM now * matches the software rate of the clock. When we send the request * to RPM, we also need to update any other state info we would * normally update. So, call the appropriate clock function instead * of directly using the RPM driver APIs. */ rc = rpm_clk_prepare(clk); if (rc < 0) return HANDOFF_DISABLED_CLK; return HANDOFF_ENABLED_CLK; } struct clk_ops clk_ops_rpm = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_clk_set_rate, .get_rate = rpm_clk_get_rate, .is_enabled = rpm_clk_is_enabled, .round_rate = rpm_clk_round_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, }; struct clk_ops clk_ops_rpm_branch = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_branch_clk_set_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, };
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * 1000; } static int clk_rpmrs_handoff(struct rpm_clk *r) { struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; int rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; if (!r->branch) r->c.rate = iv.value * 1000; return 0; } static int clk_rpmrs_is_enabled(struct rpm_clk *r) { return !!clk_rpmrs_get_rate(r); } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } static int clk_rpmrs_is_enabled_smd(struct rpm_clk *r) { return !!r->c.prepare_count; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int (*is_enabled)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .handoff_fn = clk_rpmrs_handoff, .is_enabled = clk_rpmrs_is_enabled, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .is_enabled = clk_rpmrs_is_enabled_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* */ *active_khz = DIV_ROUND_UP(rate, 1000); /* */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; } static int rpm_clk_prepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; mutex_lock(&rpm_clock_lock); to_active_sleep_khz(r, r->c.rate, &this_khz, &this_sleep_khz); /* */ if (this_khz == 0) goto out; /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep(r, value); if (rc) { /* */ value = peer_khz; rc = clk_rpmrs_set_rate_active(r, value); } out: if (!rc) r->enabled = true; mutex_unlock(&rpm_clock_lock); return rc; } static void rpm_clk_unprepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); mutex_lock(&rpm_clock_lock); if (r->c.rate) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep(r, value); } r->enabled = false; out: mutex_unlock(&rpm_clock_lock); return; } static int rpm_clk_set_rate(struct clk *clk, unsigned long rate) { struct rpm_clk *r = to_rpm_clk(clk); unsigned long this_khz, this_sleep_khz; int rc = 0; mutex_lock(&rpm_clock_lock); if (r->enabled) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; to_active_sleep_khz(r, rate, &this_khz, &this_sleep_khz); /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); rc = clk_rpmrs_set_rate_sleep(r, value); } out: mutex_unlock(&rpm_clock_lock); return rc; } static int rpm_branch_clk_set_rate(struct clk *clk, unsigned long rate) { if (rate == clk->rate) return 0; return -EPERM; } static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); if (r->rpmrs_data->get_rate_fn) return r->rpmrs_data->get_rate_fn(r); else return clk->rate; } static int rpm_clk_is_enabled(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); return r->rpmrs_data->is_enabled(r); } static long rpm_clk_round_rate(struct clk *clk, unsigned long rate) { /* */ return rate; } static bool rpm_clk_is_local(struct clk *clk) { return false; } static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); int rc; /* */ rc = r->rpmrs_data->handoff_fn(r); if (rc < 0) return HANDOFF_DISABLED_CLK; /* */ rc = rpm_clk_prepare(clk); if (rc < 0) return HANDOFF_DISABLED_CLK; return HANDOFF_ENABLED_CLK; } #define RPM_MISC_CLK_TYPE 0x306b6c63 #define RPM_SCALING_ENABLE_ID 0x2 void enable_rpm_scaling(void) { int rc, value = 0x1; struct msm_rpm_kvp kvp = { .key = RPM_SMD_KEY_ENABLE, .data = (void *)&value, .length = sizeof(value), }; rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_SLEEP_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (sleep set) did not enable!\n"); rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_ACTIVE_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (active set) did not enable!\n"); } struct clk_ops clk_ops_rpm = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_clk_set_rate, .get_rate = rpm_clk_get_rate, .is_enabled = rpm_clk_is_enabled, .round_rate = rpm_clk_round_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, }; struct clk_ops clk_ops_rpm_branch = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_branch_clk_set_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, };