int
n_is_probabprime_fibonacci(mp_limb_t n)
{
    mp_limb_t m;
    n_pair_t V;

    if (FLINT_ABS((mp_limb_signed_t) n) <= 3UL)
    {
        if (n >= 2UL)
            return 1;
        return 0;
    }

    m = (n - n_jacobi(5L, n)) / 2;  /* cannot overflow 
                                       as (5/n) = 0 for n = 2^64-1 */

    if (FLINT_BIT_COUNT(n) <= FLINT_D_BITS)
    {
        double npre = n_precompute_inverse(n);

        V = fchain_precomp(m, n, npre);
        return (n_mulmod_precomp(n - 3UL, V.x, n, npre) ==
                n_mulmod_precomp(2UL, V.y, n, npre));
    }
    else
    {
        mp_limb_t ninv = n_preinvert_limb(n);

        V = fchain2_preinv(m, n, ninv);
        return (n_mulmod2_preinv(n - 3UL, V.x, n, ninv) ==
                n_mulmod2_preinv(2UL, V.y, n, ninv));
    }
}
int main(int argc, char *argv[])
{
    ulong r, s, p, prec, s_prec;
    ulong i, m, lambda, char1, char2;
    fmpz_poly_t eis, eta, eta_r;
    fmpz_t p1, c1, c2, ss1, ss, pp, ppl, pplc;

    // input r, s, and the precision desired
    if (argc == 4) {
        r = atol(argv[1]);
        s = atol(argv[2]);
        prec = atol(argv[3]);
        prec = n_nextprime(prec, 1) - 1;
    }

    if (argc != 4) {
        printf("usage: shimura_coeffs r s n\n");
        return EXIT_FAILURE;
    }

    // Compute the weight of the form f_r_s
    lambda = r / 2 + s;

    //printf("%d\n", lambda);

    // This is the necessary precision of the input
    s_prec = (prec + r) * prec * r / 24;
    //printf("Necessary precision: %d terms\n", s_prec);

    // First compute eta
    //printf("Computing eta\n");
    fmpz_poly_init(eta);
    eta_series(&eta, s_prec);

    // Next compute eta^r
    //printf("Computing eta^%d\n", r);
    fmpz_poly_init(eta_r);
    fmpz_poly_pow_trunc(eta_r, eta, r, s_prec);
    fmpz_poly_clear(eta);

    // Next compute E_s
    //printf("Computing E_%d\n", s);
    
    fmpz_poly_init(eis);
    if(s != 0) {
        eis_series(&eis, s, s_prec);
    }

    //printf("Computing coefficients\n");

    // Instead of computing the product, we will compute each coefficient as
    // needed. This is potentially slower, but saves memory.
    //
    fmpz_init(p1);
    fmpz_init(c1);
    fmpz_init(c2);
    fmpz_init(ss);
    fmpz_init(ss1);

    // compute alpha(p^2*r)
    p = 2;
    m = r*p*p;
    while(p <= prec) {
        fmpz_set_ui(ss1, 0);

        if(s != 0) {
            for(i = r; i <= m; i += 24) {
                if((m - i) % 24 == 0) {
                    fmpz_poly_get_coeff_fmpz(c1, eta_r, (i - r) / 24);
                    fmpz_poly_get_coeff_fmpz(c2, eis, (m - i) / 24);
                    fmpz_addmul(ss1, c1, c2);
                }
            }
        }
        else {
            if((m - r) % 24 == 0)
                fmpz_poly_get_coeff_fmpz(ss1, eta_r, (m - r) / 24);
        }

        /*
        if(p == 199) {
            fmpz_print(ss1);
            printf("\n");
        }
        */

        // compute character X12(p)
        char1 = n_jacobi(12, p);
        
        // compute character ((-1)^(lambda) * n | p)
        if(lambda % 2 == 0) {
            char2 = n_jacobi(r, p);
        }
        else {
            char2 = n_jacobi(-r, p);
        }

        // compute p^(lambda - 1)
        fmpz_set_ui(pp, p);
        fmpz_pow_ui(ppl, pp, lambda - 1);
        fmpz_mul_si(pplc, ppl, char1*char2);

        fmpz_add(ss, ss1, pplc);

        printf("%d:\t", p);
        fmpz_print(ss);
        printf("\n");

        p = n_nextprime(p, 1);
        m = r*p*p;
    }

    fmpz_clear(p1);
    fmpz_clear(c1);
    fmpz_clear(c2);
    fmpz_clear(ss);
    fmpz_clear(ss1);

    return EXIT_SUCCESS;
}