Exemple #1
0
static bool genInlineSqrt(CompilationUnit *cUnit, MIR *mir)
{
    ArmLIR *branch;
    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
    rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
    newLIR2(cUnit, kThumb2Vsqrtd, S2D(rlResult.lowReg, rlResult.highReg),
            S2D(rlSrc.lowReg, rlSrc.highReg));
    newLIR2(cUnit, kThumb2Vcmpd, S2D(rlResult.lowReg, rlResult.highReg),
            S2D(rlResult.lowReg, rlResult.highReg));
    newLIR0(cUnit, kThumb2Fmstat);
    branch = newLIR2(cUnit, kThumbBCond, 0, kArmCondEq);
    dvmCompilerClobberCallRegs(cUnit);
    LOAD_FUNC_ADDR(cUnit, r2, (int) (double (*)(double)) sqrt);
    newLIR3(cUnit, kThumb2Fmrrd, r0, r1, S2D(rlSrc.lowReg, rlSrc.highReg));
    newLIR1(cUnit, kThumbBlxR, r2);
    newLIR3(cUnit, kThumb2Fmdrr, S2D(rlResult.lowReg, rlResult.highReg),
            r0, r1);
    ArmLIR *label = newLIR0(cUnit, kArmPseudoTargetLabel);
    label->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)label;
    storeValueWide(cUnit, rlDest, rlResult);
    return false;
}
Exemple #2
0
static int genTraceProfileEntry(CompilationUnit *cUnit)
{
    intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
    assert(__BYTE_ORDER == __LITTLE_ENDIAN);
    newLIR1(cUnit, kArm16BitData, addr & 0xffff);
    newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
    cUnit->chainCellOffsetLIR =
        (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
    cUnit->headerSize = 6;
    if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
        (gDvmJit.profileMode == kTraceProfilingDisabled)) {
        /* Thumb[2] instruction used directly here to ensure correct size */
        newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
        newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
        newLIR2(cUnit, kThumbAddRI8, r1, 1);
        newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
        return 10;
    } else {
        int opcode = TEMPLATE_PERIODIC_PROFILING;
        newLIR2(cUnit, kThumbBlx1,
            (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
            (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
        newLIR2(cUnit, kThumbBlx2,
            (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
            (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
        return 4;
    }
}
Exemple #3
0
/*
 * For monitor unlock, we don't have to use ldrex/strex.  Once
 * we've determined that the lock is thin and that we own it with
 * a zero recursion count, it's safe to punch it back to the
 * initial, unlock thin state with a store word.
 */
static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    ArmLIR *target;
    ArmLIR *branch;
    ArmLIR *hopTarget;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
    loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    opRegRegImm(cUnit, kOpAnd, r7, r2,
                (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    opRegReg(cUnit, kOpSub, r2, r3);
    hopBranch = opCondBranch(cUnit, kArmCondNe);
    dvmCompilerGenMemBarrier(cUnit, kSY);
    storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
    branch = opNone(cUnit, kOpUncondBr);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
    genRegCopy(cUnit, r0, r6SELF);
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    opReg(cUnit, kOpBlx, r7);
    /* Did we throw? */
    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
    loadConstant(cUnit, r0,
                 (int) (cUnit->method->insns + mir->offset +
                 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);

    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
    branchOver->generic.target = (LIR *) target;
}
Exemple #4
0
/*
 * Handle simple case (thin lock) inline.  If it's complicated, bail
 * out to the heavyweight lock/unlock routines.  We'll use dedicated
 * registers here in order to be in the right position in case we
 * to bail to dvm[Lock/Unlock]Object(self, object)
 *
 * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
 * r1 -> object [arg1 for dvm[Lock/Unlock]Object
 * r2 -> intial contents of object->lock, later result of strex
 * r3 -> self->threadId
 * r7 -> temp to hold new lock value [unlock only]
 * r4 -> allow to be used by utilities as general temp
 *
 * The result of the strex is 0 if we acquire the lock.
 *
 * See comments in Sync.c for the layout of the lock word.
 * Of particular interest to this code is the test for the
 * simple case - which we handle inline.  For monitor enter, the
 * simple case is thin lock, held by no-one.  For monitor exit,
 * the simple case is thin lock, held by the unlocking thread with
 * a recurse count of 0.
 *
 * A minor complication is that there is a field in the lock word
 * unrelated to locking: the hash state.  This field must be ignored, but
 * preserved.
 *
 */
static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
{
    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    bool enter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
    ArmLIR *target;
    ArmLIR *hopTarget;
    ArmLIR *branch;
    ArmLIR *hopBranch;

    assert(LW_SHAPE_THIN == 0);
    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0); // Get self
    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    loadWordDisp(cUnit, r0, offsetof(Thread, threadId), r3); // Get threadId
    newLIR3(cUnit, kThumb2Ldrex, r2, r1,
            offsetof(Object, lock) >> 2); // Get object->lock
    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    // Is lock unheld on lock or held by us (==threadId) on unlock?
    newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
            LW_LOCK_OWNER_SHIFT - 1);
    hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
    newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
    branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);

    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    hopTarget->defMask = ENCODE_ALL;
    hopBranch->generic.target = (LIR *)hopTarget;

    // Clear the lock
    ArmLIR *inst = newLIR0(cUnit, kThumb2Clrex);
    // ...and make it a scheduling barrier
    inst->defMask = ENCODE_ALL;

    // Export PC (part 1)
    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));

    /* Get dPC of next insn */
    loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
                                    dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER)));
    // Export PC (part 2)
    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, rFP,
            sizeof(StackSaveArea) -
            offsetof(StackSaveArea, xtra.currentPc));
    /* Call template, and don't return */
    genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
    // Resume here
    target = newLIR0(cUnit, kArmPseudoTargetLabel);
    target->defMask = ENCODE_ALL;
    branch->generic.target = (LIR *)target;
}
Exemple #5
0
/* Export the Dalvik PC assicated with an instruction to the StackSave area */
static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
{
    ArmLIR *res;
    int offset = offsetof(StackSaveArea, xtra.currentPc);
    int rDPC = dvmCompilerAllocTemp(cUnit);
    res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
    newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
            sizeof(StackSaveArea) - offset);
    dvmCompilerFreeTemp(cUnit, rDPC);
    return res;
}
/*
 * Perform a "reg cmp reg" operation and jump to the PCR region if condition
 * satisfies.
 */
static MipsLIR *genRegRegCheck(CompilationUnit *cUnit,
                              MipsConditionCode cond,
                              int reg1, int reg2, int dOffset,
                              MipsLIR *pcrLabel)
{
    MipsLIR *res = NULL;
    if (cond == kMipsCondGe) { /* signed >= case */
        int tReg = dvmCompilerAllocTemp(cUnit);
        res = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
        MipsLIR *branch = opCompareBranch(cUnit, kMipsBeqz, tReg, -1);
        genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    } else if (cond == kMipsCondCs) {  /* unsigned >= case */
        int tReg = dvmCompilerAllocTemp(cUnit);
        res = newLIR3(cUnit, kMipsSltu, tReg, reg1, reg2);
        MipsLIR *branch = opCompareBranch(cUnit, kMipsBeqz, tReg, -1);
        genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    } else {
        ALOGE("Unexpected condition in genRegRegCheck: %d\n", (int) cond);
        dvmAbort();
    }
    return res;
}
Exemple #7
0
static bool genArithOpDouble(CompilationUnit *cUnit, MIR *mir,
                             RegLocation rlDest, RegLocation rlSrc1,
                             RegLocation rlSrc2)
{
    int op = kThumbBkpt;
    RegLocation rlResult;

    switch (mir->dalvikInsn.opcode) {
        case OP_ADD_DOUBLE_2ADDR:
        case OP_ADD_DOUBLE:
            op = kThumb2Vaddd;
            break;
        case OP_SUB_DOUBLE_2ADDR:
        case OP_SUB_DOUBLE:
            op = kThumb2Vsubd;
            break;
        case OP_DIV_DOUBLE_2ADDR:
        case OP_DIV_DOUBLE:
            op = kThumb2Vdivd;
            break;
        case OP_MUL_DOUBLE_2ADDR:
        case OP_MUL_DOUBLE:
            op = kThumb2Vmuld;
            break;
        case OP_REM_DOUBLE_2ADDR:
        case OP_REM_DOUBLE:
        case OP_NEG_DOUBLE: {
            return genArithOpDoublePortable(cUnit, mir, rlDest, rlSrc1,
                                               rlSrc2);
        }
        default:
            return true;
    }

    rlSrc1 = loadValueWide(cUnit, rlSrc1, kFPReg);
    assert(rlSrc1.wide);
    rlSrc2 = loadValueWide(cUnit, rlSrc2, kFPReg);
    assert(rlSrc2.wide);
    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
    assert(rlDest.wide);
    assert(rlResult.wide);
    newLIR3(cUnit, (ArmOpcode)op, S2D(rlResult.lowReg, rlResult.highReg),
            S2D(rlSrc1.lowReg, rlSrc1.highReg),
            S2D(rlSrc2.lowReg, rlSrc2.highReg));
    storeValueWide(cUnit, rlDest, rlResult);
    return false;
}
Exemple #8
0
static bool genArithOpFloat(CompilationUnit *cUnit, MIR *mir,
                            RegLocation rlDest, RegLocation rlSrc1,
                            RegLocation rlSrc2)
{
    int op = kThumbBkpt;
    RegLocation rlResult;

    /*
     * Don't attempt to optimize register usage since these opcodes call out to
     * the handlers.
     */
    switch (mir->dalvikInsn.opcode) {
        case OP_ADD_FLOAT_2ADDR:
        case OP_ADD_FLOAT:
            op = kThumb2Vadds;
            break;
        case OP_SUB_FLOAT_2ADDR:
        case OP_SUB_FLOAT:
            op = kThumb2Vsubs;
            break;
        case OP_DIV_FLOAT_2ADDR:
        case OP_DIV_FLOAT:
            op = kThumb2Vdivs;
            break;
        case OP_MUL_FLOAT_2ADDR:
        case OP_MUL_FLOAT:
            op = kThumb2Vmuls;
            break;
        case OP_REM_FLOAT_2ADDR:
        case OP_REM_FLOAT:
        case OP_NEG_FLOAT: {
            return genArithOpFloatPortable(cUnit, mir, rlDest, rlSrc1,
                                              rlSrc2);
        }
        default:
            return true;
    }
    rlSrc1 = loadValue(cUnit, rlSrc1, kFPReg);
    rlSrc2 = loadValue(cUnit, rlSrc2, kFPReg);
    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
    newLIR3(cUnit, (ArmOpcode)op, rlResult.lowReg, rlSrc1.lowReg,
            rlSrc2.lowReg);
    storeValue(cUnit, rlDest, rlResult);
    return false;
}
static bool genArithOpDouble(CompilationUnit *cUnit, MIR *mir, int vDest,
                             int vSrc1, int vSrc2)
{
    int op = THUMB_BKPT;

    /*
     * Don't attempt to optimize register usage since these opcodes call out to
     * the handlers.
     */
    switch (mir->dalvikInsn.opCode) {
        case OP_ADD_DOUBLE_2ADDR:
        case OP_ADD_DOUBLE:
            op = THUMB2_VADDD;
            break;
        case OP_SUB_DOUBLE_2ADDR:
        case OP_SUB_DOUBLE:
            op = THUMB2_VSUBD;
            break;
        case OP_DIV_DOUBLE_2ADDR:
        case OP_DIV_DOUBLE:
            op = THUMB2_VDIVD;
            break;
        case OP_MUL_DOUBLE_2ADDR:
        case OP_MUL_DOUBLE:
            op = THUMB2_VMULD;
            break;
        case OP_REM_DOUBLE_2ADDR:
        case OP_REM_DOUBLE:
        case OP_NEG_DOUBLE: {
            return genArithOpDoublePortable(cUnit, mir, vDest, vSrc1, vSrc2);
        }
        default:
            return true;
    }
    loadDouble(cUnit, vSrc1, dr1);
    loadDouble(cUnit, vSrc2, dr2);
    newLIR3(cUnit, op, dr0, dr1, dr2);
    storeDouble(cUnit, dr0, vDest, 0);
    return false;
}
static bool genArithOpFloat(CompilationUnit *cUnit, MIR *mir, int vDest,
                                int vSrc1, int vSrc2)
{
    int op = THUMB_BKPT;

    /*
     * Don't attempt to optimize register usage since these opcodes call out to
     * the handlers.
     */
    switch (mir->dalvikInsn.opCode) {
        case OP_ADD_FLOAT_2ADDR:
        case OP_ADD_FLOAT:
            op = THUMB2_VADDS;
            break;
        case OP_SUB_FLOAT_2ADDR:
        case OP_SUB_FLOAT:
            op = THUMB2_VSUBS;
            break;
        case OP_DIV_FLOAT_2ADDR:
        case OP_DIV_FLOAT:
            op = THUMB2_VDIVS;
            break;
        case OP_MUL_FLOAT_2ADDR:
        case OP_MUL_FLOAT:
            op = THUMB2_VMULS;
            break;
        case OP_REM_FLOAT_2ADDR:
        case OP_REM_FLOAT:
        case OP_NEG_FLOAT: {
            return genArithOpFloatPortable(cUnit, mir, vDest, vSrc1, vSrc2);
        }
        default:
            return true;
    }
    loadFloat(cUnit, vSrc1, fr2);
    loadFloat(cUnit, vSrc2, fr4);
    newLIR3(cUnit, op, fr0, fr2, fr4);
    storeFloat(cUnit, fr0, vDest, 0);
    return false;
}
Exemple #11
0
/*
 * To avoid possible conflicts, we use a lot of temps here.  Note that
 * our usage of Thumb2 instruction forms avoids the problems with register
 * reuse for multiply instructions prior to arm6.
 */
static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
                       RegLocation rlSrc1, RegLocation rlSrc2)
{
    RegLocation rlResult;
    int resLo = dvmCompilerAllocTemp(cUnit);
    int resHi = dvmCompilerAllocTemp(cUnit);
    int tmp1 = dvmCompilerAllocTemp(cUnit);

    rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);

    newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
    newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
    newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
    newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
    dvmCompilerFreeTemp(cUnit, tmp1);

    rlResult = dvmCompilerGetReturnWide(cUnit);  // Just as a template, will patch
    rlResult.lowReg = resLo;
    rlResult.highReg = resHi;
    storeValueWide(cUnit, rlDest, rlResult);
}