int gauss(dvec& x, dvec& w) { int n = x.size(); double dist = 1; double tol = 1e-15; int iter = 0; // Use Chebyshev-Gauss nodes and initial guess initguess(x); // chebnodes(x); dvec x0(x); dvec L(n,0.0); dvec Lp(n,0.0); dvec a(n,0.0); dvec b(n,0.0); rec_legendre(a,b); // Iteratively correct nodes with Newton's method while(dist>tol) { newton_step(a,b,x,L,Lp); dist = dist_max(x,x0); ++iter; x0 = x; } // Compute Weights for(int i=0;i<n;++i){ w[i] = 2.0/((1-x[i]*x[i])*(Lp[i]*Lp[i])); } return iter; }
int main(int argc, char *argv[]) { Teuchos::GlobalMPISession mpiSession(&argc, &argv); // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided. int iprint = argc - 1; Teuchos::RCP<std::ostream> outStream; Teuchos::oblackholestream bhs; // outputs nothing if (iprint > 0) outStream = Teuchos::rcp(&std::cout, false); else outStream = Teuchos::rcp(&bhs, false); int errorFlag = 0; // *** Example body. try { int dim = 128; // Set problem dimension. ROL::ZOO::Objective_PoissonInversion<RealT> obj(dim, 1e-6); Teuchos::ParameterList parlist; // Basic algorithm. parlist.set("Trust-Region Subproblem Solver Type", "Truncated CG"); // Krylov parameters. parlist.set("Absolute Krylov Tolerance", 1.e-4); parlist.set("Relative Krylov Tolerance", 1.e-2); parlist.set("Maximum Number of Krylov Iterations", 50); // Define step. ROL::TrustRegionStep<RealT> step(parlist); // Define status test. RealT gtol = 1e-12; // norm of gradient tolerance RealT stol = 1e-14; // norm of step tolerance int maxit = 100; // maximum number of iterations ROL::StatusTest<RealT> status(gtol, stol, maxit); // Define algorithm. ROL::DefaultAlgorithm<RealT> algo(step,status,false); // Iteration vector. Teuchos::RCP<std::vector<RealT> > x_rcp = Teuchos::rcp( new std::vector<RealT> (dim, 0.0) ); // Set initial guess. for (int i=0; i<dim; i++) { (*x_rcp)[i] = 0.1; } ROL::StdVector<RealT> x(x_rcp); // Run algorithm. std::vector<std::string> output = algo.run(x, obj, false); for ( unsigned i = 0; i < output.size(); i++ ) { std::cout << output[i]; } // Compute dense Hessian matrix. Teuchos::SerialDenseMatrix<int, RealT> H(x.dimension(), x.dimension()); H = ROL::computeDenseHessian<RealT>(obj, x); //H.print(*outStream); // Compute and print eigenvalues. std::vector<std::vector<RealT> > eigenvals = ROL::computeEigenvalues<RealT>(H); *outStream << "\nEigenvalues:\n"; for (unsigned i=0; i<(eigenvals[0]).size(); i++) { if (i==0) { *outStream << std::right << std::setw(28) << "Real" << std::setw(28) << "Imag" << "\n"; } *outStream << std::scientific << std::setprecision(16) << std::right << std::setw(28) << (eigenvals[0])[i] << std::setw(28) << (eigenvals[1])[i] << "\n"; } // Compute and print generalized eigenvalues. Teuchos::SerialDenseMatrix<int, RealT> M = computeDotMatrix(x); //M.print(*outStream); std::vector<std::vector<RealT> > genEigenvals = ROL::computeGenEigenvalues<RealT>(H, M); *outStream << "\nGeneralized eigenvalues:\n"; for (unsigned i=0; i<(genEigenvals[0]).size(); i++) { if (i==0) { *outStream << std::right << std::setw(28) << "Real" << std::setw(28) << "Imag" << "\n"; } *outStream << std::scientific << std::setprecision(16) << std::right << std::setw(28) << (genEigenvals[0])[i] << std::setw(28) << (genEigenvals[1])[i] << "\n"; } // Sort and compare eigenvalues and generalized eigenvalues - should be close. std::sort((eigenvals[0]).begin(), (eigenvals[0]).end()); std::sort((eigenvals[1]).begin(), (eigenvals[1]).end()); std::sort((genEigenvals[0]).begin(), (genEigenvals[0]).end()); std::sort((genEigenvals[1]).begin(), (genEigenvals[1]).end()); RealT errtol = std::sqrt(ROL::ROL_EPSILON); for (unsigned i=0; i<(eigenvals[0]).size(); i++) { if ( std::abs( (genEigenvals[0])[i] - (eigenvals[0])[i] ) > errtol*((eigenvals[0])[i]+ROL::ROL_THRESHOLD) ) { errorFlag++; *outStream << std::scientific << std::setprecision(20) << "Real genEigenvals - eigenvals (" << i << ") = " << std::abs( (genEigenvals[0])[i] - (eigenvals[0])[i] ) << " > " << errtol*((eigenvals[0])[i]+1e4*ROL::ROL_THRESHOLD) << "\n"; } if ( std::abs( (genEigenvals[1])[i] - (eigenvals[1])[i] ) > errtol*((eigenvals[1])[i]+ROL::ROL_THRESHOLD) ) { errorFlag++; *outStream << std::scientific << std::setprecision(20) << "Imag genEigenvals - eigenvals (" << i << ") = " << std::abs( (genEigenvals[1])[i] - (eigenvals[1])[i] ) << " > " << errtol*((eigenvals[1])[i]+ROL::ROL_THRESHOLD) << "\n"; } } // Compute inverse of Hessian. Teuchos::SerialDenseMatrix<int, RealT> invH = ROL::computeInverse<RealT>(H); Teuchos::SerialDenseMatrix<int, RealT> HinvH(H); // Multiply with Hessian and verify that it gives the identity (l2 dot matrix M from above). HinvH.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, H, invH, 0.0); //*outStream << std::scientific << std::setprecision(6); HinvH.print(*outStream); HinvH -= M; if (HinvH.normOne() > errtol) { errorFlag++; *outStream << std::scientific << std::setprecision(20) << "1-norm of H*inv(H) - I = " << HinvH.normOne() << " > " << errtol << "\n"; } // Use Newton algorithm. parlist.set("Descent Type", "Newton's Method"); // Define step. ROL::LineSearchStep<RealT> newton_step(parlist); // Define algorithm. ROL::DefaultAlgorithm<RealT> newton_algo(newton_step,status,false); // Reset initial guess. for (int i=0; i<dim; i++) { (*x_rcp)[i] = 0.1; } // Run Newton algorithm. output = newton_algo.run(x, obj, false); for ( unsigned i = 0; i < output.size(); i++ ) { std::cout << output[i]; } Teuchos::RCP<const ROL::AlgorithmState<RealT> > new_state = newton_algo.getState(); Teuchos::RCP<const ROL::AlgorithmState<RealT> > old_state = algo.getState(); if ( std::abs(new_state->value - old_state->value) > errtol ) { errorFlag++; *outStream << std::scientific << std::setprecision(20) << "\nabs(new_optimal_value - old_optimal_value) = " << std::abs(new_state->value - old_state->value) << " > " << errtol << "\n"; } } catch (std::logic_error err) { *outStream << err.what() << "\n"; errorFlag = -1000; }; // end try if (errorFlag != 0) std::cout << "End Result: TEST FAILED\n"; else std::cout << "End Result: TEST PASSED\n"; return 0; }