static int xt_ct_set_helper(struct nf_conn *ct, const char *helper_name, const struct xt_tgchk_param *par) { struct nf_conntrack_helper *helper; struct nf_conn_help *help; u8 proto; proto = xt_ct_find_proto(par); if (!proto) { pr_info("You must specify a L4 protocol, and not use " "inversions on it.\n"); return -ENOENT; } helper = nf_conntrack_helper_try_module_get(helper_name, par->family, proto); if (helper == NULL) { pr_info("No such helper \"%s\"\n", helper_name); return -ENOENT; } help = nf_ct_helper_ext_add(ct, helper, GFP_KERNEL); if (help == NULL) { module_put(helper->me); return -ENOMEM; } help->helper = helper; return 0; }
static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, const struct sw_flow_key *key, bool log) { struct nf_conntrack_helper *helper; struct nf_conn_help *help; helper = nf_conntrack_helper_try_module_get(name, info->family, key->ip.proto); if (!helper) { OVS_NLERR(log, "Unknown helper \"%s\"", name); return -EINVAL; } help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); if (!help) { module_put(helper->me); return -ENOMEM; } rcu_assign_pointer(help->helper, helper); info->helper = helper; return 0; }
static int xt_ct_tg_check(const struct xt_tgchk_param *par) { struct xt_ct_target_info *info = par->targinfo; struct nf_conntrack_tuple t; struct nf_conn_help *help; struct nf_conn *ct; int ret = 0; u8 proto; if (info->flags & ~XT_CT_NOTRACK) return -EINVAL; if (info->flags & XT_CT_NOTRACK) { ct = nf_ct_untracked_get(); atomic_inc(&ct->ct_general.use); goto out; } #ifndef CONFIG_NF_CONNTRACK_ZONES if (info->zone) goto err1; #endif ret = nf_ct_l3proto_try_module_get(par->family); if (ret < 0) goto err1; memset(&t, 0, sizeof(t)); ct = nf_conntrack_alloc(par->net, info->zone, &t, &t, GFP_KERNEL); ret = PTR_ERR(ct); if (IS_ERR(ct)) goto err2; ret = 0; if ((info->ct_events || info->exp_events) && !nf_ct_ecache_ext_add(ct, info->ct_events, info->exp_events, GFP_KERNEL)) goto err3; if (info->helper[0]) { ret = -ENOENT; proto = xt_ct_find_proto(par); if (!proto) goto err3; ret = -ENOMEM; help = nf_ct_helper_ext_add(ct, GFP_KERNEL); if (help == NULL) goto err3; ret = -ENOENT; help->helper = nf_conntrack_helper_try_module_get(info->helper, par->family, proto); if (help->helper == NULL) goto err3; } __set_bit(IPS_TEMPLATE_BIT, &ct->status); __set_bit(IPS_CONFIRMED_BIT, &ct->status); out: info->ct = ct; return 0; err3: nf_conntrack_free(ct); err2: nf_ct_l3proto_module_put(par->family); err1: return ret; }
static unsigned int conenat_tg(struct sk_buff *skb, const struct xt_target_param *par) { struct net *net; struct nf_conn *ct; struct nf_conn_nat *nat; enum ip_conntrack_info ctinfo; struct nf_nat_range newrange; const struct nf_nat_multi_range_compat *mr; struct rtable *rt; __be32 newsrc; NF_CT_ASSERT(par->hooknum == NF_INET_POST_ROUTING); ct = nf_ct_get(skb, &ctinfo); nat = nfct_nat(ct); net = nf_ct_net(ct); NF_CT_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED || ctinfo == IP_CT_RELATED + IP_CT_IS_REPLY)); /* Source address is 0.0.0.0 - locally generated packet that is * probably not supposed to be masqueraded. */ if (ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.ip == 0) return NF_ACCEPT; mr = par->targinfo; rt = skb->rtable; newsrc = inet_select_addr(par->out, rt->rt_gateway, RT_SCOPE_UNIVERSE); if (!newsrc) { printk("CONENAT: %s ate my IP address\n", par->out->name); return NF_DROP; } write_lock_bh(&conenat_lock); nat->masq_index = par->out->ifindex; write_unlock_bh(&conenat_lock); if (ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum == IPPROTO_UDP) { unsigned int ret,expectcount = net->ct.expect_count; u_int16_t minport, maxport; u_int16_t newport, tmpport; struct nf_conntrack_expect *exp=NULL; struct nf_conntrack_tuple tuple; struct nf_conn_help *help = nfct_help(ct); /* Choose port */ spin_lock_bh(&nf_conntrack_lock); #if 0 exp = LIST_FIND(&nf_conntrack_expect_list, exp_src_cmp, struct nf_conntrack_expect *, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); #endif memset(&tuple,0,sizeof(tuple)); //src tuple.src.l3num = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num; tuple.src.u3.ip = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3.ip; tuple.src.u.udp.port = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u.udp.port; //dst tuple.dst.u3.ip = newsrc; //tuple.dst.u.udp.port = htons(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port); newport = htons(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port); tuple.dst.protonum = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum; pr_debug("tupple1 = %pI4:%hu\n", &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.ip,ntohs(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port)); if(expectcount > 0){ for(tmpport=0; (tmpport<=expectcount)&&(newport<=65535); tmpport++,newport++){ tuple.dst.u.udp.port=newport; exp = __nf_ct_expect_find_bysave(net, &tuple, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); if(exp) break; } } if (exp) { minport = maxport = exp->tuple.dst.u.udp.port; pr_debug("existing mapped port = %hu\n", ntohs(minport)); } else { minport = mr->range[0].min.udp.port == 0 ? ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port : mr->range[0].min.udp.port; maxport = mr->range[0].max.udp.port == 0 ? htons(65535) : mr->range[0].max.udp.port; for (newport = ntohs(minport),tmpport = ntohs(maxport); newport <= tmpport; newport++) { #if 0 exp = LIST_FIND(&ip_conntrack_expect_list, exp_cmp, struct nf_conntrack_expect *, newsrc, htons(newport), ct->tuplehash[IP_CT_DIR_ORIGINAL]. tuple.dst.protonum); #endif //dst tuple.dst.u.udp.port = htons(newport); exp = __nf_ct_expect_find(net, &tuple); if (!exp) { pr_debug("new mapping: %pI4:%hu -> %pI4:%hu\n", &(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3.ip), ntohs(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u.udp.port), &newsrc, newport); minport = maxport = htons(newport); break; } } } spin_unlock_bh(&nf_conntrack_lock); newrange.flags = mr->range[0].flags | IP_NAT_RANGE_MAP_IPS |IP_NAT_RANGE_PROTO_SPECIFIED; newrange.min_ip = newrange.max_ip = newsrc; newrange.min.udp.port = minport; newrange.max.udp.port = maxport; /* Set ct helper */ ret = nf_nat_setup_info(ct, &newrange, IP_NAT_MANIP_SRC); if (ret == NF_ACCEPT) { rcu_read_lock(); if (help == NULL) { help = nf_ct_helper_ext_add(ct, GFP_ATOMIC); if (help == NULL) { return NF_ACCEPT; } } else { memset(&help->help, 0, sizeof(help->help)); } rcu_assign_pointer(help->helper, &nf_conntrack_helper_cone_nat); rcu_read_unlock(); pr_debug("helper setup, skb=%p\n", skb); } return ret; }
unsigned int rtl_find_appropriate_newrange(struct nf_conn *ct, __be32 newsrc, const struct nf_nat_multi_range_compat *mr) { struct net *net; unsigned int ret,expectcount = net->ct.expect_count; u_int16_t minport, maxport; u_int16_t newport, tmpport; struct nf_conntrack_expect *exp=NULL; struct nf_conntrack_tuple tuple; struct nf_nat_range newrange; struct nf_conn_help *help = nfct_help(ct); net = nf_ct_net(ct); expectcount = net->ct.expect_count; /* Choose port */ spin_lock_bh(&nf_conntrack_lock); #if 0 exp = LIST_FIND(&nf_conntrack_expect_list, exp_src_cmp, struct nf_conntrack_expect *, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); #endif memset(&tuple,0,sizeof(tuple)); //src tuple.src.l3num = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num; tuple.src.u3.ip = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3.ip; tuple.src.u.udp.port = ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u.udp.port; //dst tuple.dst.u3.ip = newsrc; //tuple.dst.u.udp.port = htons(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port); newport = htons(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port); tuple.dst.protonum = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.protonum; pr_debug("tupple1 = %pI4:%hu\n", &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.ip,ntohs(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port)); if(expectcount > 0){ for(tmpport=0; (tmpport<=expectcount)&&(newport<=65535); tmpport++,newport++){ tuple.dst.u.udp.port=newport; exp = __nf_ct_expect_find_bysave(net, &tuple, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); if(exp) break; } } if (exp) { minport = maxport = exp->tuple.dst.u.udp.port; pr_debug("existing mapped port = %hu\n", ntohs(minport)); } else { minport = mr->range[0].min.udp.port == 0 ? ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.udp.port : mr->range[0].min.udp.port; maxport = mr->range[0].max.udp.port == 0 ? htons(65535) : mr->range[0].max.udp.port; for (newport = ntohs(minport),tmpport = ntohs(maxport); newport <= tmpport; newport++) { #if 0 exp = LIST_FIND(&ip_conntrack_expect_list, exp_cmp, struct nf_conntrack_expect *, newsrc, htons(newport), ct->tuplehash[IP_CT_DIR_ORIGINAL]. tuple.dst.protonum); #endif //dst tuple.dst.u.udp.port = htons(newport); exp = __nf_ct_expect_find(net, &tuple); if (!exp) { pr_debug("new mapping: %pI4:%hu -> %pI4:%hu\n", &(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3.ip), ntohs(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u.udp.port), &newsrc, newport); minport = maxport = htons(newport); break; } } } spin_unlock_bh(&nf_conntrack_lock); newrange.flags = mr->range[0].flags | IP_NAT_RANGE_MAP_IPS |IP_NAT_RANGE_PROTO_SPECIFIED; newrange.min_ip = newrange.max_ip = newsrc; newrange.min.udp.port = minport; newrange.max.udp.port = maxport; /* Set ct helper */ ret = nf_nat_setup_info(ct, &newrange, IP_NAT_MANIP_SRC); if (ret == NF_ACCEPT) { rcu_read_lock(); if (help == NULL) { help = nf_ct_helper_ext_add(ct, GFP_ATOMIC); if (help == NULL) { return NF_ACCEPT; } } else { memset(&help->help, 0, sizeof(help->help)); } rcu_assign_pointer(help->helper, &nf_conntrack_helper_cone_nat); rcu_read_unlock(); } return ret; }
static int xt_ct_tg_check_v1(const struct xt_tgchk_param *par) { struct xt_ct_target_info_v1 *info = par->targinfo; struct nf_conntrack_tuple t; struct nf_conn_help *help; struct nf_conn *ct; int ret = 0; u8 proto; #ifdef CONFIG_NF_CONNTRACK_TIMEOUT struct ctnl_timeout *timeout; #endif if (info->flags & ~XT_CT_NOTRACK) return -EINVAL; if (info->flags & XT_CT_NOTRACK) { ct = nf_ct_untracked_get(); atomic_inc(&ct->ct_general.use); goto out; } #ifndef CONFIG_NF_CONNTRACK_ZONES if (info->zone) goto err1; #endif ret = nf_ct_l3proto_try_module_get(par->family); if (ret < 0) goto err1; memset(&t, 0, sizeof(t)); ct = nf_conntrack_alloc(par->net, info->zone, &t, &t, GFP_KERNEL); ret = PTR_ERR(ct); if (IS_ERR(ct)) goto err2; ret = 0; if ((info->ct_events || info->exp_events) && !nf_ct_ecache_ext_add(ct, info->ct_events, info->exp_events, GFP_KERNEL)) goto err3; if (info->helper[0]) { ret = -ENOENT; proto = xt_ct_find_proto(par); if (!proto) { pr_info("You must specify a L4 protocol, " "and not use inversions on it.\n"); goto err3; } ret = -ENOMEM; help = nf_ct_helper_ext_add(ct, GFP_KERNEL); if (help == NULL) goto err3; ret = -ENOENT; help->helper = nf_conntrack_helper_try_module_get(info->helper, par->family, proto); if (help->helper == NULL) { pr_info("No such helper \"%s\"\n", info->helper); goto err3; } } #ifdef CONFIG_NF_CONNTRACK_TIMEOUT if (info->timeout[0]) { typeof(nf_ct_timeout_find_get_hook) timeout_find_get; struct nf_conn_timeout *timeout_ext; rcu_read_lock(); timeout_find_get = rcu_dereference(nf_ct_timeout_find_get_hook); if (timeout_find_get) { const struct ipt_entry *e = par->entryinfo; struct nf_conntrack_l4proto *l4proto; if (e->ip.invflags & IPT_INV_PROTO) { ret = -EINVAL; pr_info("You cannot use inversion on " "L4 protocol\n"); goto err4; } timeout = timeout_find_get(info->timeout); if (timeout == NULL) { ret = -ENOENT; pr_info("No such timeout policy \"%s\"\n", info->timeout); goto err4; } if (timeout->l3num != par->family) { ret = -EINVAL; pr_info("Timeout policy `%s' can only be " "used by L3 protocol number %d\n", info->timeout, timeout->l3num); goto err5; } /* Make sure the timeout policy matches any existing * protocol tracker, otherwise default to generic. */ l4proto = __nf_ct_l4proto_find(par->family, e->ip.proto); if (timeout->l4proto->l4proto != l4proto->l4proto) { ret = -EINVAL; pr_info("Timeout policy `%s' can only be " "used by L4 protocol number %d\n", info->timeout, timeout->l4proto->l4proto); goto err5; } timeout_ext = nf_ct_timeout_ext_add(ct, timeout, GFP_ATOMIC); if (timeout_ext == NULL) { ret = -ENOMEM; goto err5; } } else { ret = -ENOENT; pr_info("Timeout policy base is empty\n"); goto err4; } rcu_read_unlock(); } #endif __set_bit(IPS_TEMPLATE_BIT, &ct->status); __set_bit(IPS_CONFIRMED_BIT, &ct->status); out: info->ct = ct; return 0; #ifdef CONFIG_NF_CONNTRACK_TIMEOUT err5: __xt_ct_tg_timeout_put(timeout); err4: rcu_read_unlock(); #endif err3: nf_conntrack_free(ct); err2: nf_ct_l3proto_module_put(par->family); err1: return ret; }