/**
 * Formats a single scratch area.
 */
int
nffs_format_area(uint8_t area_idx, int is_scratch)
{
    struct nffs_disk_area disk_area;
    struct nffs_area *area;
    uint32_t write_len;
    int rc;

    area = nffs_areas + area_idx;

    rc = hal_flash_erase(area->na_flash_id, area->na_offset, area->na_length);
    if (rc != 0) {
        return rc;
    }
    area->na_cur = 0;

    nffs_area_to_disk(area, &disk_area);

    if (is_scratch) {
        nffs_areas[area_idx].na_id = NFFS_AREA_ID_NONE;
        write_len = sizeof disk_area - sizeof disk_area.nda_id;
    } else {
        write_len = sizeof disk_area;
    }

    rc = nffs_flash_write(area_idx, 0, &disk_area.nda_magic, write_len);
    if (rc != 0) {
        return rc;
    }

    return 0;
}
/**
 * Turns a scratch area into a non-scratch area.  If the specified area is not
 * actually a scratch area, this function falls back to a slower full format
 * operation.
 */
int
nffs_format_from_scratch_area(uint8_t area_idx, uint8_t area_id)
{
    struct nffs_disk_area disk_area;
    int rc;

    assert(area_idx < nffs_num_areas);
    rc = nffs_flash_read(area_idx, 0, &disk_area, sizeof disk_area);
    if (rc != 0) {
        return rc;
    }

    nffs_areas[area_idx].na_id = area_id;
    if (!nffs_area_is_scratch(&disk_area)) {
        rc = nffs_format_area(area_idx, 0);
        if (rc != 0) {
            return rc;
        }
    } else {
        disk_area.nda_id = area_id;
        rc = nffs_flash_write(area_idx, NFFS_AREA_OFFSET_ID,
                             &disk_area.nda_id, sizeof disk_area.nda_id);
        if (rc != 0) {
            return rc;
        }
    }

    return 0;
}
/**
 * Copies a chunk of data from one region of flash to another.
 *
 * @param area_idx_from         The index of the area to copy from.
 * @param area_offset_from      The offset within the area to copy from.
 * @param area_idx_to           The index of the area to copy to.
 * @param area_offset_to        The offset within the area to copy to.
 * @param len                   The number of bytes to copy.
 *
 * @return                      0 on success; nonzero on failure.
 */
int
nffs_flash_copy(uint8_t area_idx_from, uint32_t area_offset_from,
                uint8_t area_idx_to, uint32_t area_offset_to,
                uint32_t len)
{
    uint32_t chunk_len;
    int rc;

    /* Copy data in chunks small enough to fit in the flash buffer. */
    while (len > 0) {
        if (len > sizeof nffs_flash_buf) {
            chunk_len = sizeof nffs_flash_buf;
        } else {
            chunk_len = len;
        }

        rc = nffs_flash_read(area_idx_from, area_offset_from, nffs_flash_buf,
                             chunk_len);
        if (rc != 0) {
            return rc;
        }

        rc = nffs_flash_write(area_idx_to, area_offset_to, nffs_flash_buf,
                              chunk_len);
        if (rc != 0) {
            return rc;
        }

        area_offset_from += chunk_len;
        area_offset_to += chunk_len;
        len -= chunk_len;
    }

    return 0;
}
/**
 * Writes the specified data block to a suitable location in flash.
 *
 * @param disk_block            Points to the disk block to write.
 * @param data                  The contents of the data block.
 * @param out_area_idx          On success, contains the index of the area
 *                                  written to.
 * @param out_area_offset       On success, contains the offset within the area
 *                                  written to.
 *
 * @return                      0 on success; nonzero on failure.
 */
int
nffs_block_write_disk(const struct nffs_disk_block *disk_block,
                      const void *data,
                      uint8_t *out_area_idx, uint32_t *out_area_offset)
{
    uint32_t area_offset;
    uint8_t area_idx;
    int rc;

    rc = nffs_misc_reserve_space(sizeof *disk_block + disk_block->ndb_data_len,
                                &area_idx, &area_offset);
    if (rc != 0) {
        return rc;
    }

    rc = nffs_flash_write(area_idx, area_offset, disk_block,
                         sizeof *disk_block);
    if (rc != 0) {
        return rc;
    }

    if (disk_block->ndb_data_len > 0) {
        rc = nffs_flash_write(area_idx, area_offset + sizeof *disk_block,
                             data, disk_block->ndb_data_len);
        if (rc != 0) {
            return rc;
        }
    }

    *out_area_idx = area_idx;
    *out_area_offset = area_offset;

    ASSERT_IF_TEST(nffs_crc_disk_block_validate(disk_block, area_idx,
                                               area_offset) == 0);

    return 0;
}
/**
 * Moves a chain of blocks from one area to another.  This function attempts to
 * collate the blocks into a single new block in the destination area.
 *
 * @param last_entry            The last block entry in the chain.
 * @param data_len              The total length of data to collate.
 * @param to_area_idx           The index of the area to copy to.
 * @param inout_next            This parameter is only necessary if you are
 *                                  calling this function during an iteration
 *                                  of the entire hash table; pass null
 *                                  otherwise.
 *                              On input, this points to the next hash entry
 *                                  you plan on processing.
 *                              On output, this points to the next hash entry
 *                                  that should be processed.
 *
 * @return                      0 on success;
 *                              FS_ENOMEM if there is insufficient heap;
 *                              other nonzero on failure.
 */
static int
nffs_gc_block_chain_collate(struct nffs_hash_entry *last_entry,
                            uint32_t data_len, uint8_t to_area_idx,
                            struct nffs_hash_entry **inout_next)
{
    struct nffs_disk_block disk_block;
    struct nffs_hash_entry *entry;
    struct nffs_area *to_area;
    struct nffs_block last_block;
    struct nffs_block block;
    uint32_t to_area_offset;
    uint32_t from_area_offset;
    uint32_t data_offset;
    uint8_t *data;
    uint8_t from_area_idx;
    int rc;

    memset(&last_block, 0, sizeof last_block);

    data = malloc(data_len);
    if (data == NULL) {
        rc = FS_ENOMEM;
        goto done;
    }

    memset(&last_block, 0, sizeof(last_block));

    to_area = nffs_areas + to_area_idx;

    entry = last_entry;
    data_offset = data_len;
    while (data_offset > 0) {
        rc = nffs_block_from_hash_entry(&block, entry);
        if (rc != 0) {
            goto done;
        }
        data_offset -= block.nb_data_len;

        nffs_flash_loc_expand(block.nb_hash_entry->nhe_flash_loc,
                              &from_area_idx, &from_area_offset);
        from_area_offset += sizeof disk_block;
        STATS_INC(nffs_stats, nffs_readcnt_gccollate);
        rc = nffs_flash_read(from_area_idx, from_area_offset,
                             data + data_offset, block.nb_data_len);
        if (rc != 0) {
            goto done;
        }

        if (entry != last_entry) {
            if (inout_next != NULL && *inout_next == entry) {
                *inout_next = SLIST_NEXT(entry, nhe_next);
            }
            nffs_block_delete_from_ram(entry);
        } else {
            last_block = block;
        }
        entry = block.nb_prev;
    }

    /* we had better have found the last block */
    assert(last_block.nb_hash_entry);

    /* The resulting block should inherit its ID from its last constituent
     * block (this is the ID referenced by the parent inode and subsequent data
     * block).  The previous ID gets inherited from the first constituent
     * block.
     */
    memset(&disk_block, 0, sizeof disk_block);
    disk_block.ndb_id = last_block.nb_hash_entry->nhe_id;
    disk_block.ndb_seq = last_block.nb_seq + 1;
    disk_block.ndb_inode_id = last_block.nb_inode_entry->nie_hash_entry.nhe_id;
    if (entry == NULL) {
        disk_block.ndb_prev_id = NFFS_ID_NONE;
    } else {
        disk_block.ndb_prev_id = entry->nhe_id;
    }
    disk_block.ndb_data_len = data_len;
    nffs_crc_disk_block_fill(&disk_block, data);

    to_area_offset = to_area->na_cur;
    rc = nffs_flash_write(to_area_idx, to_area_offset,
                          &disk_block, sizeof disk_block);
    if (rc != 0) {
        goto done;
    }

    rc = nffs_flash_write(to_area_idx, to_area_offset + sizeof disk_block,
                          data, data_len);
    if (rc != 0) {
        goto done;
    }

    last_entry->nhe_flash_loc = nffs_flash_loc(to_area_idx, to_area_offset);

    rc = 0;

    ASSERT_IF_TEST(nffs_crc_disk_block_validate(&disk_block, to_area_idx,
                                                to_area_offset) == 0);

done:
    free(data);
    return rc;
}
/**
 * Moves a chain of blocks from one area to another.  This function attempts to
 * collate the blocks into a single new block in the destination area.
 *
 * @param last_entry            The last block entry in the chain.
 * @param data_len              The total length of data to collate.
 * @param to_area_idx           The index of the area to copy to.
 * @param inout_next            This parameter is only necessary if you are
 *                                  calling this function during an iteration
 *                                  of the entire hash table; pass null
 *                                  otherwise.
 *                              On input, this points to the next hash entry
 *                                  you plan on processing.
 *                              On output, this points to the next hash entry
 *                                  that should be processed.
 *
 * @return                      0 on success;
 *                              FS_ENOMEM if there is insufficient heap;
 *                              other nonzero on failure.
 */
static int
nffs_gc_block_chain_collate(struct nffs_hash_entry *last_entry,
                            uint32_t data_len, uint8_t to_area_idx,
                            struct nffs_hash_entry **inout_next)
{
    struct nffs_disk_block disk_block;
    struct nffs_hash_entry *entry;
    struct nffs_area *to_area;
    struct nffs_block block;
    uint32_t to_area_offset;
    uint32_t from_area_offset;
    uint32_t data_offset;
    uint8_t *data;
    uint8_t from_area_idx;
    int rc;

    data = malloc(data_len);
    if (data == NULL) {
        rc = FS_ENOMEM;
        goto done;
    }

    to_area = nffs_areas + to_area_idx;

    entry = last_entry;
    data_offset = data_len;
    while (data_offset > 0) {
        rc = nffs_block_from_hash_entry(&block, entry);
        if (rc != 0) {
            goto done;
        }
        data_offset -= block.nb_data_len;

        nffs_flash_loc_expand(block.nb_hash_entry->nhe_flash_loc,
                              &from_area_idx, &from_area_offset);
        from_area_offset += sizeof disk_block;
        rc = nffs_flash_read(from_area_idx, from_area_offset,
                             data + data_offset, block.nb_data_len);
        if (rc != 0) {
            goto done;
        }

        if (entry != last_entry) {
            if (inout_next != NULL && *inout_next == entry) {
                *inout_next = SLIST_NEXT(entry, nhe_next);
            }
            nffs_block_delete_from_ram(entry);
        }
        entry = block.nb_prev;
    }

    memset(&disk_block, 0, sizeof disk_block);
    disk_block.ndb_magic = NFFS_BLOCK_MAGIC;
    disk_block.ndb_id = block.nb_hash_entry->nhe_id;
    disk_block.ndb_seq = block.nb_seq + 1;
    disk_block.ndb_inode_id = block.nb_inode_entry->nie_hash_entry.nhe_id;
    if (entry == NULL) {
        disk_block.ndb_prev_id = NFFS_ID_NONE;
    } else {
        disk_block.ndb_prev_id = entry->nhe_id;
    }
    disk_block.ndb_data_len = data_len;
    nffs_crc_disk_block_fill(&disk_block, data);

    to_area_offset = to_area->na_cur;
    rc = nffs_flash_write(to_area_idx, to_area_offset,
                         &disk_block, sizeof disk_block);
    if (rc != 0) {
        goto done;
    }

    rc = nffs_flash_write(to_area_idx, to_area_offset + sizeof disk_block,
                          data, data_len);
    if (rc != 0) {
        goto done;
    }

    last_entry->nhe_flash_loc = nffs_flash_loc(to_area_idx, to_area_offset);

    rc = 0;

    ASSERT_IF_TEST(nffs_crc_disk_block_validate(&disk_block, to_area_idx,
                                                to_area_offset) == 0);

done:
    free(data);
    return rc;
}
/**
 * Overwrites an existing data block.  The resulting block has the same ID as
 * the old one, but it supersedes it with a greater sequence number.
 *
 * @param entry                 The data block to overwrite.
 * @param left_copy_len         The number of bytes of existing data to retain
 *                                  before the new data begins.
 * @param new_data              The new data to write to the block.
 * @param new_data_len          The number of new bytes to write to the block.
 *                                  If this value plus left_copy_len is less
 *                                  than the existing block's data length,
 *                                  previous data at the end of the block is
 *                                  retained.
 *
 * @return                      0 on success; nonzero on failure.
 */
static int
nffs_write_over_block(struct nffs_hash_entry *entry, uint16_t left_copy_len,
                      const void *new_data, uint16_t new_data_len)
{
    struct nffs_disk_block disk_block;
    struct nffs_block block;
    uint32_t src_area_offset;
    uint32_t dst_area_offset;
    uint16_t right_copy_len;
    uint16_t block_off;
    uint8_t src_area_idx;
    uint8_t dst_area_idx;
    int rc;

    rc = nffs_block_from_hash_entry(&block, entry);
    if (rc != 0) {
        return rc;
    }

    assert(left_copy_len <= block.nb_data_len);

    /* Determine how much old data at the end of the block needs to be
     * retained.  If the new data doesn't extend to the end of the block, the
     * the rest of the block retains its old contents.
     */
    if (left_copy_len + new_data_len > block.nb_data_len) {
        right_copy_len = 0;
    } else {
        right_copy_len = block.nb_data_len - left_copy_len - new_data_len;
    }

    block.nb_seq++;
    block.nb_data_len = left_copy_len + new_data_len + right_copy_len;
    nffs_block_to_disk(&block, &disk_block);

    nffs_flash_loc_expand(entry->nhe_flash_loc,
                          &src_area_idx, &src_area_offset);

    rc = nffs_write_fill_crc16_overwrite(&disk_block,
                                         src_area_idx, src_area_offset,
                                         left_copy_len, right_copy_len,
                                         new_data, new_data_len);
    if (rc != 0) {
        return rc;
    }

    rc = nffs_misc_reserve_space(sizeof disk_block + disk_block.ndb_data_len,
                                 &dst_area_idx, &dst_area_offset);
    if (rc != 0) {
        return rc;
    }

    block_off = 0;

    /* Write the block header. */
    rc = nffs_flash_write(dst_area_idx, dst_area_offset + block_off,
                          &disk_block, sizeof disk_block);
    if (rc != 0) {
        return rc;
    }
    block_off += sizeof disk_block;

    /* Copy data from the start of the old block, in case the new data starts
     * at a non-zero offset.
     */
    if (left_copy_len > 0) {
        rc = nffs_flash_copy(src_area_idx, src_area_offset + block_off,
                             dst_area_idx, dst_area_offset + block_off,
                             left_copy_len);
        if (rc != 0) {
            return rc;
        }
        block_off += left_copy_len;
    }

    /* Write the new data into the data block.  This may extend the block's
     * length beyond its old value.
     */
    rc = nffs_flash_write(dst_area_idx, dst_area_offset + block_off,
                          new_data, new_data_len);
    if (rc != 0) {
        return rc;
    }
    block_off += new_data_len;

    /* Copy data from the end of the old block, in case the new data doesn't
     * extend to the end of the block.
     */
    if (right_copy_len > 0) {
        rc = nffs_flash_copy(src_area_idx, src_area_offset + block_off,
                             dst_area_idx, dst_area_offset + block_off,
                             right_copy_len);
        if (rc != 0) {
            return rc;
        }
        block_off += right_copy_len;
    }

    assert(block_off == sizeof disk_block + block.nb_data_len);

    entry->nhe_flash_loc = nffs_flash_loc(dst_area_idx, dst_area_offset);

    ASSERT_IF_TEST(nffs_crc_disk_block_validate(&disk_block, dst_area_idx,
                                                dst_area_offset) == 0);

    return 0;
}