int main(void) { int iter; FLINT_TEST_INIT(state); flint_printf("inflate...."); fflush(stdout); for (iter = 0; iter < 100 * flint_test_multiplier(); iter++) { nmod_poly_t poly1, poly2, poly3, xp; mp_limb_t modulus; ulong inflation; modulus = n_randtest_prime(state, 0); nmod_poly_init(poly1, modulus); nmod_poly_init(poly2, modulus); nmod_poly_init(poly3, modulus); nmod_poly_init(xp, modulus); nmod_poly_randtest(poly1, state, n_randint(state, 20)); inflation = n_randint(state, 10); nmod_poly_inflate(poly2, poly1, inflation); nmod_poly_set_coeff_ui(xp, inflation, 1); nmod_poly_compose(poly3, poly1, xp); if (!nmod_poly_equal(poly2, poly3)) { flint_printf("FAIL: not equal to compose (inflation = %wu)\n", inflation); flint_printf("poly1:\n"); nmod_poly_print(poly1); flint_printf("\n\n"); flint_printf("poly2:\n"); nmod_poly_print(poly2); flint_printf("\n\n"); flint_printf("poly3:\n"); nmod_poly_print(poly3); flint_printf("\n\n"); abort(); } nmod_poly_inflate(poly1, poly1, inflation); if (!nmod_poly_equal(poly1, poly2)) { flint_printf("FAIL: aliasing (inflation = %wu)\n", inflation); flint_printf("poly1:\n"); nmod_poly_print(poly1); flint_printf("\n\n"); flint_printf("poly2:\n"); nmod_poly_print(poly2); flint_printf("\n\n"); abort(); } nmod_poly_clear(poly1); nmod_poly_clear(poly2); nmod_poly_clear(poly3); nmod_poly_clear(xp); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }
int main(void) { int iter; flint_rand_t state; flint_randinit(state); printf("factor...."); fflush(stdout); /* Default algorithm */ for (iter = 0; iter < 100; iter++) { int result = 1; nmod_poly_t pol1, poly, quot, rem, product; nmod_poly_factor_t res; mp_limb_t modulus, lead = 1; long length, num, i, j; ulong exp[5], prod1; modulus = n_randtest_prime(state, 0); nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); exp[0] = n_randint(state, 30) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 7) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 30) + 1; prod1 *= exp[i]; for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); switch (n_randint(state, 3)) { case 0: lead = nmod_poly_factor(res, pol1); break; case 1: lead = nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: if (modulus == 2) lead = nmod_poly_factor(res, pol1); else lead = nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } result &= (res->num == num); if (!result) { printf("Error: number of factors incorrect, %ld, %ld\n", res->num, num); abort(); } nmod_poly_init(product, pol1->mod.n); nmod_poly_set_coeff_ui(product, 0, 1); for (i = 0; i < res->num; i++) for (j = 0; j < res->exp[i]; j++) nmod_poly_mul(product, product, res->p + i); nmod_poly_scalar_mul_nmod(product, product, lead); result &= nmod_poly_equal(pol1, product); if (!result) { printf("Error: product of factors does not equal original polynomial\n"); nmod_poly_print(pol1); printf("\n"); nmod_poly_print(product); printf("\n"); abort(); } nmod_poly_clear(product); nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); } /* Test deflation trick */ for (iter = 0; iter < 100; iter++) { nmod_poly_t pol1, poly, quot, rem; nmod_poly_factor_t res, res2; mp_limb_t modulus; long length, num, i, j; long exp[5], prod1; ulong inflation; int found; do { modulus = n_randtest_prime(state, 0); } while (modulus == 2); /* To compare with CZ */ nmod_poly_init(pol1, modulus); nmod_poly_init(poly, modulus); nmod_poly_init(quot, modulus); nmod_poly_init(rem, modulus); nmod_poly_zero(pol1); nmod_poly_set_coeff_ui(pol1, 0, 1); inflation = n_randint(state, 7) + 1; length = n_randint(state, 7) + 2; do { nmod_poly_randtest(poly, state, length); if (poly->length) nmod_poly_make_monic(poly, poly); } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2)); nmod_poly_inflate(poly, poly, inflation); exp[0] = n_randint(state, 6) + 1; prod1 = exp[0]; for (i = 0; i < exp[0]; i++) nmod_poly_mul(pol1, pol1, poly); num = n_randint(state, 5) + 1; for (i = 1; i < num; i++) { do { length = n_randint(state, 6) + 2; nmod_poly_randtest(poly, state, length); if (poly->length) { nmod_poly_make_monic(poly, poly); nmod_poly_divrem(quot, rem, pol1, poly); } } while ((!nmod_poly_is_irreducible(poly)) || (poly->length < 2) || (rem->length == 0)); exp[i] = n_randint(state, 6) + 1; prod1 *= exp[i]; nmod_poly_inflate(poly, poly, inflation); for (j = 0; j < exp[i]; j++) nmod_poly_mul(pol1, pol1, poly); } nmod_poly_factor_init(res); nmod_poly_factor_init(res2); switch (n_randint(state, 3)) { case 0: nmod_poly_factor(res, pol1); break; case 1: nmod_poly_factor_with_berlekamp(res, pol1); break; case 2: nmod_poly_factor_with_cantor_zassenhaus(res, pol1); break; } nmod_poly_factor_cantor_zassenhaus(res2, pol1); if (res->num != res2->num) { printf("FAIL: different number of factors found\n"); abort(); } for (i = 0; i < res->num; i++) { found = 0; for (j = 0; j < res2->num; j++) { if (nmod_poly_equal(res->p + i, res2->p + j) && res->exp[i] == res2->exp[j]) { found = 1; break; } } if (!found) { printf("FAIL: factor not found\n"); abort(); } } nmod_poly_clear(quot); nmod_poly_clear(rem); nmod_poly_clear(pol1); nmod_poly_clear(poly); nmod_poly_factor_clear(res); nmod_poly_factor_clear(res2); } flint_randclear(state); printf("PASS\n"); return 0; }
int main(void) { int iter; FLINT_TEST_INIT(state); flint_printf("deflate...."); fflush(stdout); for (iter = 0; iter < 100 * flint_test_multiplier(); iter++) { nmod_poly_t poly1, poly2, poly3; mp_limb_t modulus; ulong infl1, infl, deflation; modulus = n_randtest_prime(state, 0); nmod_poly_init(poly1, modulus); nmod_poly_init(poly2, modulus); nmod_poly_init(poly3, modulus); nmod_poly_randtest(poly1, state, n_randint(state, 15)); if (nmod_poly_length(poly1) <= 1) { if (nmod_poly_deflation(poly1) != nmod_poly_length(poly1)) { flint_printf("FAIL: wrong deflation for constant polynomial\n"); abort(); } nmod_poly_deflate(poly2, poly1, n_randint(state, 5) + 1); if (!nmod_poly_equal(poly2, poly1)) { flint_printf("FAIL: constant polynomial changed on deflation\n"); abort(); } } else { infl = n_randint(state, 13) + 1; infl1 = nmod_poly_deflation(poly1); nmod_poly_inflate(poly2, poly1, infl); deflation = nmod_poly_deflation(poly2); if (deflation != infl * infl1) { flint_printf("FAIL: deflation = %wu, inflation: %wu, %wu\n", deflation, infl, infl1); flint_printf("poly1:\n"); nmod_poly_print(poly1); flint_printf("\n\n"); flint_printf("poly2:\n"); nmod_poly_print(poly2); flint_printf("\n\n"); abort(); } nmod_poly_deflate(poly3, poly2, infl); if (!nmod_poly_equal(poly3, poly1)) { flint_printf("FAIL: deflation = %wu, inflation: %wu, %wu\n", deflation, infl, infl1); flint_printf("Deflated polynomial not equal to input:\n"); flint_printf("poly1:\n"); nmod_poly_print(poly1); flint_printf("\n\n"); flint_printf("poly2:\n"); nmod_poly_print(poly2); flint_printf("\n\n"); flint_printf("poly3:\n"); nmod_poly_print(poly2); flint_printf("\n\n"); abort(); } nmod_poly_deflate(poly2, poly2, infl); if (!nmod_poly_equal(poly3, poly2)) { flint_printf("FAIL: aliasing\n"); abort(); } } nmod_poly_clear(poly1); nmod_poly_clear(poly2); nmod_poly_clear(poly3); } FLINT_TEST_CLEANUP(state); flint_printf("PASS\n"); return 0; }