void _nmod_poly_product_roots_nmod_vec(mp_ptr poly, mp_srcptr xs, slong n, nmod_t mod) { if (n == 0) { poly[0] = UWORD(1); } else if (n < 20) { slong i, j; poly[n] = UWORD(1); poly[n - 1] = nmod_neg(xs[0], mod); for (i = 1; i < n; i++) { poly[n-i-1] = nmod_neg(n_mulmod2_preinv(poly[n-i], xs[i], mod.n, mod.ninv), mod); for (j = 0; j < i - 1; j++) { poly[n-i+j] = nmod_sub(poly[n-i+j], n_mulmod2_preinv(poly[n-i+j+1], xs[i], mod.n, mod.ninv), mod); } poly[n-1] = nmod_sub(poly[n-1], xs[i], mod); } } else { const slong m = (n + 1) / 2; mp_ptr tmp; tmp = _nmod_vec_init(n + 2); _nmod_poly_product_roots_nmod_vec(tmp, xs, m, mod); _nmod_poly_product_roots_nmod_vec(tmp + m + 1, xs + m, n - m, mod); _nmod_poly_mul(poly, tmp, m + 1, tmp + m + 1, n - m + 1, mod); _nmod_vec_clear(tmp); } }
void nmod_mat_solve_tril_classical(nmod_mat_t X, const nmod_mat_t L, const nmod_mat_t B, int unit) { int nlimbs; long i, j, n, m; nmod_t mod; mp_ptr inv, tmp; n = L->r; m = B->c; mod = L->mod; if (!unit) { inv = _nmod_vec_init(n); for (i = 0; i < n; i++) inv[i] = n_invmod(nmod_mat_entry(L, i, i), mod.n); } else inv = NULL; nlimbs = _nmod_vec_dot_bound_limbs(n, mod); tmp = _nmod_vec_init(n); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) tmp[j] = nmod_mat_entry(X, j, i); for (j = 0; j < n; j++) { mp_limb_t s; s = _nmod_vec_dot(L->rows[j], tmp, j, mod, nlimbs); s = nmod_sub(nmod_mat_entry(B, j, i), s, mod); if (!unit) s = n_mulmod2_preinv(s, inv[j], mod.n, mod.ninv); tmp[j] = s; } for (j = 0; j < n; j++) nmod_mat_entry(X, j, i) = tmp[j]; } _nmod_vec_clear(tmp); if (!unit) _nmod_vec_clear(inv); }
void _nmod_poly_interpolate_nmod_vec_barycentric(mp_ptr poly, mp_srcptr xs, mp_srcptr ys, slong n, nmod_t mod) { mp_ptr P, Q, w; slong i, j; if (n == 1) { poly[0] = ys[0]; return; } P = _nmod_vec_init(n + 1); Q = _nmod_vec_init(n); w = _nmod_vec_init(n); _nmod_poly_product_roots_nmod_vec(P, xs, n, mod); for (i = 0; i < n; i++) { w[i] = UWORD(1); for (j = 0; j < n; j++) { if (i != j) w[i] = nmod_mul(w[i], nmod_sub(xs[i], xs[j], mod), mod); } w[i] = n_invmod(w[i], mod.n); } _nmod_vec_zero(poly, n); for (i = 0; i < n; i++) { _nmod_poly_div_root(Q, P, n + 1, xs[i], mod); _nmod_vec_scalar_addmul_nmod(poly, Q, n, nmod_mul(w[i], ys[i], mod), mod); } _nmod_vec_clear(P); _nmod_vec_clear(Q); _nmod_vec_clear(w); }