Exemple #1
0
static void nps_enet_send_frame(struct net_device *ndev,
				struct sk_buff *skb)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 tx_ctrl_value = 0;
	short length = skb->len;
	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
	u32 *src = (void *)skb->data;
	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));

	/* In case src is not aligned we need an intermediate buffer */
	if (src_is_aligned)
		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
	else /* !src_is_aligned */
		for (i = 0; i < len; i++, src++)
			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
					 get_unaligned_be32(src));

	/* Write the length of the Frame */
	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;

	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
	/* Send Frame */
	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
}
Exemple #2
0
/**
 * nps_enet_hw_reset - Reset the network device.
 * @ndev:       Pointer to the network device.
 *
 * This function reset the PCS and TX fifo.
 * The programming model is to set the relevant reset bits
 * wait for some time for this to propagate and then unset
 * the reset bits. This way we ensure that reset procedure
 * is done successfully by device.
 */
static void nps_enet_hw_reset(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_ge_rst ge_rst;
	struct nps_enet_phase_fifo_ctl phase_fifo_ctl;

	ge_rst.value = 0;
	phase_fifo_ctl.value = 0;
	/* Pcs reset sequence*/
	ge_rst.gmac_0 = NPS_ENET_ENABLE;
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst.value);
	usleep_range(10, 20);
	ge_rst.value = 0;
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst.value);

	/* Tx fifo reset sequence */
	phase_fifo_ctl.rst = NPS_ENET_ENABLE;
	phase_fifo_ctl.init = NPS_ENET_ENABLE;
	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
			 phase_fifo_ctl.value);
	usleep_range(10, 20);
	phase_fifo_ctl.value = 0;
	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
			 phase_fifo_ctl.value);
}
Exemple #3
0
static void nps_enet_hw_disable_control(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);

	/* Disable interrupts */
	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);

	/* Disable Rx and Tx */
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
}
Exemple #4
0
static void nps_enet_tx_handler(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_tx_ctl tx_ctrl;

	tx_ctrl.value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);

	/* Check if we got TX */
	if (!priv->tx_packet_sent || tx_ctrl.ct)
		return;

	/* Ack Tx ctrl register */
	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);

	/* Check Tx transmit error */
	if (unlikely(tx_ctrl.et)) {
		ndev->stats.tx_errors++;
	} else {
		ndev->stats.tx_packets++;
		ndev->stats.tx_bytes += tx_ctrl.nt;
	}

	dev_kfree_skb(priv->tx_skb);
	priv->tx_packet_sent = false;

	if (netif_queue_stopped(ndev))
		netif_wake_queue(ndev);
}
Exemple #5
0
static void nps_enet_tx_handler(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;

	/* Check if we got TX */
	if (!priv->tx_skb || tx_ctrl_ct)
		return;

	/* Ack Tx ctrl register */
	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);

	/* Check Tx transmit error */
	if (unlikely(tx_ctrl_et)) {
		ndev->stats.tx_errors++;
	} else {
		ndev->stats.tx_packets++;
		ndev->stats.tx_bytes += tx_ctrl_nt;
	}

	dev_kfree_skb(priv->tx_skb);
	priv->tx_skb = NULL;

	if (netif_queue_stopped(ndev))
		netif_wake_queue(ndev);
}
Exemple #6
0
static void nps_enet_set_hw_mac_address(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_ge_mac_cfg_1 ge_mac_cfg_1;
	struct nps_enet_ge_mac_cfg_2 *ge_mac_cfg_2 = &priv->ge_mac_cfg_2;

	/* set MAC address in HW */
	ge_mac_cfg_1.octet_0 = ndev->dev_addr[0];
	ge_mac_cfg_1.octet_1 = ndev->dev_addr[1];
	ge_mac_cfg_1.octet_2 = ndev->dev_addr[2];
	ge_mac_cfg_1.octet_3 = ndev->dev_addr[3];
	ge_mac_cfg_2->octet_4 = ndev->dev_addr[4];
	ge_mac_cfg_2->octet_5 = ndev->dev_addr[5];

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
			 ge_mac_cfg_1.value);

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
			 ge_mac_cfg_2->value);
}
Exemple #7
0
/**
 * nps_enet_hw_reset - Reset the network device.
 * @ndev:       Pointer to the network device.
 *
 * This function reset the PCS and TX fifo.
 * The programming model is to set the relevant reset bits
 * wait for some time for this to propagate and then unset
 * the reset bits. This way we ensure that reset procedure
 * is done successfully by device.
 */
static void nps_enet_hw_reset(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;

	/* Pcs reset sequence*/
	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
	usleep_range(10, 20);
	ge_rst_value = 0;
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);

	/* Tx fifo reset sequence */
	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
			 phase_fifo_ctl_value);
	usleep_range(10, 20);
	phase_fifo_ctl_value = 0;
	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
			 phase_fifo_ctl_value);
}
Exemple #8
0
static void nps_enet_set_hw_mac_address(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 ge_mac_cfg_1_value = 0;
	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;

	/* set MAC address in HW */
	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
			 ge_mac_cfg_1_value);

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
			 *ge_mac_cfg_2_value);
}
Exemple #9
0
/**
 * nps_enet_poll - NAPI poll handler.
 * @napi:       Pointer to napi_struct structure.
 * @budget:     How many frames to process on one call.
 *
 * returns:     Number of processed frames
 */
static int nps_enet_poll(struct napi_struct *napi, int budget)
{
	struct net_device *ndev = napi->dev;
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 work_done;

	nps_enet_tx_handler(ndev);
	work_done = nps_enet_rx_handler(ndev);
	if (work_done < budget) {
		u32 buf_int_enable_value = 0;
		u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
		u32 tx_ctrl_ct =
			(tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;

		napi_complete(napi);

		/* set tx_done and rx_rdy bits */
		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;

		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
				 buf_int_enable_value);

		/* in case we will get a tx interrupt while interrupts
		 * are masked, we will lose it since the tx is edge interrupt.
		 * specifically, while executing the code section above,
		 * between nps_enet_tx_handler and the interrupts enable, all
		 * tx requests will be stuck until we will get an rx interrupt.
		 * the two code lines below will solve this situation by
		 * re-adding ourselves to the poll list.
		 */

		if (priv->tx_skb && !tx_ctrl_ct) {
			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
			napi_reschedule(napi);
		}
	}
Exemple #10
0
/**
 * nps_enet_irq_handler - Global interrupt handler for ENET.
 * @irq:                irq number.
 * @dev_instance:       device instance.
 *
 * returns: IRQ_HANDLED for all cases.
 *
 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
 * CTRL registers we may tell what is a reason for interrupt to fire up.
 * We got one for RX and the other for TX (completion).
 */
static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
{
	struct net_device *ndev = dev_instance;
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;

	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
		if (likely(napi_schedule_prep(&priv->napi))) {
			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
			__napi_schedule(&priv->napi);
		}

	return IRQ_HANDLED;
}
Exemple #11
0
static void nps_enet_send_frame(struct net_device *ndev,
				struct sk_buff *skb)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_tx_ctl tx_ctrl;
	short length = skb->len;
	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
	u32 *src = (u32 *)virt_to_phys(skb->data);
	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));

	tx_ctrl.value = 0;
	/* In case src is not aligned we need an intermediate buffer */
	if (src_is_aligned)
		for (i = 0; i < len; i++, src++)
			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF, *src);
	else { /* !src_is_aligned */
		for (i = 0; i < len; i++, src++) {
			u32 buf;

			/* to accommodate word-unaligned address of "src"
			 * we have to do memcpy_fromio() instead of simple "="
			 */
			memcpy_fromio(&buf, (void __iomem *)src, sizeof(buf));
			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF, buf);
		}
	}
	/* Write the length of the Frame */
	tx_ctrl.nt = length;

	/* Indicate SW is done */
	priv->tx_packet_sent = true;
	tx_ctrl.ct = NPS_ENET_ENABLE;

	/* Send Frame */
	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl.value);
}
Exemple #12
0
/**
 * nps_enet_set_rx_mode - Change the receive filtering mode.
 * @ndev:       Pointer to the network device.
 *
 * This function enables/disables promiscuous mode
 */
static void nps_enet_set_rx_mode(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_ge_mac_cfg_2 ge_mac_cfg_2;

	ge_mac_cfg_2.value = priv->ge_mac_cfg_2.value;

	if (ndev->flags & IFF_PROMISC) {
		ge_mac_cfg_2.disc_da = NPS_ENET_DISABLE;
		ge_mac_cfg_2.disc_mc = NPS_ENET_DISABLE;
	} else {
		ge_mac_cfg_2.disc_da = NPS_ENET_ENABLE;
		ge_mac_cfg_2.disc_mc = NPS_ENET_ENABLE;
	}

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2.value);
}
Exemple #13
0
/**
 * nps_enet_irq_handler - Global interrupt handler for ENET.
 * @irq:                irq number.
 * @dev_instance:       device instance.
 *
 * returns: IRQ_HANDLED for all cases.
 *
 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
 * CTRL registers we may tell what is a reason for interrupt to fire up.
 * We got one for RX and the other for TX (completion).
 */
static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
{
	struct net_device *ndev = dev_instance;
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_rx_ctl rx_ctrl;
	struct nps_enet_tx_ctl tx_ctrl;

	rx_ctrl.value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
	tx_ctrl.value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);

	if ((!tx_ctrl.ct && priv->tx_packet_sent) || rx_ctrl.cr)
		if (likely(napi_schedule_prep(&priv->napi))) {
			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
			__napi_schedule(&priv->napi);
		}

	return IRQ_HANDLED;
}
Exemple #14
0
/**
 * nps_enet_set_rx_mode - Change the receive filtering mode.
 * @ndev:       Pointer to the network device.
 *
 * This function enables/disables promiscuous mode
 */
static void nps_enet_set_rx_mode(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;

	if (ndev->flags & IFF_PROMISC) {
		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;

	} else {
		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
	}

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
}
Exemple #15
0
/**
 * nps_enet_poll - NAPI poll handler.
 * @napi:       Pointer to napi_struct structure.
 * @budget:     How many frames to process on one call.
 *
 * returns:     Number of processed frames
 */
static int nps_enet_poll(struct napi_struct *napi, int budget)
{
	struct net_device *ndev = napi->dev;
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 work_done;

	nps_enet_tx_handler(ndev);
	work_done = nps_enet_rx_handler(ndev);
	if (work_done < budget) {
		struct nps_enet_buf_int_enable buf_int_enable;

		napi_complete(napi);
		buf_int_enable.rx_rdy = NPS_ENET_ENABLE;
		buf_int_enable.tx_done = NPS_ENET_ENABLE;
		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
				 buf_int_enable.value);
	}

	return work_done;
}
Exemple #16
0
static u32 nps_enet_rx_handler(struct net_device *ndev)
{
	u32 frame_len, err = 0;
	u32 work_done = 0;
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct sk_buff *skb;
	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;

	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;

	/* Check if we got RX */
	if (!rx_ctrl_cr)
		return work_done;

	/* If we got here there is a work for us */
	work_done++;

	/* Check Rx error */
	if (rx_ctrl_er) {
		ndev->stats.rx_errors++;
		err = 1;
	}

	/* Check Rx CRC error */
	if (rx_ctrl_crc) {
		ndev->stats.rx_crc_errors++;
		ndev->stats.rx_dropped++;
		err = 1;
	}

	/* Check Frame length Min 64b */
	if (unlikely(frame_len < ETH_ZLEN)) {
		ndev->stats.rx_length_errors++;
		ndev->stats.rx_dropped++;
		err = 1;
	}

	if (err)
		goto rx_irq_clean;

	/* Skb allocation */
	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
	if (unlikely(!skb)) {
		ndev->stats.rx_errors++;
		ndev->stats.rx_dropped++;
		goto rx_irq_clean;
	}

	/* Copy frame from Rx fifo into the skb */
	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);

	skb_put(skb, frame_len);
	skb->protocol = eth_type_trans(skb, ndev);
	skb->ip_summed = CHECKSUM_UNNECESSARY;

	ndev->stats.rx_packets++;
	ndev->stats.rx_bytes += frame_len;
	netif_receive_skb(skb);

	goto rx_irq_frame_done;

rx_irq_clean:
	/* Clean Rx fifo */
	nps_enet_clean_rx_fifo(ndev, frame_len);

rx_irq_frame_done:
	/* Ack Rx ctrl register */
	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);

	return work_done;
}
Exemple #17
0
static void nps_enet_hw_enable_control(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
	s32 max_frame_length;

	/* Enable Rx and Tx statistics */
	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;

	/* Discard packets with different MAC address */
	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;

	/* Discard multicast packets */
	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
			 *ge_mac_cfg_2_value);

	/* Discard Packets bigger than max frame length */
	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
		*ge_mac_cfg_3_value =
			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
	}

	/* Enable interrupts */
	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
			 buf_int_enable_value);

	/* Write device MAC address to HW */
	nps_enet_set_hw_mac_address(ndev);

	/* Rx and Tx HW features */
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;

	/* IFG configuration */
	ge_mac_cfg_0_value |=
		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
	ge_mac_cfg_0_value |=
		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;

	/* preamble configuration */
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
	ge_mac_cfg_0_value |=
		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;

	/* enable flow control frames */
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
	ge_mac_cfg_0_value |=
		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;

	/* Enable Rx and Tx */
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
			 *ge_mac_cfg_3_value);
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
			 ge_mac_cfg_0_value);
}
Exemple #18
0
static void nps_enet_hw_enable_control(struct net_device *ndev)
{
	struct nps_enet_priv *priv = netdev_priv(ndev);
	struct nps_enet_ge_mac_cfg_0 ge_mac_cfg_0;
	struct nps_enet_buf_int_enable buf_int_enable;
	struct nps_enet_ge_mac_cfg_2 *ge_mac_cfg_2 = &priv->ge_mac_cfg_2;
	struct nps_enet_ge_mac_cfg_3 *ge_mac_cfg_3 = &priv->ge_mac_cfg_3;
	s32 max_frame_length;

	ge_mac_cfg_0.value = 0;
	buf_int_enable.value = 0;
	/* Enable Rx and Tx statistics */
	ge_mac_cfg_2->stat_en = NPS_ENET_GE_MAC_CFG_2_STAT_EN;

	/* Discard packets with different MAC address */
	ge_mac_cfg_2->disc_da = NPS_ENET_ENABLE;

	/* Discard multicast packets */
	ge_mac_cfg_2->disc_mc = NPS_ENET_ENABLE;

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
			 ge_mac_cfg_2->value);

	/* Discard Packets bigger than max frame length */
	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH)
		ge_mac_cfg_3->max_len = max_frame_length;

	/* Enable interrupts */
	buf_int_enable.rx_rdy = NPS_ENET_ENABLE;
	buf_int_enable.tx_done = NPS_ENET_ENABLE;
	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
			 buf_int_enable.value);

	/* Write device MAC address to HW */
	nps_enet_set_hw_mac_address(ndev);

	/* Rx and Tx HW features */
	ge_mac_cfg_0.tx_pad_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.tx_crc_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.rx_crc_strip = NPS_ENET_ENABLE;

	/* IFG configuration */
	ge_mac_cfg_0.rx_ifg = NPS_ENET_GE_MAC_CFG_0_RX_IFG;
	ge_mac_cfg_0.tx_ifg = NPS_ENET_GE_MAC_CFG_0_TX_IFG;

	/* preamble configuration */
	ge_mac_cfg_0.rx_pr_check_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.tx_pr_len = NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN;

	/* enable flow control frames */
	ge_mac_cfg_0.tx_fc_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.rx_fc_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.tx_fc_retr = NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR;
	ge_mac_cfg_3->cf_drop = NPS_ENET_ENABLE;

	/* Enable Rx and Tx */
	ge_mac_cfg_0.rx_en = NPS_ENET_ENABLE;
	ge_mac_cfg_0.tx_en = NPS_ENET_ENABLE;

	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
			 ge_mac_cfg_3->value);
	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
			 ge_mac_cfg_0.value);
}