Exemple #1
0
void nrf_drv_pwm_uninit(nrf_drv_pwm_t const * const p_instance)
{
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_registers));

    nrf_pwm_disable(p_instance->p_registers);

    p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
}
Exemple #2
0
ret_code_t nrf_drv_timer_init(nrf_drv_timer_t const * const p_instance,
                              nrf_drv_timer_config_t const * p_config,
                              nrf_timer_event_handler_t timer_event_handler)
{
    timer_control_block_t * p_cb = &m_cb[p_instance->instance_id];
#ifdef SOFTDEVICE_PRESENT
    ASSERT(p_instance->p_reg != NRF_TIMER0);
    ASSERT(p_config);
#endif

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        return NRF_ERROR_INVALID_STATE;
    }

    if (timer_event_handler == NULL)
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    /* Warning 685: Relational operator '<=' always evaluates to 'true'"
     * Warning in NRF_TIMER_IS_BIT_WIDTH_VALID macro. Macro validate timers resolution.
     * Not necessary in nRF52 based systems. Obligatory in nRF51 based systems.
     */

    /*lint -save -e685 */

    ASSERT(NRF_TIMER_IS_BIT_WIDTH_VALID(p_instance->p_reg, p_config->bit_width));

    //lint -restore

    p_cb->handler = timer_event_handler;
    p_cb->context = p_config->p_context;

    uint8_t i;
    for (i = 0; i < p_instance->cc_channel_count; ++i)
    {
        nrf_timer_event_clear(p_instance->p_reg,
            nrf_timer_compare_event_get(i));
    }

    nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_reg),
        p_config->interrupt_priority);

    nrf_timer_mode_set(p_instance->p_reg, p_config->mode);
    nrf_timer_bit_width_set(p_instance->p_reg, p_config->bit_width);
    nrf_timer_frequency_set(p_instance->p_reg, p_config->frequency);

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    return NRF_SUCCESS;
}
Exemple #3
0
void nrf_drv_timer_uninit(nrf_drv_timer_t const * const p_instance)
{
    nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_reg));

    #define DISABLE_ALL UINT32_MAX
    nrf_timer_shorts_disable(p_instance->p_reg, DISABLE_ALL);
    nrf_timer_int_disable(p_instance->p_reg, DISABLE_ALL);
    #undef DISABLE_ALL

    nrf_drv_timer_disable(p_instance);

    m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
}
Exemple #4
0
ret_code_t nrf_drv_timer_init(nrf_drv_timer_t const * const p_instance,
                              nrf_drv_timer_config_t const * p_config,
                              nrf_timer_event_handler_t timer_event_handler)
{
    timer_control_block_t * p_cb = &m_cb[p_instance->instance_id];

#ifdef SOFTDEVICE_PRESENT
    ASSERT(p_instance->p_reg != NRF_TIMER0);
#endif
    ASSERT(NRF_TIMER_IS_BIT_WIDTH_VALID(p_instance->p_reg, p_config->bit_width));

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        return NRF_ERROR_INVALID_STATE;
    }

    if (timer_event_handler == NULL)
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    if (p_config == NULL)
    {
        p_config = &m_default_config[p_instance->instance_id];
    }

    p_cb->handler = timer_event_handler;
    p_cb->context = p_config->p_context;

    uint8_t i;
    for (i = 0; i < p_instance->cc_channel_count; ++i)
    {
        nrf_timer_event_clear(p_instance->p_reg,
            nrf_timer_compare_event_get(i));
    }

    nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_reg),
        p_config->interrupt_priority);

    nrf_timer_mode_set(p_instance->p_reg, p_config->mode);
    nrf_timer_bit_width_set(p_instance->p_reg, p_config->bit_width);
    nrf_timer_frequency_set(p_instance->p_reg, p_config->frequency);

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    return NRF_SUCCESS;
}
Exemple #5
0
void nrf_drv_timer_uninit(nrf_drv_timer_t const * const p_instance)
{
    nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_reg));

    #define DISABLE_ALL UINT32_MAX
    nrf_timer_shorts_disable(p_instance->p_reg, DISABLE_ALL);
    nrf_timer_int_disable(p_instance->p_reg, DISABLE_ALL);
    #undef DISABLE_ALL

    if (m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON)
    {
        nrf_drv_timer_disable(p_instance);
    }

    m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
    NRF_LOG_INFO("Uninitialized instance: %d.\r\n", p_instance->instance_id);
}
Exemple #6
0
ret_code_t nrf_drv_pwm_init(nrf_drv_pwm_t const * const p_instance,
                            nrf_drv_pwm_config_t const * p_config,
                            nrf_drv_pwm_handler_t        handler)
{
    ASSERT(p_config)
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        return NRF_ERROR_INVALID_STATE;
    }

    p_cb->handler = handler;

    configure_pins(p_instance, p_config);

    nrf_pwm_enable(p_instance->p_registers);
    nrf_pwm_configure(p_instance->p_registers,
        p_config->base_clock, p_config->count_mode, p_config->top_value);
    nrf_pwm_decoder_set(p_instance->p_registers,
        p_config->load_mode, p_config->step_mode);

    nrf_pwm_shorts_set(p_instance->p_registers, 0);
    nrf_pwm_int_set(p_instance->p_registers, 0);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_LOOPSDONE);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_SEQEND0);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_SEQEND1);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_STOPPED);

    if (p_cb->handler)
    {
        nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_registers),
            p_config->irq_priority);
    }

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    return NRF_SUCCESS;
}
Exemple #7
0
void common_rtc_init(void)
{
    if (m_common_rtc_enabled)
    {
        return;
    }

    errata_20();

    NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler);

    // RTC is driven by the low frequency (32.768 kHz) clock, a proper request
    // must be made to have it running.
    // Currently this clock is started in 'SystemInit' (see "system_nrf51.c"
    // or "system_nrf52.c", respectively).

    nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0);

    nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT);
#if defined(TARGET_MCU_NRF51822)
    nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT);
#endif
#if DEVICE_LOWPOWERTIMER
    nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT);
#endif
    nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);

    // Interrupts on all related events are enabled permanently. Particular
    // events will be enabled or disabled as needed (such approach is more
    // energy efficient).
    nrf_rtc_int_enable(COMMON_RTC_INSTANCE,
#if DEVICE_LOWPOWERTIMER
                       LP_TICKER_INT_MASK |
#endif
                       US_TICKER_INT_MASK |
                       NRF_RTC_INT_OVERFLOW_MASK);

    // This event is enabled permanently, since overflow indications are needed
    // continuously.
    nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK);
    // All other relevant events are initially disabled.
    nrf_rtc_event_disable(COMMON_RTC_INSTANCE,
#if defined(TARGET_MCU_NRF51822)
                          OS_TICK_INT_MASK |
#endif
#if DEVICE_LOWPOWERTIMER
                          LP_TICKER_INT_MASK |
#endif
                          US_TICKER_INT_MASK);

    nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE),
#ifdef NRF51
                              APP_IRQ_PRIORITY_LOW
#elif defined(NRF52) || defined(NRF52840_XXAA)
                              APP_IRQ_PRIORITY_LOWEST
#endif
                             );

    nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START);

    m_common_rtc_enabled = true;
}
Exemple #8
0
static rt_err_t _uart_cfg(struct rt_serial_device *serial, struct serial_configure *cfg)
{
    nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG;
    UART_CFG_T *instance = &uart0;

    RT_ASSERT(serial != RT_NULL);
    RT_ASSERT(cfg != RT_NULL);

    if (serial->parent.user_data != RT_NULL)
    {
        instance = (UART_CFG_T*)serial->parent.user_data;
    }

    nrf_uart_disable(instance->uart.reg.p_uart);

    switch (cfg->baud_rate)
    {
    case 115200:
        config.baudrate = NRF_UART_BAUDRATE_115200;
        break;

    case 9600:
        config.baudrate = NRF_UART_BAUDRATE_9600;
        break;

    default:
        config.baudrate = NRF_UART_BAUDRATE_115200;
        break;
    }

    if (cfg->parity == PARITY_NONE)
    {
        config.parity = NRF_UART_PARITY_EXCLUDED;
    }
    else
    {
        config.parity = NRF_UART_PARITY_INCLUDED;
    }

    config.hwfc = NRF_UART_HWFC_DISABLED;
    config.interrupt_priority = APP_IRQ_PRIORITY_LOWEST;
    config.pselcts = 0;
    config.pselrts = 0;
    config.pselrxd = instance->rx_pin;
    config.pseltxd = instance->tx_pin;

    nrf_gpio_pin_set(config.pseltxd);
    nrf_gpio_cfg_output(config.pseltxd);
    nrf_gpio_pin_clear(config.pseltxd);
    nrf_gpio_cfg_input(config.pselrxd, NRF_GPIO_PIN_NOPULL);
    nrf_uart_baudrate_set(instance->uart.reg.p_uart, config.baudrate);
    nrf_uart_configure(instance->uart.reg.p_uart, config.parity, config.hwfc);
    nrf_uart_txrx_pins_set(instance->uart.reg.p_uart, config.pseltxd, config.pselrxd);

    if (config.hwfc == NRF_UART_HWFC_ENABLED)
    {
        nrf_uart_hwfc_pins_set(instance->uart.reg.p_uart, config.pselrts, config.pselcts);
    }

    nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_TXDRDY);
    nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_RXDRDY);
    nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_RXTO);
    nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_ERROR);

    nrf_uart_int_enable(instance->uart.reg.p_uart, NRF_UART_INT_MASK_RXDRDY | NRF_UART_INT_MASK_RXTO | NRF_UART_INT_MASK_ERROR);
    nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)instance->uart.reg.p_uart), config.interrupt_priority);
    nrf_uart_enable(instance->uart.reg.p_uart);
    // nrf_uart_task_trigger(instance->uart.reg.p_uart, NRF_UART_TASK_STARTRX);
    working_cfg = instance;
    return RT_EOK;
}
Exemple #9
0
static rt_err_t _uart_ctrl(struct rt_serial_device *serial, int cmd, void *arg)
{
    UART_CFG_T *instance = working_cfg;

    RT_ASSERT(serial != RT_NULL);

    if (serial->parent.user_data != RT_NULL)
    {
        instance = (UART_CFG_T*)serial->parent.user_data;
    }

    switch (cmd)
    {
        /* disable interrupt */
    case RT_DEVICE_CTRL_CLR_INT:
        nrf_uart_task_trigger(instance->uart.reg.p_uart, NRF_UART_TASK_STOPRX);
        nrf_uart_int_disable(instance->uart.reg.p_uart, NRF_UART_INT_MASK_RXDRDY
                                                | NRF_UART_INT_MASK_RXTO
                                                | NRF_UART_INT_MASK_ERROR);
        nrf_drv_common_irq_disable(nrf_drv_get_IRQn((void *)instance->uart.reg.p_uart));
        break;

        /* enable interrupt */
    case RT_DEVICE_CTRL_SET_INT:
        nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_RXDRDY);
        nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_RXTO);
        nrf_uart_event_clear(instance->uart.reg.p_uart, NRF_UART_EVENT_ERROR);
        /* Enable RX interrupt. */
        nrf_uart_int_enable(instance->uart.reg.p_uart, NRF_UART_INT_MASK_RXDRDY
                                                | NRF_UART_INT_MASK_RXTO
                                                | NRF_UART_INT_MASK_ERROR);
        nrf_drv_common_irq_enable(nrf_drv_get_IRQn((void *)instance->uart.reg.p_uart), APP_IRQ_PRIORITY_LOWEST);
        nrf_uart_task_trigger(instance->uart.reg.p_uart, NRF_UART_TASK_STARTRX);
        break;

    case RT_DEVICE_CTRL_CUSTOM:
        if ((rt_uint32_t)(arg) == UART_CONFIG_BAUD_RATE_9600)
        {
            instance->serial->config.baud_rate = 9600;
            nrf_uart_baudrate_set(instance->uart.reg.p_uart, NRF_UART_BAUDRATE_9600);
        }
        else if ((rt_uint32_t)(arg) == UART_CONFIG_BAUD_RATE_115200)
        {
            instance->serial->config.baud_rate = 115200;
            nrf_uart_baudrate_set(instance->uart.reg.p_uart, NRF_UART_BAUDRATE_115200);
        }

        // _uart_cfg(instance->serial, &(instance->serial->config));
        // nrf_uart_task_trigger(instance->uart.reg.p_uart, NRF_UART_TASK_STARTRX);
        break;

    case RT_DEVICE_CTRL_PIN:
        if (working_cfg != instance)
        {
            _uart_cfg(instance->serial, &(instance->serial->config));
        }
        break;

    case RT_DEVICE_POWERSAVE:
        nrf_uart_disable(instance->uart.reg.p_uart);
        nrf_uart_txrx_pins_disconnect(instance->uart.reg.p_uart);
        nrf_gpio_pin_clear(instance->rx_pin);
        nrf_gpio_cfg_output(instance->rx_pin);
        nrf_gpio_pin_clear(instance->tx_pin);
        nrf_gpio_cfg_output(instance->tx_pin);
        break;

    case RT_DEVICE_WAKEUP:
        _uart_cfg(instance->serial, &(instance->serial->config));
        break;

    default:
        return RT_ERROR;
    }

    return RT_EOK;
}
Exemple #10
0
ret_code_t nrf_drv_timer_init(nrf_drv_timer_t const * const p_instance,
                              nrf_drv_timer_config_t const * p_config,
                              nrf_timer_event_handler_t timer_event_handler)
{
    timer_control_block_t * p_cb = &m_cb[p_instance->instance_id];
    ASSERT(((p_instance->p_reg == NRF_TIMER0) && TIMER0_ENABLED) || (p_instance->p_reg != NRF_TIMER0));
    ASSERT(((p_instance->p_reg == NRF_TIMER1) && TIMER1_ENABLED) || (p_instance->p_reg != NRF_TIMER1));
    ASSERT(((p_instance->p_reg == NRF_TIMER2) && TIMER2_ENABLED) || (p_instance->p_reg != NRF_TIMER2));
#if TIMER_COUNT == 5
    ASSERT(((p_instance->p_reg == NRF_TIMER3) && TIMER3_ENABLED) || (p_instance->p_reg != NRF_TIMER3));
    ASSERT(((p_instance->p_reg == NRF_TIMER4) && TIMER4_ENABLED) || (p_instance->p_reg != NRF_TIMER4));
#endif //TIMER_COUNT
#ifdef SOFTDEVICE_PRESENT
    ASSERT(p_instance->p_reg != NRF_TIMER0);
    ASSERT(p_config);
#endif
    ret_code_t err_code;

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRF_ERROR_INVALID_STATE;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }

    if (timer_event_handler == NULL)
    {
        err_code = NRF_ERROR_INVALID_PARAM;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }

    /* Warning 685: Relational operator '<=' always evaluates to 'true'"
     * Warning in NRF_TIMER_IS_BIT_WIDTH_VALID macro. Macro validate timers resolution.
     * Not necessary in nRF52 based systems. Obligatory in nRF51 based systems.
     */

    /*lint -save -e685 */

    ASSERT(NRF_TIMER_IS_BIT_WIDTH_VALID(p_instance->p_reg, p_config->bit_width));

    //lint -restore

    p_cb->handler = timer_event_handler;
    p_cb->context = p_config->p_context;

    uint8_t i;
    for (i = 0; i < p_instance->cc_channel_count; ++i)
    {
        nrf_timer_event_clear(p_instance->p_reg,
            nrf_timer_compare_event_get(i));
    }

    nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_reg),
        p_config->interrupt_priority);

    nrf_timer_mode_set(p_instance->p_reg, p_config->mode);
    nrf_timer_bit_width_set(p_instance->p_reg, p_config->bit_width);
    nrf_timer_frequency_set(p_instance->p_reg, p_config->frequency);

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
    return err_code;
}