Exemple #1
0
// Only works for vectors with nonzero components
Grid::Grid(Vector3f center, Vector3f step, Vector3f gridMax) {
    Vector3f shiftToCenter = center - gridMax / 2;
    this->numSteps= Vector3i(gridMax(0)/step(0), gridMax(1)/step(1), gridMax(2)/step(2)) + Vector3i(1, 1, 1);
    for (int i = 0; i < numSteps(0); i++) {
        for (int j = 0; j < numSteps(1); j++) {
            for (int k = 0; k < numSteps(2); k++) {
                vertices.push_back(Vector3f(i*step(0), j*step(1), k*step(2)) + shiftToCenter);
            }
        }
    }
}
Exemple #2
0
void Job::jobFinished(Report& report, bool b)
{
	setStatus(b ? Success : Error);
	emit progress(numSteps());
	emit finished();

	report.setStatus(i18nc("@info/plain job status (error, warning, ...)", "%1: %2", description(), statusText()));
}
Exemple #3
0
void Grid::addTriangles(vector_tri *triangles, float (*func)(Vector3f)) {
    for (int i = 0; i < numSteps(0)-1; i++) {
        for (int j = 0; j < numSteps(1)-1; j++) {
            for (int k = 0; k < numSteps(2)-1; k++) {
                int ic = numSteps(1)*numSteps(2);
                int jc = numSteps(2);

                Vector3f *v1 = &vertices[i*ic+j*jc+k];
                Vector3f *v2 = &vertices[i*ic+j*jc+k+1]; 
                Vector3f *v3 = &vertices[(i+1)*ic+j*jc+k+1];
                Vector3f *v4 = &vertices[(i+1)*ic+j*jc+k];
                Vector3f *v5 = &vertices[i*ic+(j+1)*jc+k];
                Vector3f *v6 = &vertices[i*ic+(j+1)*jc+k+1];
                Vector3f *v7 = &vertices[(i+1)*ic+(j+1)*jc+k+1];
                Vector3f *v8 = &vertices[(i+1)*ic+(j+1)*jc+k];

                Tetrahedron t1(v2, v1, v5, v4);
                Tetrahedron t2(v2, v4, v5, v8);
                Tetrahedron t3(v2, v5, v6, v8);
                Tetrahedron t4(v3, v6, v7, v8);
                Tetrahedron t5(v3, v2, v4, v8);
                Tetrahedron t6(v3, v2, v6, v8);

                //Tetrahedron t1(v5, v6, v8, v1);
                //Tetrahedron t2(v7, v6, v3, v8);
                //Tetrahedron t3(v2, v1, v6, v3);
                //Tetrahedron t4(v4, v8, v3, v1);
                //Tetrahedron t5(v1, v3, v6, v8);
                t1.addTriangles(triangles, func);
                t2.addTriangles(triangles, func);
                t3.addTriangles(triangles, func);
                t4.addTriangles(triangles, func);
                t5.addTriangles(triangles, func);
                t6.addTriangles(triangles, func);
            }
        }
    }   
}
Exemple #4
0
void Simulator::runThreadOnHouse(int houseIndex)
{
	string houseFileName = houseFileNames[houseIndex];
	// read house file and run all algorithms on the specific house
	unique_ptr<House> house = make_unique<House>();
	int handle = readHouseFile(houseIndex, houseFileName, houseErrors.get(), house.get()); // pass ptr without releasing (house will be updated)
	if (handle) {
		// error
		isValidHouses[houseIndex] = false; // (default is false anyway)
		return;
	}
	numOfWorkingHouses++; // atomic increase
	isValidHouses[houseIndex] = true;
	// automatic win for each algorithm if the dirt in the house == 0
	if (house->sumOfDirt == 0) {
		map<string, int> autoWinScore;
		autoWinScore["simulation_steps"] = 0;
		autoWinScore["winner_num_steps"] = 0;
		autoWinScore["this_num_steps"] = 0;
		autoWinScore["sum_dirt_in_house"] = 0;
		autoWinScore["dirt_collected"] = 0;
		autoWinScore["is_back_in_docking"] = 1;
		autoWinScore["actual_position_in_competition"] = 1;
		auto nameIterator = registrar.getAlgorithmNames().begin();
		for (int i = 0; i < numOfAlgorithms; i++) {
			if (score_function != NULL) {
				scores[*nameIterator][houseIndex] = (*score_function)(autoWinScore);
			}
			else {
				scores[*nameIterator][houseIndex] = score(autoWinScore);
			}
		}
		return; // that's all
	}

	// new instance of all algorithms
	AlgorithmRegistrar& curRegistrar = AlgorithmRegistrar::getInstance();
	auto algorithms = curRegistrar.getAlgorithms();
	auto& algorithmNames = curRegistrar.getAlgorithmNames();
	auto nameIterator = algorithmNames.begin();
	vector<bool> if_end(numOfAlgorithms);
	vector<bool> into_wall(numOfAlgorithms);
	vector<int> curBattery(numOfAlgorithms);
	vector<int> numSteps(numOfAlgorithms);
	vector<int> positionInComp(numOfAlgorithms, 10); // default position is 10
	vector<Direction> lastMoves(numOfAlgorithms, Direction::Stay);
	int simulation_num_steps = 0;
	int max_steps = house->maxSteps;
	int batteryCapacity = (config.find("BatteryCapacity"))->second;
	int batteryConsumptionRate = (config.find("BatteryConsumptionRate"))->second;
	int batteryRechargeRate = (config.find("BatteryRechargeRate"))->second;
	for (int i = 0; i < numOfAlgorithms; i++)
		curBattery[i] = batteryCapacity;
	bool is_winner = false;
	int winner_num_steps = -1;
	int cur_stage_winners = 0;
	int cur_position = 1;
	int finished = 0;
	bool already_alerted_more_steps = false;
	int algIndex;
	// make a copy of the current house for every algorithm and assign a sensor to it
	unique_ptr<House[]> curHouses = make_unique<House[]>(numOfAlgorithms);
	vector<Sensor> sensors;
	for (int l = 0; l < numOfAlgorithms; l++) {
		copyHouse(curHouses[l], house.get());
		sensors.emplace_back(Sensor(&curHouses[l]));
	}
	int i = 0;
	for (auto& algorithm : algorithms)
	{
		algorithm->setSensor(sensors[i]);
		algorithm->setConfiguration(config);
		i++;
	}

	if (DEBUG) {
		// print the house with D (no R) - for debugging
		string space = " ";
		if (house->rows > 60 || house->cols > 40)
			space = "";
		if (house->matrix != NULL) {
			for (int i = 0; i < house->rows; i++) {
				for (int j = 0; j < house->cols; j++) {
					cout << house->matrix[i][j] << space;
				}
				cout << endl;
			}
		}
		// print with robot R (no D)
		cout << endl;
		printHouseWithRobot(curHouses[0]); // house == curHouses[0] == ... == curHouses[numOfAlgorithms-1]
	}

	while (true) {
		simulation_num_steps++;
		if (SHOW_SIMULATION_HOUSES) {
			getchar();
			cout << "Step " << simulation_num_steps << endl;
		}
		// simulate one step for each algorithm
		algIndex = -1;
		nameIterator = algorithmNames.begin();
		for (auto& algorithm : algorithms) {
			// increase for the next algorithm
			algIndex++;
			if (if_end[algIndex] == true) {
				nameIterator++;
				continue;
			}
			// pass last move of the algorithm and update the new one
			Direction direction = algorithm->step(lastMoves[algIndex]);
			lastMoves[algIndex] = direction;

			// if leaving docking station -> load battery
			if (curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] == 'D') {
				curBattery[algIndex] = MIN(batteryCapacity, curBattery[algIndex] + batteryRechargeRate);
			}
			// consume battery only if did not start the move from the docking station
			// staying or starting the move from the docking station does not consume battery
			if (curHouses[algIndex].robot != curHouses[algIndex].docking)
				curBattery[algIndex] -= batteryConsumptionRate;

			// make the step on the current house of the algorithm
			switch (direction)
			{
			case static_cast<Direction>(0) :
				curHouses[algIndex].robot.col++;
				break;
			case static_cast<Direction>(1) :
				curHouses[algIndex].robot.col--;
				break;
			case static_cast<Direction>(2) :
				curHouses[algIndex].robot.row++;
				break;
			case static_cast<Direction>(3) :
				curHouses[algIndex].robot.row--;
				break;
			default:
				break;
				// do nothing for 'Stay'
			}

			//cleaning dust when entering a cell
			if (curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] > '0' && curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] <= '9') {
				curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] = curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] - 1;
				curHouses[algIndex].sumOfDirt--;
			}

			// create a snapshot of the current house if desired && there was no previous error with creating a folder for the current alg+home
			// note that we do take a snapshot of the case in which a robot gets into a wall (that's ok as amir said)
			if (isFlagVideoUp && !curHouses[algIndex].folderError) {
				curHouses[algIndex].montage(*nameIterator, videoErrors);
			}

			// walked into a wall -> stop the algorithm from running. its score will be zero
			if (curHouses[algIndex].matrix[curHouses[algIndex].robot.row][curHouses[algIndex].robot.col] == 'W') {
				into_wall[algIndex] = true;
				if_end[algIndex] = true;
				finished++;
				// make the error note to be printed later (at the end after all other errors)
				int index = static_cast<int>((*nameIterator).find(".so"));
				string name = (*nameIterator).substr(0, index);
				string wallError = "Algorithm ";
				wallError += name;
				wallError += " when running on House ";
				index = static_cast<int>(curHouses[algIndex].houseFileName.find_last_of('.'));
				name = (curHouses[algIndex].houseFileName).substr(0, index);
				name = name.substr(6, name.size() - 6);
				wallError += name;
				wallError += " went on a wall in step ";
				wallError += to_string(simulation_num_steps);
				walkingIntoWallsErrors[houseIndex] = wallError;
				algorithmIntoWall = true;
				if (DEBUG)
					cout << INTO_WALL << endl;
				nameIterator++;
				continue;
			}

			// for debug purpose
			if (SHOW_SIMULATION_HOUSES) {
				cout << "Robot(" << (*nameIterator) << ") Battery: " << curBattery[algIndex] << endl;
				printHouseWithRobot(curHouses[algIndex]);
			}

			if (curHouses[algIndex].sumOfDirt == 0 && curHouses[algIndex].robot == curHouses[algIndex].docking) {
				if (DEBUG)
					cout << "Robot wins (cleaned the whole house in the limited time)." << endl; //  for debug purpose
				if_end[algIndex] = true;
				cur_stage_winners++;
				if (!is_winner) {
					is_winner = true;
					winner_num_steps = simulation_num_steps;
					max_steps = MIN(max_steps, simulation_num_steps + config["MaxStepsAfterWinner"]);
				}
				finished++;
				positionInComp[algIndex] = cur_position;
				numSteps[algIndex] = simulation_num_steps;
				nameIterator++;
				continue;
			}
			if (curBattery[algIndex] <= 0) {
				if (DEBUG)
					cout << BATTERY_DEAD << endl; // for debug purpose
				if_end[algIndex] = true;
				finished++;
				nameIterator++;
				continue;
			}
			nameIterator++;
		}
		// finished one step of each algorithm
		if (cur_stage_winners > 0)
			cur_position = cur_position + cur_stage_winners;
		cur_stage_winners = 0;

		// - MAX-STEPS-AFTER-WINNNER ALERT -
		if (!already_alerted_more_steps) {
			// let all the other algorithms (that did not win in the this last move) know 'MaxStepsAfterWinner'
			// alret them only at the first round when some algorithm wins
			// the condition is true ONLY on the first round when some algorithm wins
			if (winner_num_steps == simulation_num_steps) {
				// if someone wins, max_steps is already updated in the loop, so it's simply a subtraction
				int alert_more_steps = max_steps - simulation_num_steps;
				algIndex = 0;
				for (auto& algorithm : algorithms) {
					// alert only algorithms that did not win / die (they're battery finished before charging)
					if (if_end[algIndex] == false) {
						algorithm->aboutToFinish(alert_more_steps);
					}
					algIndex++;
				}
				already_alerted_more_steps = true;
				if (DEBUG)
					cout << endl << "ALERT TO ALL ALGORITHMS: more steps = " << alert_more_steps << endl;
			}
			// other case -> no one won but there are 'maxstepsafterwinner' more steps till the end
			// alert all algorithms
			else if (!is_winner && ((max_steps - simulation_num_steps) == config["MaxStepsAfterWinner"])) {
				algIndex = 0;
				for (auto& algorithm : algorithms) {
					// alert only algorithms that did not die (they're battery finished before charging / went into a wall)
					if (if_end[algIndex] == false) {
						algorithm->aboutToFinish(config["MaxStepsAfterWinner"]);
					}
					algIndex++;
				}
				already_alerted_more_steps = true;
				if (DEBUG)
					cout << endl << "ALERT TO ALL ALGORITHMS: more steps = " << config["MaxStepsAfterWinner"] << endl;
			}
		}
		// end of game
		if (finished == numOfAlgorithms || simulation_num_steps == max_steps) {
			if (DEBUG)
				cout << NO_MORE_MOVES << endl;  // for debug purpose
			for (algIndex = 0; algIndex < numOfAlgorithms; algIndex++) {
				// if didn't change -> he didn't win. set number of steps to simulation steps
				if (numSteps[algIndex] == 0) {
					numSteps[algIndex] = simulation_num_steps;
				}
			}
			break;
		}

	}

	// score the algorithms on the house
	// if none won -> winner num steps = simulation num steps
	// call the right score method (Score.h or calc_score from the loaded score_formula.so)
	// (call calc_score if score_loaded==true (field in Simulator.h) and call the score method in Score.h when it's false)
	if (winner_num_steps == -1)
		winner_num_steps = simulation_num_steps;
	nameIterator = algorithmNames.begin();
	for (int algIndex = 0; algIndex < numOfAlgorithms; algIndex++) {
		int is_back_in_docking = (curHouses[algIndex].robot == curHouses[algIndex].docking) ? true : false;
		if (into_wall[algIndex] == true) // if walked into a wall, score=0
			scores[*nameIterator][houseIndex] = 0;
		else {
			map<string, int> score_params;
			score_params["simulation_steps"] = simulation_num_steps;
			score_params["winner_num_steps"] = winner_num_steps;
			score_params["this_num_steps"] = numSteps[algIndex];
			score_params["sum_dirt_in_house"] = curHouses[algIndex].initialSumOfDirt;
			score_params["dirt_collected"] = curHouses[algIndex].initialSumOfDirt - curHouses[algIndex].sumOfDirt;
			score_params["is_back_in_docking"] = is_back_in_docking;
			if (curHouses[algIndex].sumOfDirt == 0 && is_back_in_docking) {
				score_params["actual_position_in_competition"] = positionInComp[algIndex];
			}
			else {
				score_params["actual_position_in_competition"] = 10;
			}
			if (score_function != NULL) {
				scores[*nameIterator][houseIndex] = (*score_function)(score_params);
			}
			else {
				scores[*nameIterator][houseIndex] = score(score_params);
			}

			if (scores[*nameIterator][houseIndex] == -1)
				isErrorInScoreCalc = true;
		}
		nameIterator++;
	}

	// create the videos for all the algorithms on the house
	if (isFlagVideoUp)
	{
		algIndex = 0;
		nameIterator = algorithmNames.begin();
		string simulationDir;
		string imagesExpression;
		while (nameIterator != algorithmNames.end()) {
			// make a video only when the folder creation was successfull
			if (!curHouses[algIndex].folderError) {
				// image creation error
				if (curHouses[algIndex].imageErrors > 0) {
					string error_msg = "Error: In the simulation " + *nameIterator + ", " + curHouses[algIndex].houseFileName + ": the creation of " + to_string(curHouses[algIndex].imageErrors) + " images was failed";
					videoErrors.push_back(error_msg);
				}
				// make a video only when at least one snapshot was created successfully
				if (curHouses[algIndex].createVideo) {
					simulationDir = "simulations/" + *nameIterator + "_" + curHouses[algIndex].houseFileName + "/";
					imagesExpression = simulationDir + "image%5d.jpg";
					if (Encoder::encode(imagesExpression, *nameIterator + "_" + curHouses[algIndex].houseFileName + ".mpg")) { // video creation fail
						string error_msg = "Error: In the simulation " + *nameIterator + ", " + curHouses[algIndex].houseFileName + ": video file creation failed";
						videoErrors.push_back(error_msg);
					}
				}
				// remove the folder with all its content (images)
				removeDirectory(curHouses[algIndex].imagesDirPath);
				// optional: if removing folder fails -> add to errors
				/*
				if (removeDirectory(curHouses[algIndex].imagesDirPath)) {
					string error_msg = "Error: In the simulation " + *nameIterator + ", " + curHouses[algIndex].houseFileName + ": removing folder " + curHouses[algIndex].imagesDirPath + " failed";
					videoErrors.push_back(error_msg);
				}
				*/
			}
			nameIterator++;
			algIndex++;
		}
	}

	if (DEBUG)
		getchar();
}
Exemple #5
0
int main(int argc, const char *argv[])
{
  Json::Value options;
  char usage[] = "Usage: main [jobNum] config1 [config2 ...]";
  
  if (argc <= 1) {
    std::cerr << "Too few arguments" << std::endl;
    std::cerr << usage << std::endl;
    return 1;
  } else if ((std::string(argv[1]) == "-h") || (std::string(argv[1]) == "--help")) {
    std::cout << usage << std::endl;
    return 0;
  }
  
  unsigned int configStart = 1;
  int jobNum = -1;
  // try to interpret the first arg as a job number
  bool isJobNum = true;
  for (int i = 0; argv[1][i] != '\0'; i++) {
    if (!isdigit(argv[1][i])) {
      isJobNum = false;
      break;
    }
  }
  if (isJobNum) {
    jobNum = atoi(argv[1]);
    configStart++;
  }
  

  for (int i = configStart; i < argc; i++) {
    if (! readJson(argv[i],options)) {
      return 1;
    }
  }

  int numTrials = options.get("trials",1).asUInt();
  int startTrial = 0;
  int origNumTrials = numTrials;
  unsigned int numTrialsPerJob = options.get("trialsPerJob",1).asUInt();
  unsigned int maxNumStepsPerEpisode = options.get("maxNumStepsPerEpisode",10000).asUInt();
  
  if (jobNum < 0) {
    jobNum = 0;
  } else {
    startTrial = jobNum * numTrialsPerJob;
    numTrials = min((int)numTrialsPerJob,numTrials-startTrial);
  }
  if (numTrials <= 0) {
    std::cerr << "ERROR: insufficient number of trials: " << numTrials << std::endl;
    std::cerr << "Calculated from: jobNum: " << jobNum << " numTrialsPerJob: " << numTrialsPerJob << " numTrials: " << origNumTrials << std::endl;
    std::cerr << "Start trial should be: " << startTrial << std::endl;
    return 1;
  }
  replaceOptsDir(options);
  if (jobNum == 0)
    saveConfig(options);

  replaceOptsJob(options,boost::lexical_cast<std::string>(jobNum)); 

  unsigned int numEpisodes = options.get("numEpisodesPerTrial",1).asUInt();
  bool displayDescriptionQ = options["verbosity"].get("description",true).asBool();
  bool displaySummaryQ = options["verbosity"].get("summary",true).asBool();
  bool displayObsQ = options["verbosity"].get("observation",true).asBool();
  bool displayStepsPerEpisodeQ = options["verbosity"].get("stepsPerEpisode",true).asBool();
  bool displayStepsPerTrialQ = options["verbosity"].get("stepsPerTrial",true).asBool();
  std::string saveFilename = options["save"].get("results","").asString();
  bool saveResultsQ = (saveFilename != "");
  bool randomizeSeedQ = options.get("randomizeSeed",false).asBool();
  // running for fixed lengths
  unsigned int numStepsPerEpisode = options.get("numStepsPerEpisode",0).asUInt();
  bool runForFixedLength = (numStepsPerEpisode != 0);

  // get the output DT information
  unsigned int outputDTSteps = options["verbosity"].get("dtsteps",0).asUInt();
  std::string outputDTFilename = options["verbosity"].get("dtfile","").asString();
  bool outputDTCSVQ = (outputDTFilename != "");
  boost::shared_ptr<OutputDT> outputDT;
  boost::shared_ptr<std::vector<Action::Type> > actions;

  Observation obs;
  double startTime = getTime();

  std::vector<std::vector<unsigned int> > numSteps(numTrials,std::vector<unsigned int>(numEpisodes,0));
  std::vector<std::vector<unsigned int> > numCaptures(numTrials,std::vector<unsigned int>(numEpisodes,0));
  std::vector<std::vector<unsigned int> > *results = &numSteps;
  if (runForFixedLength)
    results = &numCaptures;

  std::cout << "Running for " << numTrials << " trials" << std::endl;
  
  unsigned int trialNum;
  unsigned int randomSeed;
  for (int trial = 0; trial < numTrials; trial++) {
    trialNum = trial + startTrial;
    if (randomizeSeedQ)
      randomSeed = getTime() * 1000000 + 1000 * getpid() + trialNum; // hopefully random enough
    else
      randomSeed = trialNum;
    //std::cout << "RANDOM SEED: " << randomSeed << std::endl;

    Json::Value trialOptions(options);
    replaceOptsTrial(trialOptions,trialNum);

    boost::shared_ptr<World> world = createWorldAgents(randomSeed,trialNum,trialOptions);
    boost::shared_ptr<const WorldModel> model = world->getModel();
    std::cout << "Ad hoc agent ind: " << model->getAdhocInd() << std::endl;

    // INITIALIZATION
    if (trial == 0) {
      if (displayDescriptionQ)
        std::cout << world->generateDescription() << std::endl;
      if (outputDTCSVQ) {
        // set up the actions
        actions = boost::shared_ptr<std::vector<Action::Type> >(new std::vector<Action::Type>(model->getNumAgents()));
        // create models for the DT csv output if required
        std::vector<std::string> modelNames;
        //modelNames.push_back("GR");
        //modelNames.push_back("TA");
        //modelNames.push_back("GP");
        //modelNames.push_back("PD");
        outputDT = boost::shared_ptr<OutputDT>(new OutputDT(outputDTFilename,model->getDims(),model->getNumAgents()-1,modelNames,true,false,outputDTSteps));
      }
    }

    if (outputDTCSVQ) {
      if (outputDT->hasCollectedSufficientData()) {
        std::cout << "WARNING: collected sufficient data, stopping with " << trial << " trials" << std::endl;
        numSteps.resize(trial);
        break;
      }
    }
    
    
    if (displayStepsPerTrialQ)
      std::cout << "trial " << std::setw(2) << trialNum << ": " << std::flush;
    
    for (unsigned int episode = 0; episode < numEpisodes; episode++) {
      world->randomizePositions();
      world->restartAgents();
      if (outputDTCSVQ) {
        // for the first step, add the observation, since it keeps a history of 1
        world->generateObservation(obs);
        outputDT->saveStep(trial,numSteps[trial][episode],obs,*actions);
      }
      while (!model->isPreyCaptured()) {
        numSteps[trial][episode]++;
        // check end conditions
        if (runForFixedLength) {
          if (numSteps[trial][episode] > numStepsPerEpisode)
            break;
        } else {
          if (numSteps[trial][episode] > maxNumStepsPerEpisode) {
            std::cerr << "TRIAL " << trial << " EPISODE " << episode << " TOO LONG" << std::endl;
            break;
          }
        }

        if (displayObsQ) {
          world->generateObservation(obs);
          std::cout << obs << std::endl;
        }
        world->step(actions);
        if (outputDTCSVQ){
          world->generateObservation(obs);  // should follow world->step so that we can extract the observed actions of the previous step
          outputDT->saveStep(trial,numSteps[trial][episode],obs,*actions);
        }

        // if we want to run for a fixed length and the prey is captured, find a new position for the prey
        if (runForFixedLength && model->isPreyCaptured()) {
          //std::cout << "Prey is captured, generating new position" << std::endl;
          world->randomizePreyPosition();
          numCaptures[trial][episode]++;
        }
      } // while the episode lasts

      if (displayObsQ) {
        world->generateObservation(obs);
        std::cout << obs << std::endl;
      }
      if (displayStepsPerEpisodeQ)
        std::cout << std::setw(3) << (*results)[trial][episode] << " " << std::flush;
    }
    if (displayStepsPerTrialQ)
      displayStepsPerTrial(displayStepsPerEpisodeQ,(*results)[trial]);

  } // end for trial
  double endTime = getTime();
  // optionally display the summary
  if (displaySummaryQ)
    displaySummary(endTime-startTime,*results);
  // optionally save the results
  if (saveResultsQ)
    saveResults(saveFilename,startTrial,*results);
  // optionally finialize the saving of data for the DT
  if (outputDTCSVQ)
    outputDT->finalizeSave(randomSeed);

  return 0;
}