Exemple #1
0
/*
 * Should receive timeouts only
 */
static void *event_dispatcher(void *arg)
{
	odp_event_t ev;

	(void)arg;

	ofp_init_local();

	while (1) {
		ev = odp_schedule(NULL, ODP_SCHED_WAIT);

		if (ev == ODP_EVENT_INVALID)
			continue;

		if (odp_event_type(ev) == ODP_EVENT_TIMEOUT) {
			ofp_timer_handle(ev);
			continue;
		}

		OFP_ERR("Error: unexpected event type: %u\n",
			  odp_event_type(ev));

		odp_buffer_free(odp_buffer_from_event(ev));
	}

	/* Never reached */
	return NULL;
}
Exemple #2
0
static void *perf_client(void *arg)
{
	(void) arg;

#if ODP_VERSION < 106
	if (odp_init_local(ODP_THREAD_CONTROL) != 0) {
		OFP_ERR("Error: ODP local init failed.\n");
		return NULL;
	}
#endif
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}

	ofp_set_stat_flags(OFP_STAT_COMPUTE_PERF);

	while (1) {
		struct ofp_perf_stat *ps = ofp_get_perf_statistics();
		printf ("Mpps:%4.3f\n", ((float)ps->rx_fp_pps)/1000000);
		usleep(1000000UL);
	}

	return NULL;
}
Exemple #3
0
static void *suite_thread2(void *arg)
{
	run_function run_func = (run_function)arg;

	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}

	(void)run_func(fd_thread2);

	return NULL;
}
static void *pkt_io_recv(void *arg)
{
	odp_pktio_t pktio;
	odp_packet_t pkt, pkt_tbl[OFP_PKT_BURST_SIZE];
	int pkt_idx, pkt_cnt;
	struct pktio_thr_arg *thr_args;
	ofp_pkt_processing_func pkt_func;

	thr_args = arg;
	pkt_func = thr_args->pkt_func;

	if (odp_init_local(ODP_THREAD_WORKER)) {
		OFP_ERR("Error: ODP local init failed.\n");
		return NULL;
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}

	pktio = ofp_port_pktio_get(thr_args->port);

	OFP_DBG("PKT-IO receive starting on port: %d, pktio-id: %"PRIX64"\n",
		  thr_args->port, odp_pktio_to_u64(pktio));

	while (1) {
		pkt_cnt = odp_pktio_recv(pktio, pkt_tbl, OFP_PKT_BURST_SIZE);

		for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
			pkt = pkt_tbl[pkt_idx];

			if (odp_unlikely(odp_packet_has_error(pkt))) {
				OFP_DBG("Packet with error dropped.\n");
				odp_packet_free(pkt);
				continue;
			}

			ofp_packet_input(pkt, ODP_QUEUE_INVALID, pkt_func);
		}
#ifdef OFP_SEND_PKT_BURST
		ofp_send_pending_pkt_burst();
#endif /*OFP_SEND_PKT_BURST*/
	}

	/* Never reached */
	return NULL;
}
Exemple #5
0
static int webserver(void *arg)
{
	int serv_fd, tmp_fd;
	struct ofp_sockaddr_in my_addr;

	(void)arg;

	OFP_INFO("HTTP thread started");

	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return -1;
	}
	sleep(1);

	myaddr = ofp_port_get_ipv4_addr(0, 0, OFP_PORTCONF_IP_TYPE_IP_ADDR);

	if ((serv_fd = ofp_socket(OFP_AF_INET, OFP_SOCK_STREAM, OFP_IPPROTO_TCP)) < 0) {
		OFP_ERR("ofp_socket failed");
		perror("serv socket");
		return -1;
	}

	memset(&my_addr, 0, sizeof(my_addr));
	my_addr.sin_family = OFP_AF_INET;
	my_addr.sin_port = odp_cpu_to_be_16(2048);
	my_addr.sin_addr.s_addr = myaddr;
	my_addr.sin_len = sizeof(my_addr);

	if (ofp_bind(serv_fd, (struct ofp_sockaddr *)&my_addr,
		       sizeof(struct ofp_sockaddr)) < 0) {
		OFP_ERR("Cannot bind http socket (%s)!", ofp_strerror(ofp_errno));
		return -1;
	}

	ofp_listen(serv_fd, 10);

#ifndef USE_EPOLL
	OFP_INFO("Using ofp_select");
	ofp_fd_set read_fd;
	OFP_FD_ZERO(&read_fd);
	int nfds = serv_fd;
#else
	OFP_INFO("Using ofp_epoll");
	int epfd = ofp_epoll_create(1);
	struct ofp_epoll_event e = { OFP_EPOLLIN, { .fd = serv_fd } };
Exemple #6
0
static void test_arp(void)
{
	struct ofp_ifnet mock_ifnet;
	struct in_addr ip;
	uint8_t mac[OFP_ETHER_ADDR_LEN] = { 0x00, 0xFF, 0x00, 0x00, 0xFF, 0x00, };

	/* The buffer passed into ofp_ipv4_lookup_mac() must be 8 bytes since
	 * a 64-bit operation is currently being used to copy a MAC address.
	 */
	uint8_t mac_result[OFP_ETHER_ADDR_LEN + 2];

	CU_ASSERT(0 == ofp_init_local());

	memset(&mock_ifnet, 0, sizeof(mock_ifnet));
	CU_ASSERT(0 != inet_aton("1.1.1.1", &ip));

	/* Test entry insert, lookup, and remove. */
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));

	memset(mac_result, 0xFF, OFP_ETHER_ADDR_LEN);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	CU_ASSERT(0 == memcmp(mac, mac_result, OFP_ETHER_ADDR_LEN));

	CU_ASSERT(0 == ofp_arp_ipv4_remove(ip.s_addr, &mock_ifnet));
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	/* Test entry is aged out. */
	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));
	OFP_INFO("Inserted ARP entry");
	sleep(ARP_AGE_INTERVAL + ARP_ENTRY_TIMEOUT);
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	/* Test entry is aged out after a few hits. */
	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));
	OFP_INFO("Inserted ARP entry");
	sleep(ARP_AGE_INTERVAL);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	sleep(ARP_AGE_INTERVAL);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	sleep(ARP_AGE_INTERVAL + ARP_ENTRY_TIMEOUT);
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
}
Exemple #7
0
static void *pkt_io_recv(void *arg)
{
	odp_pktin_queue_t pktin;
	odp_packet_t pkt, pkt_tbl[PKT_BURST_SIZE];
	int pkt_idx, pkt_cnt;
	struct pktio_thr_arg *thr_args;
	ofp_pkt_processing_func pkt_func;

	thr_args = arg;
	pkt_func = thr_args->pkt_func;
	pktin = thr_args->pktin;

	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}

	OFP_DBG("PKT-IO receive starting on cpu: %d", odp_cpu_id());

	while (1) {
		pkt_cnt = odp_pktin_recv(pktin, pkt_tbl, PKT_BURST_SIZE);

		for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
			pkt = pkt_tbl[pkt_idx];

			if (odp_unlikely(odp_packet_has_error(pkt))) {
				OFP_DBG("Packet with error dropped.\n");
				odp_packet_free(pkt);
				continue;
			}

			ofp_packet_input(pkt, ODP_QUEUE_INVALID, pkt_func);
		}
		ofp_send_pending_pkt();
	}

	/* Never reached */
	return NULL;
}
static int
init_suite(void)
{
	ofp_global_param_t params;
	odp_instance_t instance;

	/* Init ODP before calling anything else */
	if (odp_init_global(&instance, NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		return -1;
	}

	/* Init this thread */
	if (odp_init_local(instance, ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		return -1;
	}

	ofp_init_global_param(&params);
	params.enable_nl_thread = 0;
	memset(params.pkt_hook, 0, sizeof(params.pkt_hook));
	params.pkt_hook[OFP_HOOK_OUT_IPv4] = fastpath_hook_out_IPv4;
#ifdef INET6
	params.pkt_hook[OFP_HOOK_OUT_IPv6] = fastpath_hook_out_IPv6;
#endif /* INET6 */

	(void) ofp_init_global(instance, &params);

	ofp_init_local();

	init_ifnet();

	ofp_add_mac(dev, tun_rem_ip, tun_rem_mac);

	return 0;
}
Exemple #9
0
void *pp_thread(void *arg)
{
	ALLOW_UNUSED_LOCAL(arg);
	if (ofp_init_local()) {
		OFP_ERR("ofp_init_local failed");
		return NULL;
	}

	while (odp_atomic_load_u32(&still_running)) {
		odp_event_t event;
		odp_queue_t source_queue;

		event = odp_schedule(&source_queue, ODP_SCHED_WAIT);

		if (odp_event_type(event) != ODP_EVENT_TIMEOUT) {
			OFP_ERR("Unexpected event type %d",
				odp_event_type(event));
			continue;
		}

		ofp_timer_handle(event);
	}
	return NULL;
}
Exemple #10
0
void *pp_thread(void *arg)
{
	ALLOW_UNUSED_LOCAL(arg);

#if ODP_VERSION >= 102
	if (odp_init_local(ODP_THREAD_WORKER)) {
#else
	if (odp_init_local()) {
#endif
		OFP_ERR("odp_init_local failed");
		return NULL;
	}
	if (ofp_init_local()) {
		OFP_ERR("ofp_init_local failed");
		return NULL;
	}

	while (odp_atomic_load_u32(&still_running)) {
		odp_event_t event;
		odp_queue_t source_queue;

		event = odp_schedule(&source_queue, ODP_SCHED_WAIT);

		if (odp_event_type(event) != ODP_EVENT_TIMEOUT) {
			OFP_ERR("Unexpected event type %d",
				odp_event_type(event));
			continue;
		}

		ofp_timer_handle(event);
	}
	return NULL;
}

static void test_arp(void)
{
	struct ofp_ifnet mock_ifnet;
	struct in_addr ip;
	uint8_t mac[OFP_ETHER_ADDR_LEN] = { 0x00, 0xFF, 0x00, 0x00, 0xFF, 0x00, };

	/* The buffer passed into ofp_ipv4_lookup_mac() must be 8 bytes since
	 * a 64-bit operation is currently being used to copy a MAC address.
	 */
	uint8_t mac_result[OFP_ETHER_ADDR_LEN + 2];

	CU_ASSERT(0 == ofp_init_local());

	memset(&mock_ifnet, 0, sizeof(mock_ifnet));
	CU_ASSERT(0 != inet_aton("1.1.1.1", &ip));

	/* Test entry insert, lookup, and remove. */
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));

	memset(mac_result, 0xFF, OFP_ETHER_ADDR_LEN);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	CU_ASSERT(0 == memcmp(mac, mac_result, OFP_ETHER_ADDR_LEN));

	CU_ASSERT(0 == ofp_arp_ipv4_remove(ip.s_addr, &mock_ifnet));
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	/* Test entry is aged out. */
	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));
	OFP_INFO("Inserted ARP entry");
	sleep(ARP_AGE_INTERVAL + ARP_ENTRY_TIMEOUT);
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));

	/* Test entry is aged out after a few hits. */
	CU_ASSERT(0 == ofp_arp_ipv4_insert(ip.s_addr, mac, &mock_ifnet));
	OFP_INFO("Inserted ARP entry");
	sleep(ARP_AGE_INTERVAL);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	sleep(ARP_AGE_INTERVAL);
	CU_ASSERT(0 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
	sleep(ARP_AGE_INTERVAL + ARP_ENTRY_TIMEOUT);
	CU_ASSERT(-1 == ofp_ipv4_lookup_mac(ip.s_addr, mac_result, &mock_ifnet));
}

int main(void)
{
	CU_pSuite ptr_suite = NULL;
	int nr_of_failed_tests = 0;
	int nr_of_failed_suites = 0;

	/* Initialize the CUnit test registry */
	if (CUE_SUCCESS != CU_initialize_registry())
		return CU_get_error();

	/* add a suite to the registry */
	ptr_suite = CU_add_suite("ofp errno", init_suite, end_suite);
	if (NULL == ptr_suite) {
		CU_cleanup_registry();
		return CU_get_error();
	}
	if (NULL == CU_ADD_TEST(ptr_suite, test_arp)) {
		CU_cleanup_registry();
		return CU_get_error();
	}

#if defined(OFP_TESTMODE_AUTO)
	CU_set_output_filename("CUnit-Util");
	CU_automated_run_tests();
#else
	/* Run all tests using the CUnit Basic interface */
	CU_basic_set_mode(CU_BRM_VERBOSE);
	CU_basic_run_tests();
#endif

	nr_of_failed_tests = CU_get_number_of_tests_failed();
	nr_of_failed_suites = CU_get_number_of_suites_failed();
	CU_cleanup_registry();

	return (nr_of_failed_suites > 0 ?
		nr_of_failed_suites : nr_of_failed_tests);
}
Exemple #11
0
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_odpthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];
	odph_odpthread_params_t thr_params;
	odp_instance_t instance;

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	if (params.if_count > OFP_FP_INTERFACE_MAX) {
		printf("Error: Invalid number of interfaces: maximum %d\n",
			OFP_FP_INTERFACE_MAX);
		exit(EXIT_FAILURE);
	}

	if (odp_init_global(&instance, NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(instance, ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count && params.core_count < core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (core_count > 1)
		num_workers--;

	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	ofp_init_global_param(&app_init_params);
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;

	if (ofp_init_global(instance, &app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	build_classifier(app_init_params.if_count, app_init_params.if_names);

	/* Start CLI */
	ofp_start_cli_thread(instance, app_init_params.linux_core_id, params.cli_file);
	sleep(1);

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */
	thr_params.start = default_event_dispatcher;
	thr_params.arg = ofp_udp4_processing;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	odph_odpthreads_create(thread_tbl,
			       &cpumask,
			       &thr_params);

	app_processing();

	odph_odpthreads_join(thread_tbl);

	printf("End Main()\n");
	return 0;
}
Exemple #12
0
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (core_count > 1)
		num_workers--;

#if ODP_VERSION < 104
	num_workers = odp_cpumask_def_worker(&cpumask, num_workers);
#else
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
#endif
	odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr));

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;

	if (ofp_init_global(&app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	build_classifier(app_init_params.if_count, app_init_params.if_names);

	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);
	sleep(1);

	memset(thread_tbl, 0, sizeof(thread_tbl));
	/* Start dataplane dispatcher worker threads */
	odph_linux_pthread_create(thread_tbl,
				  &cpumask,
				  default_event_dispatcher,
				  ofp_udp4_processing);

	app_processing();

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
static int ofp_lib_start(void)
{
	ofp_init_global_t app_init_params;

	odph_linux_pthread_t thread_tbl[32];
	int ret_val, num_workers = 1;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];

	if (ofp_init_global_called)
		return EXIT_FAILURE;

	/*
	 * Before any ODP API functions can be called, we must first init the ODP
	 * globals, e.g. availale accelerators or software implementations for
	 * shared memory, threads, pool, qeueus, sheduler, pktio, timer, crypto
	 * and classification.
	 */
	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("ODP global init failed.");
		return EXIT_FAILURE;
	}

	/*
	 * When the gloabel ODP level init has been done, we can now issue a
	 * local init per thread. This must also be done before any other ODP API
	 * calls may be made. Local inits are made here for shared memory,
	 * threads, pktio and scheduler.
	 */
	if (odp_init_local(ODP_THREAD_CONTROL) != 0) {
		OFP_ERR("ODP local init failed.");
		odp_term_global();
		return EXIT_FAILURE;
	}

	/*
	 * Initializes cpumask with CPUs available for worker threads.
	 * Sets up to 'num' CPUs and returns the count actually set.
	 * Use zero for all available CPUs.
	 */
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	if (odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr)) < 0) {
		OFP_ERR("Error: Too small buffer provided to "
			"odp_cpumask_to_str");
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU: %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:  %s\n", cpumaskstr);

	/*
	 * Now that ODP has been initalized, we can initialize OFP. This will
	 * open a pktio instance for each interface supplied as argument by the
	 * user.
	 *
	 * General configuration will be to pktio and schedluer queues here in
	 * addition will fast path interface configuration.
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));
	if (ofp_init_global(&app_init_params) != 0) {
		OFP_ERR("OFP global init failed.");
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	if (ofp_init_local() != 0) {
		OFP_ERR("Error: OFP local init failed.");
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}


	/*
	 * Create and launch dataplane dispatcher worker threads to be placed
	 * according to the cpumask, thread_tbl will be populated with the
	 * created pthread IDs.
	 *
	 * In this case, all threads will run the default_event_dispatcher
	 * function with ofp_eth_vlan_processing as argument.
	 *
	 * If different dispatchers should run, or the same be run with differnt
	 * input arguments, the cpumask is used to control this.
	 */
	memset(thread_tbl, 0, sizeof(thread_tbl));
	ret_val = ofp_linux_pthread_create(thread_tbl,
			&cpumask,
			default_event_dispatcher,
			ofp_eth_vlan_processing,
			ODP_THREAD_CONTROL);

	if (ret_val != num_workers) {
		OFP_ERR("Error: Failed to create worker threads, "
			"expected %d, got %d",
			num_workers, ret_val);
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global();
		return EXIT_FAILURE;
	}

	ofp_ifconfig();

	return EXIT_SUCCESS;
}
Exemple #14
0
static void *webserver(void *arg)
{
	int serv_fd, tmp_fd, nfds;
	unsigned int alen;
	struct ofp_sockaddr_in my_addr, caller;
	ofp_fd_set read_fd;

	(void)arg;

	OFP_INFO("HTTP thread started");

	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}
	sleep(1);

	myaddr = ofp_port_get_ipv4_addr(0, 0, OFP_PORTCONF_IP_TYPE_IP_ADDR);

	if ((serv_fd = ofp_socket(OFP_AF_INET, OFP_SOCK_STREAM, OFP_IPPROTO_TCP)) < 0) {
		OFP_ERR("ofp_socket failed");
		perror("serv socket");
		return NULL;
	}

	memset(&my_addr, 0, sizeof(my_addr));
	my_addr.sin_family = OFP_AF_INET;
	my_addr.sin_port = odp_cpu_to_be_16(2048);
	my_addr.sin_addr.s_addr = myaddr;
	my_addr.sin_len = sizeof(my_addr);

	if (ofp_bind(serv_fd, (struct ofp_sockaddr *)&my_addr,
		       sizeof(struct ofp_sockaddr)) < 0) {
		OFP_ERR("Cannot bind http socket (%s)!", ofp_strerror(ofp_errno));
		return 0;
	}

	ofp_listen(serv_fd, 10);
	OFP_FD_ZERO(&read_fd);
	nfds = serv_fd;

	for ( ; ; )
	{
		int r, i;
		static char buf[1024];
		struct ofp_timeval timeout;

		timeout.tv_sec = 0;
		timeout.tv_usec = 200000;

		OFP_FD_SET(serv_fd, &read_fd);
		monitor_connections(&read_fd);
		r = ofp_select(nfds + 1, &read_fd, NULL, NULL, &timeout);
		if (r <= 0)
			continue;

		if (OFP_FD_ISSET(serv_fd, &read_fd)) {
			alen = sizeof(caller);
			if ((tmp_fd = ofp_accept(serv_fd,
						   (struct ofp_sockaddr *)&caller,
						   &alen)) > 0) {
				OFP_INFO("accept fd=%d", tmp_fd);

				for (i = 0; i < NUM_CONNECTIONS; i++)
					if (connections[i].fd == 0)
						break;

				if (i >= NUM_CONNECTIONS) {
					OFP_ERR("Node cannot accept new connections!");
					ofp_close(tmp_fd);
					continue;
				}

#if 0
				struct ofp_linger so_linger;
				so_linger.l_onoff = 1;
				so_linger.l_linger = 0;
				int r1 = ofp_setsockopt(tmp_fd,
							  OFP_SOL_SOCKET,
							  OFP_SO_LINGER,
							  &so_linger,
							  sizeof so_linger);
				if (r1) OFP_ERR("SO_LINGER failed!");
#endif
				struct ofp_timeval tv;
				tv.tv_sec = 3;
				tv.tv_usec = 0;
				int r2 = ofp_setsockopt(tmp_fd,
							  OFP_SOL_SOCKET,
							  OFP_SO_SNDTIMEO,
							  &tv,
							  sizeof tv);
				if (r2) OFP_ERR("SO_SNDTIMEO failed!");

				connections[i].fd = tmp_fd;
				connections[i].addr = caller.sin_addr.s_addr;
				connections[i].closed = FALSE;

				if (tmp_fd > nfds)
				        nfds = tmp_fd;
			}
		}

		for (i = 0; i < NUM_CONNECTIONS; i++) {
			if (connections[i].fd == 0)
				continue;

			if (!(OFP_FD_ISSET(connections[i].fd, &read_fd)))
				continue;

			r = ofp_recv(connections[i].fd, buf, sizeof(buf)-1, 0);
			if (r > 0) {
				buf[r] = 0;
				OFP_INFO("recv data: %s", buf);

				if (!strncmp(buf, "GET", 3))
					analyze_http(buf, connections[i].fd);
				else
					OFP_INFO("Not a HTTP GET request");

				OFP_INFO("closing %d\n", connections[i].fd);
				OFP_FD_CLR(connections[i].fd, &read_fd);
				while (ofp_close(connections[i].fd) < 0) {
					OFP_ERR("ofp_close failed, fd=%d err='%s'",
						connections[i].fd,
						ofp_strerror(ofp_errno));
					sleep(1);
				}
				OFP_INFO("closed fd=%d", connections[i].fd);
				connections[i].fd = 0;
			} else if (r == 0) {
				if (connections[i].post) {
					OFP_INFO("File download finished");
					fclose(connections[i].post);
					connections[i].post = NULL;
				}
				ofp_close(connections[i].fd);
				OFP_FD_CLR(connections[i].fd, &read_fd);
				connections[i].fd = 0;
			}
		}
	}

	OFP_INFO("httpd exiting");
	return NULL;
}
Exemple #15
0
static void *
sysctl(void *arg)
{
	(void)arg;

	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		return NULL;
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}
	sleep(2);

	/*
	 * Variables may be visible per thread. Addresses of the shared
	 * variables are not known at compile time. Also sometimes it may be
	 * necessary to create OIDs dynamically.
	 *
	 * Add an OID dynamically to the existing compile time
	 * created branch:
	 */
	static int created;

	OFP_SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_mybranch), OFP_OID_AUTO,
			     "created", OFP_CTLFLAG_RW, &created, 0,
			     "Dynamically created");

	/*
	 * Create a branch dynamically:
	 */
	struct ofp_sysctl_oid *dyn_root;

	dyn_root = OFP_SYSCTL_ADD_NODE
		(NULL,
		 SYSCTL_STATIC_CHILDREN(_mybranch), OFP_OID_AUTO, "subbranch",
		 OFP_CTLFLAG_RW, 0, "Dynamically created branch");

	/*
	 * Add a variable to that, for example one from the shared memory.
	 * Here we use a static integer.
	 */
	static int shared;

	OFP_SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(dyn_root), OFP_OID_AUTO,
			     "shared", OFP_CTLFLAG_RW, &shared, 0,
			     "Shared memory variable");
	/*
	 * Our branch is complete:
	 *
	 * 73 mybranch RW Node  (My test branch)
	 *   256 hello RW string  (Hello message)
	 *   261 ssh RW Node  (Ssh control)
	 *     257 counter R  int64_t  (Ssh counter)
	 *     259 enabled RW int  (Enable ssh protocol)
	 *   262 telnet RW Node  (Telnet control)
	 *     258 counter R  int64_t  (Telnet counter)
	 *     260 enabled RW int  (Enable telnet protocol)
	 *   328 created RW int  (Dynamically created)
	 *   329 subbranch RW Node  (Dynamically created branch)
	 *     330 shared RW int  (Shared memory variable)
	 */

	/*
	 * Use created variables. First set some meaningful values:
	 */
	telnet_bytes = 123456;
	ssh_bytes = 567890;
	strcpy(hello_msg, "Hello, world!");

	/*
	 * There are several functions to access MIB data. Simplest one
	 * is the following:
	 *
	 *   ofp_sysctl(const char *name, void *old, size_t *oldlenp,
	 *                const void *new, size_t newlen, size_t *retval)
	 *
	 *   name:    OID using string notation (like "net.inet.udp.checksum").
	 *   old:     Pointer to memory where old value will be saved.
	 *            Can be NULL.
	 *   oldlenp: Pointer to variable whose value is the result space
	 *            in bytes. Will be updated to the real space.
	 *   new:     Pointer to the new value. Can be NULL.
	 *   newlen:  Size of the new value in bytes or zero.
	 *   retval:  Pointer to a variable that will be set to
	 *            response's length.
	 */

	/*
	 * Read the telnet bytes:
	 */
	uint64_t counter;
	size_t counterlen = sizeof(counter);
	size_t retval;
	ofp_sysctl("mybranch.telnet.counter", &counter, &counterlen,
		     NULL, 0, &retval);
	OFP_INFO("mybranch.telnet.counter=%"PRIu64" len=%zu retval=%zu\n",
		  counter, counterlen, retval);
	/*
	 * Read the ssh bytes:
	 */
	ofp_sysctl("mybranch.ssh.counter", &counter, &counterlen,
		     NULL, 0, &retval);
	OFP_INFO("mybranch.ssh.counter=%"PRIu64" len=%zu retval=%zu\n",
		  counter, counterlen, retval);

	/*
	 * Check if telnet is enabled:
	 */
	int enabled;
	size_t enalen = sizeof(enabled);
	ofp_sysctl("mybranch.telnet.enabled", &enabled, &enalen,
		     NULL, 0, &retval);
	OFP_INFO("mybranch.telnet.enabled=%d\n", enabled);
	/*
	 * Disable telnet:
	 */
	enabled = 0;
	ofp_sysctl("mybranch.telnet.enabled", NULL, 0,
		     &enabled, sizeof(enabled), &retval);
	/*
	 * Check if that worked. Init variable with something to ensure it is
	 * really changed:
	 */
	enabled = 123;
	enalen = sizeof(enabled);
	ofp_sysctl("mybranch.telnet.enabled", &enabled, &enalen,
		     NULL, 0, &retval);
	OFP_INFO("After disabling: mybranch.telnet.enabled=%d, real value=%d\n",
		  enabled, enable_telnet);

	/*
	 * Read and change the hello message:
	 */
	char msg[32];
	size_t msglen = sizeof(msg);
	ofp_sysctl("mybranch.hello", msg, &msglen,
		     "Server is down.", 16, &retval);
	OFP_INFO("mybranch.hello: old value=%s, new value=%s\n",
		  msg, hello_msg);

	/*
	 * Make telnet connection to local address port 2345.
	 * Try commands:
	 *   sysctl dump
	 *   sysctl r mybranch.ssh.counter
	 *   sysctl w mybranch.ssh.enabled 1
	 *   sysctl w mybranch.ssh.counter 777
	 */

	while (1)
		sleep(1);

	return NULL;
}
Exemple #16
0
static void *mcasttest(void *arg)
{
	int fd;
	struct ofp_sockaddr_in my_addr;
	struct ofp_ip_mreq mreq;
	(void)arg;

	logprint("Multicast thread started\n");

	if (odp_init_local(ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		return NULL;
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		return NULL;
	}
	sleep(1);

	while (myaddr == 0) {
		myaddr = ofp_port_get_ipv4_addr(0, 0, OFP_PORTCONF_IP_TYPE_IP_ADDR);
		sleep(1);
	}

	if ((fd = ofp_socket(OFP_AF_INET, OFP_SOCK_DGRAM, OFP_IPPROTO_UDP)) < 0) {
		perror("socket");
		logprint("Cannot open socket!\n");
		return NULL;
	}

	memset(&my_addr, 0, sizeof(my_addr));
	my_addr.sin_family = OFP_AF_INET;
	my_addr.sin_port = odp_cpu_to_be_16(2048);
	my_addr.sin_addr.s_addr = 0;
	my_addr.sin_len = sizeof(my_addr);

	if (ofp_bind(fd, (struct ofp_sockaddr *)&my_addr,
		       sizeof(struct ofp_sockaddr)) < 0) {
		logprint("Cannot bind socket (%s)!\n", ofp_strerror(ofp_errno));
		return NULL;
	}

	memset(&mreq, 0, sizeof(mreq));
        mreq.imr_multiaddr.s_addr = IP4(234,5,5,5);
        mreq.imr_interface.s_addr = myaddr;
        if (ofp_setsockopt(fd, OFP_IPPROTO_IP, OFP_IP_ADD_MEMBERSHIP,
			   &mreq, sizeof(mreq)) == -1) {
		perror("setsockopt");
        }

	memset(&mreq, 0, sizeof(mreq));
        mreq.imr_multiaddr.s_addr = IP4(234,7,7,7);
        mreq.imr_interface.s_addr = myaddr;
        if (ofp_setsockopt(fd, OFP_IPPROTO_IP, OFP_IP_ADD_MEMBERSHIP,
			   &mreq, sizeof(mreq)) == -1) {
		perror("setsockopt");
        }

	for (;;) {
		char buf[100];
		int len = sizeof(buf);
		struct ofp_sockaddr_in addr = {0};
		ofp_socklen_t addr_len = 0;

		len = ofp_recvfrom(fd, buf, len, 0,
				   (struct ofp_sockaddr *)&addr, &addr_len);
		if (len == -1) {
			OFP_ERR("Faild to rcv data(errno = %d)\n", ofp_errno);
			continue;
		}

		buf[len] = 0;
		OFP_INFO("Data (%s, len = %d) was received.\n", buf, len);

		if (addr_len != sizeof(addr)) {
			OFP_ERR("Faild to rcv source address: %d (errno = %d)\n",
				addr_len, ofp_errno);
			continue;
		}

		if (strstr(buf, "add")) {
			OFP_INFO("Add membership to 234.7.7.7\n");
			memset(&mreq, 0, sizeof(mreq));
			mreq.imr_multiaddr.s_addr = IP4(234,7,7,7);
			mreq.imr_interface.s_addr = myaddr;
			if (ofp_setsockopt(fd, OFP_IPPROTO_IP, OFP_IP_ADD_MEMBERSHIP,
					   &mreq, sizeof(mreq)) == -1) {
				perror("setsockopt");
			}
		} else if (strstr(buf, "drop")) {
			OFP_INFO("Drop membership from 234.7.7.7\n");
			memset(&mreq, 0, sizeof(mreq));
			mreq.imr_multiaddr.s_addr = IP4(234,7,7,7);
			mreq.imr_interface.s_addr = myaddr;
			if (ofp_setsockopt(fd, OFP_IPPROTO_IP, OFP_IP_DROP_MEMBERSHIP,
					   &mreq, sizeof(mreq)) == -1) {
				perror("setsockopt");
			}
		} else if (strstr(buf, "quit")) {
			exit(0);
		}

		OFP_INFO("Data was received from address 0x%x, port = %d.\n",
			 odp_be_to_cpu_32(addr.sin_addr.s_addr),
			 odp_be_to_cpu_16(addr.sin_port));

		sprintf(buf, "%d bytes\n", len);

		if (ofp_sendto(fd, buf, strlen(buf), 0,
			       (struct ofp_sockaddr *)&addr,
			       sizeof(addr)) == -1) {
			OFP_ERR("Faild to send data (errno = %d)\n", ofp_errno);
		}
	}

	logprint("mcast exit\n");
	return NULL;
}
Exemple #17
0
/** main() Application entry point
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS], dispatcher_thread;
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpu_mask;
	int first_cpu, i;
	struct pktio_thr_arg pktio_thr_args[MAX_WORKERS];
	odp_pktio_param_t pktio_param;
	odp_pktin_queue_param_t pktin_param;
	odp_pktout_queue_param_t pktout_param;
	odp_pktio_t pktio;
	int port, queue_id;
	odph_linux_thr_params_t thr_params;
	odp_instance_t instance;

	struct pktin_table_s {
		int	num_in_queue;
		odp_pktin_queue_t in_queue[OFP_PKTIN_QUEUE_MAX];
	} pktin_table[OFP_FP_INTERFACE_MAX];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	if (params.if_count > OFP_FP_INTERFACE_MAX) {
		printf("Error: Invalid number of interfaces: maximum %d\n",
			OFP_FP_INTERFACE_MAX);
		exit(EXIT_FAILURE);
	}

	if (odp_init_global(&instance, NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (odp_init_local(instance, ODP_THREAD_CONTROL)) {
		OFP_ERR("Error: ODP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count && params.core_count < core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;
	/*
	 * By default core #0 runs Linux kernel background tasks.
	 * Start mapping thread from core #1
	 */
	if (num_workers > 1) {
		num_workers--;
		first_cpu = 1;
	} else {
		OFP_ERR("Burst mode requires multiple cores.\n");
		exit(EXIT_FAILURE);
	}

	if (num_workers < params.if_count) {
		OFP_ERR("At least %u fastpath cores required.\n",
			  params.if_count);
		exit(EXIT_FAILURE);
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", first_cpu);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;

	if (ofp_init_global(instance, &app_init_params)) {
		OFP_ERR("Error: OFP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	if (ofp_init_local()) {
		OFP_ERR("Error: OFP local init failed.\n");
		exit(EXIT_FAILURE);
	}

	odp_pktio_param_init(&pktio_param);
	pktio_param.in_mode = ODP_PKTIN_MODE_DIRECT;
	pktio_param.out_mode = ODP_PKTOUT_MODE_DIRECT;

	odp_pktin_queue_param_init(&pktin_param);
	pktin_param.op_mode = ODP_PKTIO_OP_MT;
	pktin_param.hash_enable = 0;
	pktin_param.hash_proto.all_bits = 0;
	pktin_param.num_queues = 1;

	odp_pktout_queue_param_init(&pktout_param);
	pktout_param.num_queues = 1;
	pktout_param.op_mode = ODP_PKTIO_OP_MT;

	for (i = 0; i < params.if_count; i++) {
		if (ofp_ifnet_create(instance, params.if_names[i],
				&pktio_param,
				&pktin_param,
				&pktout_param) < 0) {
			OFP_ERR("Failed to init interface %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}

		pktio = odp_pktio_lookup(params.if_names[i]);
		if (pktio == ODP_PKTIO_INVALID) {
			OFP_ERR("Failed locate pktio %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}
		pktin_table[i].num_in_queue = odp_pktin_queue(pktio,
			pktin_table[i].in_queue, OFP_PKTIN_QUEUE_MAX);

		if (pktin_table[i].num_in_queue < 0) {
			OFP_ERR("Failed get input queues for %s",
				params.if_names[i]);
			exit(EXIT_FAILURE);
		}
	}

	memset(thread_tbl, 0, sizeof(thread_tbl));
	memset(pktio_thr_args, 0, sizeof(pktio_thr_args));

	for (i = 0; i < num_workers; ++i) {
		pktio_thr_args[i].pkt_func = ofp_eth_vlan_processing;

		port = i % params.if_count;
		queue_id = (i / params.if_count) %
			pktin_table[port].num_in_queue;
		pktio_thr_args[i].pktin = pktin_table[port].in_queue[queue_id];

		odp_cpumask_zero(&cpu_mask);
		odp_cpumask_set(&cpu_mask, first_cpu + i);

		thr_params.start = pkt_io_recv;
		thr_params.arg = &pktio_thr_args[i];
		thr_params.thr_type = ODP_THREAD_WORKER;
		thr_params.instance = instance;
		odph_linux_pthread_create(&thread_tbl[i],
					  &cpu_mask,
					  &thr_params);
	}

	odp_cpumask_zero(&cpu_mask);
	odp_cpumask_set(&cpu_mask, app_init_params.linux_core_id);
	thr_params.start = event_dispatcher;
	thr_params.arg = NULL;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	odph_linux_pthread_create(&dispatcher_thread,
				  &cpu_mask,
				  &thr_params);

	/* Start CLI */
	ofp_start_cli_thread(instance, app_init_params.linux_core_id,
		params.conf_file);

	odph_linux_pthread_join(thread_tbl, num_workers);
	printf("End Main()\n");

	return 0;
}
Exemple #18
0
/**
 * main() Application entry point
 *
 * This is the main function of the FPM application, it's a minimalistic
 * example, see 'usage' function for available arguments and usage.
 *
 * Using the number of available cores as input, this example sets up
 * ODP dispatcher threads executing OFP VLAN processesing and starts
 * a CLI function on a managment core.
 *
 * @param argc int
 * @param argv[] char*
 * @return int
 *
 */
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS];
	appl_args_t params;
	int core_count, num_workers, ret_val;
	odp_cpumask_t cpumask;
	char cpumaskstr[64];
	odph_linux_thr_params_t thr_params;
	odp_instance_t instance;

	/* Parse and store the application arguments */
	if (parse_args(argc, argv, &params) != EXIT_SUCCESS)
		return EXIT_FAILURE;

	if (ofp_sigactions_set(ofp_sig_func_stop)) {
		printf("Error: failed to set signal actions.\n");
		return EXIT_FAILURE;
	}

	/*
	 * Before any ODP API functions can be called, we must first init the ODP
	 * globals, e.g. availale accelerators or software implementations for
	 * shared memory, threads, pool, qeueus, sheduler, pktio, timer, crypto
	 * and classification.
	 */
	if (odp_init_global(&instance, NULL, NULL)) {
		printf("Error: ODP global init failed.\n");
		return EXIT_FAILURE;
	}

	/*
	 * When the gloabel ODP level init has been done, we can now issue a
	 * local init per thread. This must also be done before any other ODP API
	 * calls may be made. Local inits are made here for shared memory,
	 * threads, pktio and scheduler.
	 */
	if (odp_init_local(instance, ODP_THREAD_CONTROL) != 0) {
		printf("Error: ODP local init failed.\n");
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	/*
	 * Get the number of cores available to ODP, one run-to-completion thread
	 * will be created per core.
	 */
	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count;
	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	/*
	 * This example assumes that core #0 runs Linux kernel background tasks.
	 * By default, cores #1 and beyond will be populated with a OFP
	 * processing thread each.
	 */
	memset(&app_init_params, 0, sizeof(app_init_params));

	app_init_params.linux_core_id = 0;

	if (core_count > 1)
		num_workers--;

	/*
	 * Initializes cpumask with CPUs available for worker threads.
	 * Sets up to 'num' CPUs and returns the count actually set.
	 * Use zero for all available CPUs.
	 */
	num_workers = odp_cpumask_default_worker(&cpumask, num_workers);
	if (odp_cpumask_to_str(&cpumask, cpumaskstr, sizeof(cpumaskstr)) < 0) {
		printf("Error: Too small buffer provided to "
			"odp_cpumask_to_str\n");
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", odp_cpumask_first(&cpumask));
	printf("cpu mask:           %s\n", cpumaskstr);

	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.pkt_hook[OFP_HOOK_LOCAL] = fastpath_local_hook;

	/*
	 * Now that ODP has been initalized, we can initialize OFP. This will
	 * open a pktio instance for each interface supplied as argument by the
	 * user.
	 *
	 * General configuration will be to pktio and schedluer queues here in
	 * addition will fast path interface configuration.
	 */
	if (ofp_init_global(instance, &app_init_params) != 0) {
		printf("Error: OFP global init failed.\n");
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	if (ofp_init_local() != 0) {
		printf("Error: OFP local init failed.\n");
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * Create and launch dataplane dispatcher worker threads to be placed
	 * according to the cpumask, thread_tbl will be populated with the
	 * created pthread IDs.
	 *
	 * In this case, all threads will run the default_event_dispatcher
	 * function with ofp_eth_vlan_processing as argument.
	 *
	 * If different dispatchers should run, or the same be run with differnt
	 * input arguments, the cpumask is used to control this.
	 */
	memset(thread_tbl, 0, sizeof(thread_tbl));
	thr_params.start = default_event_dispatcher;
	thr_params.arg = ofp_eth_vlan_processing;
	thr_params.thr_type = ODP_THREAD_WORKER;
	thr_params.instance = instance;
	ret_val = odph_linux_pthread_create(thread_tbl,
					    &cpumask,
					    &thr_params);
	if (ret_val != num_workers) {
		OFP_ERR("Error: Failed to create worker threads, "
			"expected %d, got %d",
			num_workers, ret_val);
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * Now when the ODP dispatcher threads are running, further applications
	 * can be launched, in this case, we will start the OFP CLI thread on
	 * the management core, i.e. not competing for cpu cycles with the
	 * worker threads
	 */
	if (ofp_start_cli_thread(instance, app_init_params.linux_core_id,
		params.conf_file) < 0) {
		OFP_ERR("Error: Failed to init CLI thread");
		ofp_stop_processing();
		odph_linux_pthread_join(thread_tbl, num_workers);
		ofp_term_local();
		ofp_term_global();
		odp_term_local();
		odp_term_global(instance);
		return EXIT_FAILURE;
	}

	/*
	 * If we choose to check performance, a performance monitoring client
	 * will be started on the management core. Once every second it will
	 * read the statistics from the workers from a shared memory region.
	 * Using this has negligible performance impact (<<0.01%).
	 */
	if (params.perf_stat) {
		if (start_performance(instance,
			app_init_params.linux_core_id) <= 0) {
			OFP_ERR("Error: Failed to init performance monitor");
			ofp_stop_processing();
			odph_linux_pthread_join(thread_tbl, num_workers);
			ofp_term_local();
			ofp_term_global();
			odp_term_local();
			odp_term_global(instance);
			return EXIT_FAILURE;
		}
	}

	/*
	 * Wait here until all worker threads have terminated, then free up all
	 * resources allocated by odp_init_global().
	 */
	odph_linux_pthread_join(thread_tbl, num_workers);

	if (ofp_term_local() < 0)
		printf("Error: ofp_term_local failed\n");

	if (ofp_term_global() < 0)
		printf("Error: ofp_term_global failed\n");

	if (odp_term_local() < 0)
		printf("Error: odp_term_local failed\n");

	if (odp_term_global(instance) < 0)
		printf("Error: odp_term_global failed\n");

	printf("FPM End Main()\n");

	return EXIT_SUCCESS;
}
Exemple #19
0
int main(int argc, char *argv[])
{
	odph_linux_pthread_t thread_tbl[MAX_WORKERS], dispatcher_thread;
	appl_args_t params;
	int core_count, num_workers;
	odp_cpumask_t cpu_mask;
	char cpumaskstr[64];
	int cpu, first_cpu, i;
	struct pktio_thr_arg pktio_thr_args[MAX_WORKERS];

	/* Parse and store the application arguments */
	parse_args(argc, argv, &params);

	/* Print both system and application information */
	print_info(NO_PATH(argv[0]), &params);

	if (odp_init_global(NULL, NULL)) {
		OFP_ERR("Error: ODP global init failed.\n");
		exit(EXIT_FAILURE);
	}
	odp_init_local(ODP_THREAD_CONTROL);

	memset(&app_init_params, 0, sizeof(app_init_params));
	app_init_params.linux_core_id = 0;
	app_init_params.if_count = params.if_count;
	app_init_params.if_names = params.if_names;
	app_init_params.burst_recv_mode = 1;

	ofp_init_global(&app_init_params);
	ofp_init_local();

	memset(thread_tbl, 0, sizeof(thread_tbl));
	memset(pktio_thr_args, 0, sizeof(pktio_thr_args));

	core_count = odp_cpu_count();
	num_workers = core_count;

	if (params.core_count)
		num_workers = params.core_count < core_count?
			params.core_count: core_count;

	first_cpu = 1;
	num_workers -= first_cpu;

	if (num_workers > MAX_WORKERS)
		num_workers = MAX_WORKERS;

	if (num_workers < params.if_count) {
		OFP_ERR("At least %u fastpath cores required.\n",
			  params.if_count);
		exit(EXIT_FAILURE);
	}

	printf("Num worker threads: %i\n", num_workers);
	printf("first CPU:          %i\n", first_cpu);

	for (i = 0; i < num_workers; ++i) {
		pktio_thr_args[i].pkt_func = ofp_eth_vlan_processing;
		pktio_thr_args[i].port = i % params.if_count;

		odp_cpumask_zero(&cpu_mask);
		cpu = first_cpu + i;
		odp_cpumask_set(&cpu_mask, cpu);
		odp_cpumask_to_str(&cpu_mask, cpumaskstr, sizeof(cpumaskstr));

		OFP_DBG("Starting pktio receive on core: %d port: %d\n",
			  cpu, pktio_thr_args[i].port);
		OFP_DBG("cpu mask: %s\n", cpumaskstr);

		ofp_linux_pthread_create(&thread_tbl[i],
					  &cpu_mask,
					  pkt_io_recv,
					  &pktio_thr_args[i],
					  ODP_THREAD_WORKER
					);
	}

	odp_cpumask_zero(&cpu_mask);
	odp_cpumask_set(&cpu_mask, app_init_params.linux_core_id + 1);
	ofp_linux_pthread_create(&dispatcher_thread,
				  &cpu_mask,
				  event_dispatcher,
				  NULL,
				  ODP_THREAD_CONTROL
				);

	/* Start CLI */
	ofp_start_cli_thread(app_init_params.linux_core_id, params.conf_file);

	sleep(1);

	udp_fwd_cfg(params.sock_count, params.laddr, params.raddr);

	odph_linux_pthread_join(thread_tbl, num_workers);

	printf("End Main()\n");
	return 0;
}
int default_event_dispatcher(void *arg)
{
	odp_event_t ev;
	odp_packet_t pkt;
	odp_queue_t in_queue;
	int event_idx = 0;
	int event_cnt = 0;
	ofp_pkt_processing_func pkt_func = (ofp_pkt_processing_func)arg;
	odp_bool_t *is_running = NULL;

	if (ofp_init_local()) {
		OFP_ERR("ofp_init_local failed");
		return -1;
	}

	int rx_burst = global_param->evt_rx_burst_size;
	odp_event_t events[rx_burst];

	is_running = ofp_get_processing_state();
	if (is_running == NULL) {
		OFP_ERR("ofp_get_processing_state failed");
		ofp_term_local();
		return -1;
	}

	/* PER CORE DISPATCHER */
	while (*is_running) {
		event_cnt = odp_schedule_multi(&in_queue, ODP_SCHED_WAIT,
					 events, rx_burst);
		for (event_idx = 0; event_idx < event_cnt; event_idx++) {
			odp_event_type_t ev_type;

			ev = events[event_idx];

			if (ev == ODP_EVENT_INVALID)
				continue;
			ev_type = odp_event_type(ev);

			if (odp_likely(ev_type == ODP_EVENT_PACKET)) {
				pkt = odp_packet_from_event(ev);
#if 0
				if (odp_unlikely(odp_packet_has_error(pkt))) {
					OFP_DBG("Dropping packet with error");
					odp_packet_free(pkt);
					continue;
				}
#endif
				ofp_packet_input(pkt, in_queue, pkt_func);
				continue;
			}
			if (ev_type == ODP_EVENT_TIMEOUT) {
				ofp_timer_handle(ev);
				continue;
			}

			OFP_ERR("Unexpected event type: %u", ev_type);
			odp_event_free(ev);
		}
		ofp_send_pending_pkt();
	}

	if (ofp_term_local())
		OFP_ERR("ofp_term_local failed");

	return 0;
}
Exemple #21
0
void *default_event_dispatcher(void *arg)
{
	odp_event_t ev;
	odp_packet_t pkt;
	odp_queue_t in_queue;
	odp_event_t events[OFP_EVT_RX_BURST_SIZE];
	int event_idx = 0;
	int event_cnt = 0;
	ofp_pkt_processing_func pkt_func = (ofp_pkt_processing_func)arg;
	odp_bool_t *is_running = NULL;

#if ODP_VERSION < 106
	if (odp_init_local(ODP_THREAD_WORKER)) {
		OFP_ERR("odp_init_local failed");
		return NULL;
	}
#endif

	if (ofp_init_local()) {
		OFP_ERR("ofp_init_local failed");
		return NULL;
	}

	is_running = ofp_get_processing_state();
	if (is_running == NULL) {
		OFP_ERR("ofp_get_processing_state failed");
		ofp_term_local();
		return NULL;
	}

	/* PER CORE DISPATCHER */
	while (*is_running) {
		event_cnt = odp_schedule_multi(&in_queue, ODP_SCHED_WAIT,
					 events, OFP_EVT_RX_BURST_SIZE);
		for (event_idx = 0; event_idx < event_cnt; event_idx++) {
			ev = events[event_idx];

			if (ev == ODP_EVENT_INVALID)
				continue;

			if (odp_event_type(ev) == ODP_EVENT_TIMEOUT) {
				ofp_timer_handle(ev);
				continue;
			}

			if (odp_event_type(ev) == ODP_EVENT_PACKET) {
				pkt = odp_packet_from_event(ev);
#if 0
				if (odp_unlikely(odp_packet_has_error(pkt))) {
					OFP_DBG("Dropping packet with error");
					odp_packet_free(pkt);
					continue;
				}
#endif
				ofp_packet_input(pkt, in_queue, pkt_func);
				continue;
			}

			OFP_ERR("Unexpected event type: %u", odp_event_type(ev));

			/* Free events by type */
			if (odp_event_type(ev) == ODP_EVENT_BUFFER) {
				odp_buffer_free(odp_buffer_from_event(ev));
				continue;
			}

			if (odp_event_type(ev) == ODP_EVENT_CRYPTO_COMPL) {
				odp_crypto_compl_free(
					odp_crypto_compl_from_event(ev));
				continue;
			}

		}
		ofp_send_pending_pkt();
	}

	if (ofp_term_local())
		OFP_ERR("ofp_term_local failed");

	return NULL;
}