static int get_it( PKT_pubkey_enc *enc, DEK *dek, PKT_secret_key *sk, u32 *keyid ) { int rc; gcry_mpi_t plain_dek = NULL; byte *frame = NULL; unsigned int n; size_t nframe; u16 csum, csum2; int card = 0; if (sk->is_protected && sk->protect.s2k.mode == 1002) { /* Note, that we only support RSA for now. */ #ifdef ENABLE_CARD_SUPPORT unsigned char *rbuf; size_t rbuflen; char *snbuf; unsigned char *indata = NULL; size_t indatalen; snbuf = serialno_and_fpr_from_sk (sk->protect.iv, sk->protect.ivlen, sk); if (gcry_mpi_aprint (GCRYMPI_FMT_USG, &indata, &indatalen, enc->data[0])) BUG (); rc = agent_scd_pkdecrypt (snbuf, indata, indatalen, &rbuf, &rbuflen); xfree (snbuf); xfree (indata); if (rc) goto leave; frame = rbuf; nframe = rbuflen; card = 1; #else rc = gpg_error (GPG_ERR_NOT_SUPPORTED); goto leave; #endif /*!ENABLE_CARD_SUPPORT*/ } else { rc = pk_decrypt (sk->pubkey_algo, &plain_dek, enc->data, sk->skey ); if( rc ) goto leave; if (gcry_mpi_aprint (GCRYMPI_FMT_USG, &frame, &nframe, plain_dek)) BUG(); gcry_mpi_release (plain_dek); plain_dek = NULL; } /* Now get the DEK (data encryption key) from the frame * * Old versions encode the DEK in in this format (msb is left): * * 0 1 DEK(16 bytes) CSUM(2 bytes) 0 RND(n bytes) 2 * * Later versions encode the DEK like this: * * 0 2 RND(n bytes) 0 A DEK(k bytes) CSUM(2 bytes) * * (mpi_get_buffer already removed the leading zero). * * RND are non-zero randow bytes. * A is the cipher algorithm * DEK is the encryption key (session key) with length k * CSUM */ if (DBG_CIPHER) log_printhex ("DEK frame:", frame, nframe ); n=0; if (!card) { if( n + 7 > nframe ) { rc = G10ERR_WRONG_SECKEY; goto leave; } if( frame[n] == 1 && frame[nframe-1] == 2 ) { log_info(_("old encoding of the DEK is not supported\n")); rc = G10ERR_CIPHER_ALGO; goto leave; } if( frame[n] != 2 ) /* somethink is wrong */ { rc = G10ERR_WRONG_SECKEY; goto leave; } for(n++; n < nframe && frame[n]; n++ ) /* skip the random bytes */ ; n++; /* and the zero byte */ } if( n + 4 > nframe ) { rc = G10ERR_WRONG_SECKEY; goto leave; } dek->keylen = nframe - (n+1) - 2; dek->algo = frame[n++]; if( dek->algo == CIPHER_ALGO_IDEA ) write_status(STATUS_RSA_OR_IDEA); rc = openpgp_cipher_test_algo (dek->algo); if( rc ) { if( !opt.quiet && gpg_err_code (rc) == GPG_ERR_CIPHER_ALGO ) { log_info(_("cipher algorithm %d%s is unknown or disabled\n"), dek->algo, dek->algo == CIPHER_ALGO_IDEA? " (IDEA)":""); if(dek->algo==CIPHER_ALGO_IDEA) idea_cipher_warn (0); } dek->algo = 0; goto leave; } if ( dek->keylen != openpgp_cipher_get_algo_keylen (dek->algo) ) { rc = GPG_ERR_WRONG_SECKEY; goto leave; } /* copy the key to DEK and compare the checksum */ csum = frame[nframe-2] << 8; csum |= frame[nframe-1]; memcpy( dek->key, frame+n, dek->keylen ); for( csum2=0, n=0; n < dek->keylen; n++ ) csum2 += dek->key[n]; if( csum != csum2 ) { rc = G10ERR_WRONG_SECKEY; goto leave; } if( DBG_CIPHER ) log_printhex ("DEK is:", dek->key, dek->keylen ); /* check that the algo is in the preferences and whether it has expired */ { PKT_public_key *pk = NULL; KBNODE pkb = get_pubkeyblock (keyid); if( !pkb ) { rc = -1; log_error("oops: public key not found for preference check\n"); } else if(pkb->pkt->pkt.public_key->selfsigversion > 3 && dek->algo != CIPHER_ALGO_3DES && !opt.quiet && !is_algo_in_prefs( pkb, PREFTYPE_SYM, dek->algo )) log_info (_("WARNING: cipher algorithm %s not found in recipient" " preferences\n"), openpgp_cipher_algo_name (dek->algo)); if (!rc) { KBNODE k; for (k=pkb; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY){ u32 aki[2]; keyid_from_pk(k->pkt->pkt.public_key, aki); if (aki[0]==keyid[0] && aki[1]==keyid[1]) { pk = k->pkt->pkt.public_key; break; } } } if (!pk) BUG (); if ( pk->expiredate && pk->expiredate <= make_timestamp() ) { log_info(_("NOTE: secret key %s expired at %s\n"), keystr(keyid), asctimestamp( pk->expiredate) ); } } if ( pk && pk->is_revoked ) { log_info( _("NOTE: key has been revoked") ); log_printf ("\n"); show_revocation_reason( pk, 1 ); } release_kbnode (pkb); rc = 0; } leave: gcry_mpi_release (plain_dek); xfree (frame); return rc; }
static int xxxx_do_check( PKT_secret_key *sk, const char *tryagain_text, int mode, int *canceled ) { gpg_error_t err; byte *buffer; u16 csum=0; int i, res; size_t nbytes; if( sk->is_protected ) { /* remove the protection */ DEK *dek = NULL; u32 keyid[4]; /* 4! because we need two of them */ gcry_cipher_hd_t cipher_hd=NULL; PKT_secret_key *save_sk; if( sk->protect.s2k.mode == 1001 ) { log_info(_("secret key parts are not available\n")); return GPG_ERR_UNUSABLE_SECKEY; } if( sk->protect.algo == CIPHER_ALGO_NONE ) BUG(); if( openpgp_cipher_test_algo( sk->protect.algo ) ) { log_info(_("protection algorithm %d%s is not supported\n"), sk->protect.algo,sk->protect.algo==1?" (IDEA)":"" ); return GPG_ERR_CIPHER_ALGO; } if(gcry_md_test_algo (sk->protect.s2k.hash_algo)) { log_info(_("protection digest %d is not supported\n"), sk->protect.s2k.hash_algo); return GPG_ERR_DIGEST_ALGO; } keyid_from_sk( sk, keyid ); keyid[2] = keyid[3] = 0; if (!sk->flags.primary) { keyid[2] = sk->main_keyid[0]; keyid[3] = sk->main_keyid[1]; } dek = passphrase_to_dek( keyid, sk->pubkey_algo, sk->protect.algo, &sk->protect.s2k, mode, tryagain_text, canceled ); if (!dek && canceled && *canceled) return GPG_ERR_CANCELED; err = openpgp_cipher_open (&cipher_hd, sk->protect.algo, GCRY_CIPHER_MODE_CFB, (GCRY_CIPHER_SECURE | (sk->protect.algo >= 100 ? 0 : GCRY_CIPHER_ENABLE_SYNC))); if (err) log_fatal ("cipher open failed: %s\n", gpg_strerror (err) ); err = gcry_cipher_setkey (cipher_hd, dek->key, dek->keylen); if (err) log_fatal ("set key failed: %s\n", gpg_strerror (err) ); xfree(dek); save_sk = copy_secret_key( NULL, sk ); gcry_cipher_setiv ( cipher_hd, sk->protect.iv, sk->protect.ivlen ); csum = 0; if( sk->version >= 4 ) { int ndata; unsigned int ndatabits; byte *p, *data; u16 csumc = 0; i = pubkey_get_npkey(sk->pubkey_algo); assert ( gcry_mpi_get_flag (sk->skey[i], GCRYMPI_FLAG_OPAQUE )); p = gcry_mpi_get_opaque ( sk->skey[i], &ndatabits ); ndata = (ndatabits+7)/8; if ( ndata > 1 ) csumc = buf16_to_u16 (p+ndata-2); data = xmalloc_secure ( ndata ); gcry_cipher_decrypt ( cipher_hd, data, ndata, p, ndata ); gcry_mpi_release (sk->skey[i]); sk->skey[i] = NULL ; p = data; if (sk->protect.sha1chk) { /* This is the new SHA1 checksum method to detect tampering with the key as used by the Klima/Rosa attack */ sk->csum = 0; csum = 1; if( ndata < 20 ) log_error("not enough bytes for SHA-1 checksum\n"); else { gcry_md_hd_t h; if ( gcry_md_open (&h, DIGEST_ALGO_SHA1, 1)) BUG(); /* Algo not available. */ gcry_md_write (h, data, ndata - 20); gcry_md_final (h); if (!memcmp (gcry_md_read (h, DIGEST_ALGO_SHA1), data + ndata - 20, 20) ) { /* Digest does match. We have to keep the old style checksum in sk->csum, so that the test used for unprotected keys does work. This test gets used when we are adding new keys. */ sk->csum = csum = checksum (data, ndata-20); } gcry_md_close (h); } } else { if( ndata < 2 ) { log_error("not enough bytes for checksum\n"); sk->csum = 0; csum = 1; } else { csum = checksum( data, ndata-2); sk->csum = data[ndata-2] << 8 | data[ndata-1]; if ( sk->csum != csum ) { /* This is a PGP 7.0.0 workaround */ sk->csum = csumc; /* take the encrypted one */ } } } /* Must check it here otherwise the mpi_read_xx would fail because the length may have an arbitrary value */ if( sk->csum == csum ) { for( ; i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { if ( gcry_mpi_scan( &sk->skey[i], GCRYMPI_FMT_PGP, p, ndata, &nbytes)) { /* Checksum was okay, but not correctly decrypted. */ sk->csum = 0; csum = 1; break; } ndata -= nbytes; p += nbytes; } /* Note: at this point ndata should be 2 for a simple checksum or 20 for the sha1 digest */ } xfree(data); } else { for(i=pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { byte *p; size_t ndata; unsigned int ndatabits; assert (gcry_mpi_get_flag (sk->skey[i], GCRYMPI_FLAG_OPAQUE)); p = gcry_mpi_get_opaque (sk->skey[i], &ndatabits); ndata = (ndatabits+7)/8; assert (ndata >= 2); assert (ndata == ((p[0] << 8 | p[1]) + 7)/8 + 2); buffer = xmalloc_secure (ndata); gcry_cipher_sync (cipher_hd); buffer[0] = p[0]; buffer[1] = p[1]; gcry_cipher_decrypt (cipher_hd, buffer+2, ndata-2, p+2, ndata-2); csum += checksum (buffer, ndata); gcry_mpi_release (sk->skey[i]); err = gcry_mpi_scan( &sk->skey[i], GCRYMPI_FMT_PGP, buffer, ndata, &ndata ); xfree (buffer); if (err) { /* Checksum was okay, but not correctly decrypted. */ sk->csum = 0; csum = 1; break; } /* csum += checksum_mpi (sk->skey[i]); */ } } gcry_cipher_close ( cipher_hd ); /* Now let's see whether we have used the correct passphrase. */ if( csum != sk->csum ) { copy_secret_key( sk, save_sk ); passphrase_clear_cache ( keyid, NULL, sk->pubkey_algo ); free_secret_key( save_sk ); return gpg_error (GPG_ERR_BAD_PASSPHRASE); } /* The checksum may fail, so we also check the key itself. */ res = pk_check_secret_key ( sk->pubkey_algo, sk->skey ); if( res ) { copy_secret_key( sk, save_sk ); passphrase_clear_cache ( keyid, NULL, sk->pubkey_algo ); free_secret_key( save_sk ); return gpg_error (GPG_ERR_BAD_PASSPHRASE); } free_secret_key( save_sk ); sk->is_protected = 0; } else { /* not protected, assume it is okay if the checksum is okay */ csum = 0; for(i=pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { csum += checksum_mpi( sk->skey[i] ); } if( csum != sk->csum ) return GPG_ERR_CHECKSUM; } return 0; }
/**************** * Decrypt the data, specified by ED with the key DEK. */ int decrypt_data( void *procctx, PKT_encrypted *ed, DEK *dek ) { decode_filter_ctx_t dfx; byte *p; int rc=0, c, i; byte temp[32]; unsigned blocksize; unsigned nprefix; dfx = xtrycalloc (1, sizeof *dfx); if (!dfx) return gpg_error_from_syserror (); dfx->refcount = 1; if ( opt.verbose && !dek->algo_info_printed ) { if (!openpgp_cipher_test_algo (dek->algo)) log_info (_("%s encrypted data\n"), openpgp_cipher_algo_name (dek->algo)); else log_info (_("encrypted with unknown algorithm %d\n"), dek->algo ); dek->algo_info_printed = 1; } rc = openpgp_cipher_test_algo (dek->algo); if (rc) goto leave; blocksize = openpgp_cipher_get_algo_blklen (dek->algo); if ( !blocksize || blocksize > 16 ) log_fatal ("unsupported blocksize %u\n", blocksize ); nprefix = blocksize; if ( ed->len && ed->len < (nprefix+2) ) BUG(); if ( ed->mdc_method ) { if (gcry_md_open (&dfx->mdc_hash, ed->mdc_method, 0 )) BUG (); if ( DBG_HASHING ) gcry_md_start_debug (dfx->mdc_hash, "checkmdc"); } rc = openpgp_cipher_open (&dfx->cipher_hd, dek->algo, GCRY_CIPHER_MODE_CFB, (GCRY_CIPHER_SECURE | ((ed->mdc_method || dek->algo >= 100)? 0 : GCRY_CIPHER_ENABLE_SYNC))); if (rc) { /* We should never get an error here cause we already checked * that the algorithm is available. */ BUG(); } /* log_hexdump( "thekey", dek->key, dek->keylen );*/ rc = gcry_cipher_setkey (dfx->cipher_hd, dek->key, dek->keylen); if ( gpg_err_code (rc) == GPG_ERR_WEAK_KEY ) { log_info(_("WARNING: message was encrypted with" " a weak key in the symmetric cipher.\n")); rc=0; } else if( rc ) { log_error("key setup failed: %s\n", g10_errstr(rc) ); goto leave; } if (!ed->buf) { log_error(_("problem handling encrypted packet\n")); goto leave; } gcry_cipher_setiv (dfx->cipher_hd, NULL, 0); if ( ed->len ) { for (i=0; i < (nprefix+2) && ed->len; i++, ed->len-- ) { if ( (c=iobuf_get(ed->buf)) == -1 ) break; else temp[i] = c; } } else { for (i=0; i < (nprefix+2); i++ ) if ( (c=iobuf_get(ed->buf)) == -1 ) break; else temp[i] = c; } gcry_cipher_decrypt (dfx->cipher_hd, temp, nprefix+2, NULL, 0); gcry_cipher_sync (dfx->cipher_hd); p = temp; /* log_hexdump( "prefix", temp, nprefix+2 ); */ if (dek->symmetric && (p[nprefix-2] != p[nprefix] || p[nprefix-1] != p[nprefix+1]) ) { rc = gpg_error (GPG_ERR_BAD_KEY); goto leave; } if ( dfx->mdc_hash ) gcry_md_write (dfx->mdc_hash, temp, nprefix+2); dfx->refcount++; if ( ed->mdc_method ) iobuf_push_filter ( ed->buf, mdc_decode_filter, dfx ); else iobuf_push_filter ( ed->buf, decode_filter, dfx ); proc_packets ( procctx, ed->buf ); ed->buf = NULL; if ( ed->mdc_method && dfx->eof_seen == 2 ) rc = gpg_error (GPG_ERR_INV_PACKET); else if ( ed->mdc_method ) { /* We used to let parse-packet.c handle the MDC packet but this turned out to be a problem with compressed packets: With old style packets there is no length information available and the decompressor uses an implicit end. However we can't know this implicit end beforehand (:-) and thus may feed the decompressor with more bytes than actually needed. It would be possible to unread the extra bytes but due to our weird iobuf system any unread is non reliable due to filters already popped off. The easy and sane solution is to care about the MDC packet only here and never pass it to the packet parser. Fortunatley the OpenPGP spec requires a strict format for the MDC packet so that we know that 22 bytes are appended. */ int datalen = gcry_md_get_algo_dlen (ed->mdc_method); assert (dfx->cipher_hd); assert (dfx->mdc_hash); gcry_cipher_decrypt (dfx->cipher_hd, dfx->defer, 22, NULL, 0); gcry_md_write (dfx->mdc_hash, dfx->defer, 2); gcry_md_final (dfx->mdc_hash); if (dfx->defer[0] != '\xd3' || dfx->defer[1] != '\x14' ) { log_error("mdc_packet with invalid encoding\n"); rc = gpg_error (GPG_ERR_INV_PACKET); } else if (datalen != 20 || memcmp (gcry_md_read (dfx->mdc_hash, 0), dfx->defer+2,datalen )) rc = gpg_error (GPG_ERR_BAD_SIGNATURE); /* log_printhex("MDC message:", dfx->defer, 22); */ /* log_printhex("MDC calc:", gcry_md_read (dfx->mdc_hash,0), datalen); */ } leave: release_dfx_context (dfx); return rc; }
/**************** * Decrypt the data, specified by ED with the key DEK. */ int decrypt_data (ctrl_t ctrl, void *procctx, PKT_encrypted *ed, DEK *dek) { decode_filter_ctx_t dfx; byte *p; int rc=0, c, i; byte temp[32]; unsigned blocksize; unsigned nprefix; dfx = xtrycalloc (1, sizeof *dfx); if (!dfx) return gpg_error_from_syserror (); dfx->refcount = 1; if ( opt.verbose && !dek->algo_info_printed ) { if (!openpgp_cipher_test_algo (dek->algo)) log_info (_("%s encrypted data\n"), openpgp_cipher_algo_name (dek->algo)); else log_info (_("encrypted with unknown algorithm %d\n"), dek->algo ); dek->algo_info_printed = 1; } { char buf[20]; snprintf (buf, sizeof buf, "%d %d", ed->mdc_method, dek->algo); write_status_text (STATUS_DECRYPTION_INFO, buf); } if (opt.show_session_key) { char numbuf[25]; char *hexbuf; snprintf (numbuf, sizeof numbuf, "%d:", dek->algo); hexbuf = bin2hex (dek->key, dek->keylen, NULL); if (!hexbuf) { rc = gpg_error_from_syserror (); goto leave; } log_info ("session key: '%s%s'\n", numbuf, hexbuf); write_status_strings (STATUS_SESSION_KEY, numbuf, hexbuf, NULL); xfree (hexbuf); } rc = openpgp_cipher_test_algo (dek->algo); if (rc) goto leave; blocksize = openpgp_cipher_get_algo_blklen (dek->algo); if ( !blocksize || blocksize > 16 ) log_fatal ("unsupported blocksize %u\n", blocksize ); nprefix = blocksize; if ( ed->len && ed->len < (nprefix+2) ) { /* An invalid message. We can't check that during parsing because we may not know the used cipher then. */ rc = gpg_error (GPG_ERR_INV_PACKET); goto leave; } if ( ed->mdc_method ) { if (gcry_md_open (&dfx->mdc_hash, ed->mdc_method, 0 )) BUG (); if ( DBG_HASHING ) gcry_md_debug (dfx->mdc_hash, "checkmdc"); } rc = openpgp_cipher_open (&dfx->cipher_hd, dek->algo, GCRY_CIPHER_MODE_CFB, (GCRY_CIPHER_SECURE | ((ed->mdc_method || dek->algo >= 100)? 0 : GCRY_CIPHER_ENABLE_SYNC))); if (rc) { /* We should never get an error here cause we already checked * that the algorithm is available. */ BUG(); } /* log_hexdump( "thekey", dek->key, dek->keylen );*/ rc = gcry_cipher_setkey (dfx->cipher_hd, dek->key, dek->keylen); if ( gpg_err_code (rc) == GPG_ERR_WEAK_KEY ) { log_info(_("WARNING: message was encrypted with" " a weak key in the symmetric cipher.\n")); rc=0; } else if( rc ) { log_error("key setup failed: %s\n", gpg_strerror (rc) ); goto leave; } if (!ed->buf) { log_error(_("problem handling encrypted packet\n")); goto leave; } gcry_cipher_setiv (dfx->cipher_hd, NULL, 0); if ( ed->len ) { for (i=0; i < (nprefix+2) && ed->len; i++, ed->len-- ) { if ( (c=iobuf_get(ed->buf)) == -1 ) break; else temp[i] = c; } } else { for (i=0; i < (nprefix+2); i++ ) if ( (c=iobuf_get(ed->buf)) == -1 ) break; else temp[i] = c; } gcry_cipher_decrypt (dfx->cipher_hd, temp, nprefix+2, NULL, 0); gcry_cipher_sync (dfx->cipher_hd); p = temp; /* log_hexdump( "prefix", temp, nprefix+2 ); */ if (dek->symmetric && (p[nprefix-2] != p[nprefix] || p[nprefix-1] != p[nprefix+1]) ) { rc = gpg_error (GPG_ERR_BAD_KEY); goto leave; } if ( dfx->mdc_hash ) gcry_md_write (dfx->mdc_hash, temp, nprefix+2); dfx->refcount++; dfx->partial = ed->is_partial; dfx->length = ed->len; if ( ed->mdc_method ) iobuf_push_filter ( ed->buf, mdc_decode_filter, dfx ); else iobuf_push_filter ( ed->buf, decode_filter, dfx ); if (opt.unwrap_encryption) { char *filename; estream_t fp; rc = get_output_file ("", 0, ed->buf, &filename, &fp); if (! rc) { iobuf_t output = iobuf_esopen (fp, "w", 0); armor_filter_context_t *afx = NULL; if (opt.armor) { afx = new_armor_context (); push_armor_filter (afx, output); } iobuf_copy (output, ed->buf); if ((rc = iobuf_error (ed->buf))) log_error (_("error reading '%s': %s\n"), filename, gpg_strerror (rc)); else if ((rc = iobuf_error (output))) log_error (_("error writing '%s': %s\n"), filename, gpg_strerror (rc)); iobuf_close (output); if (afx) release_armor_context (afx); } } else proc_packets (ctrl, procctx, ed->buf ); ed->buf = NULL; if (dfx->eof_seen > 1 ) rc = gpg_error (GPG_ERR_INV_PACKET); else if ( ed->mdc_method ) { /* We used to let parse-packet.c handle the MDC packet but this turned out to be a problem with compressed packets: With old style packets there is no length information available and the decompressor uses an implicit end. However we can't know this implicit end beforehand (:-) and thus may feed the decompressor with more bytes than actually needed. It would be possible to unread the extra bytes but due to our weird iobuf system any unread is non reliable due to filters already popped off. The easy and sane solution is to care about the MDC packet only here and never pass it to the packet parser. Fortunatley the OpenPGP spec requires a strict format for the MDC packet so that we know that 22 bytes are appended. */ int datalen = gcry_md_get_algo_dlen (ed->mdc_method); log_assert (dfx->cipher_hd); log_assert (dfx->mdc_hash); gcry_cipher_decrypt (dfx->cipher_hd, dfx->defer, 22, NULL, 0); gcry_md_write (dfx->mdc_hash, dfx->defer, 2); gcry_md_final (dfx->mdc_hash); if ( dfx->defer[0] != '\xd3' || dfx->defer[1] != '\x14' || datalen != 20 || memcmp (gcry_md_read (dfx->mdc_hash, 0), dfx->defer+2, datalen)) rc = gpg_error (GPG_ERR_BAD_SIGNATURE); /* log_printhex("MDC message:", dfx->defer, 22); */ /* log_printhex("MDC calc:", gcry_md_read (dfx->mdc_hash,0), datalen); */ } leave: release_dfx_context (dfx); return rc; }
/**************** * Protect the secret key with the passphrase from DEK */ int protect_secret_key( PKT_secret_key *sk, DEK *dek ) { int i,j, rc = 0; byte *buffer; size_t nbytes; u16 csum; if( !dek ) return 0; if( !sk->is_protected ) { /* okay, apply the protection */ gcry_cipher_hd_t cipher_hd=NULL; if ( openpgp_cipher_test_algo ( sk->protect.algo ) ) { /* Unsupport protection algorithm. */ rc = gpg_error (GPG_ERR_CIPHER_ALGO); } else { print_cipher_algo_note( sk->protect.algo ); if ( openpgp_cipher_open (&cipher_hd, sk->protect.algo, GCRY_CIPHER_MODE_CFB, (GCRY_CIPHER_SECURE | (sk->protect.algo >= 100 ? 0 : GCRY_CIPHER_ENABLE_SYNC))) ) BUG(); if ( gcry_cipher_setkey ( cipher_hd, dek->key, dek->keylen ) ) log_info(_("WARNING: Weak key detected" " - please change passphrase again.\n")); sk->protect.ivlen = openpgp_cipher_get_algo_blklen (sk->protect.algo); assert( sk->protect.ivlen <= DIM(sk->protect.iv) ); if( sk->protect.ivlen != 8 && sk->protect.ivlen != 16 ) BUG(); /* yes, we are very careful */ gcry_create_nonce (sk->protect.iv, sk->protect.ivlen); gcry_cipher_setiv (cipher_hd, sk->protect.iv, sk->protect.ivlen); if( sk->version >= 4 ) { byte *bufarr[PUBKEY_MAX_NSKEY]; size_t narr[PUBKEY_MAX_NSKEY]; unsigned int nbits[PUBKEY_MAX_NSKEY]; int ndata=0; byte *p, *data; for (j=0, i = pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++, j++ ) { assert (!gcry_mpi_get_flag (sk->skey[i], GCRYMPI_FLAG_OPAQUE)); if (gcry_mpi_aprint (GCRYMPI_FMT_USG, bufarr+j, narr+j, sk->skey[i])) BUG(); nbits[j] = gcry_mpi_get_nbits (sk->skey[i]); ndata += narr[j] + 2; } for ( ; j < PUBKEY_MAX_NSKEY; j++ ) bufarr[j] = NULL; ndata += opt.simple_sk_checksum? 2 : 20; /* for checksum */ data = xmalloc_secure( ndata ); p = data; for(j=0; j < PUBKEY_MAX_NSKEY && bufarr[j]; j++ ) { p[0] = nbits[j] >> 8 ; p[1] = nbits[j]; p += 2; memcpy(p, bufarr[j], narr[j] ); p += narr[j]; xfree(bufarr[j]); } if (opt.simple_sk_checksum) { log_info (_("generating the deprecated 16-bit checksum" " for secret key protection\n")); csum = checksum( data, ndata-2); sk->csum = csum; *p++ = csum >> 8; *p++ = csum; sk->protect.sha1chk = 0; } else {
static gpg_error_t get_it (PKT_pubkey_enc *enc, DEK *dek, PKT_public_key *sk, u32 *keyid) { gpg_error_t err; byte *frame = NULL; unsigned int n; size_t nframe; u16 csum, csum2; int card = 0; gcry_sexp_t s_data; char *desc; char *keygrip; byte fp[MAX_FINGERPRINT_LEN]; size_t fpn; const int pkalgo = map_pk_openpgp_to_gcry (sk->pubkey_algo); /* Get the keygrip. */ err = hexkeygrip_from_pk (sk, &keygrip); if (err) goto leave; /* Convert the data to an S-expression. */ if (pkalgo == GCRY_PK_ELG || pkalgo == GCRY_PK_ELG_E) { if (!enc->data[0] || !enc->data[1]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(elg(a%m)(b%m)))", enc->data[0], enc->data[1]); } else if (pkalgo == GCRY_PK_RSA || pkalgo == GCRY_PK_RSA_E) { if (!enc->data[0]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(rsa(a%m)))", enc->data[0]); } else if (pkalgo == GCRY_PK_ECDH) { if (!enc->data[0] || !enc->data[1]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(ecdh(s%m)(e%m)))", enc->data[0], enc->data[1]); } else err = gpg_error (GPG_ERR_BUG); if (err) goto leave; if (sk->pubkey_algo == PUBKEY_ALGO_ECDH) { fingerprint_from_pk (sk, fp, &fpn); assert (fpn == 20); } /* Decrypt. */ desc = gpg_format_keydesc (sk, 0, 1); err = agent_pkdecrypt (NULL, keygrip, desc, s_data, &frame, &nframe); xfree (desc); gcry_sexp_release (s_data); if (err) goto leave; /* Now get the DEK (data encryption key) from the frame * * Old versions encode the DEK in in this format (msb is left): * * 0 1 DEK(16 bytes) CSUM(2 bytes) 0 RND(n bytes) 2 * * Later versions encode the DEK like this: * * 0 2 RND(n bytes) 0 A DEK(k bytes) CSUM(2 bytes) * * (mpi_get_buffer already removed the leading zero). * * RND are non-zero randow bytes. * A is the cipher algorithm * DEK is the encryption key (session key) with length k * CSUM */ if (DBG_CIPHER) log_printhex ("DEK frame:", frame, nframe); n = 0; if (sk->pubkey_algo == PUBKEY_ALGO_ECDH) { gcry_mpi_t shared_mpi; gcry_mpi_t decoded; /* At the beginning the frame are the bytes of shared point MPI. */ err = gcry_mpi_scan (&shared_mpi, GCRYMPI_FMT_USG, frame, nframe, NULL); if (err) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } err = pk_ecdh_decrypt (&decoded, fp, enc->data[1]/*encr data as an MPI*/, shared_mpi, sk->pkey); mpi_release (shared_mpi); if(err) goto leave; /* Reuse NFRAME, which size is sufficient to include the session key. */ err = gcry_mpi_print (GCRYMPI_FMT_USG, frame, nframe, &nframe, decoded); mpi_release (decoded); if (err) goto leave; /* Now the frame are the bytes decrypted but padded session key. */ /* Allow double padding for the benefit of DEK size concealment. Higher than this is wasteful. */ if (!nframe || frame[nframe-1] > 8*2 || nframe <= 8 || frame[nframe-1] > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } nframe -= frame[nframe-1]; /* Remove padding. */ assert (!n); /* (used just below) */ } else { if (!card) { if (n + 7 > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } if (frame[n] == 1 && frame[nframe - 1] == 2) { log_info (_("old encoding of the DEK is not supported\n")); err = gpg_error (GPG_ERR_CIPHER_ALGO); goto leave; } if (frame[n] != 2) /* Something went wrong. */ { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } for (n++; n < nframe && frame[n]; n++) /* Skip the random bytes. */ ; n++; /* Skip the zero byte. */ } } if (n + 4 > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } dek->keylen = nframe - (n + 1) - 2; dek->algo = frame[n++]; if (dek->algo == CIPHER_ALGO_IDEA) write_status (STATUS_RSA_OR_IDEA); err = openpgp_cipher_test_algo (dek->algo); if (err) { if (!opt.quiet && gpg_err_code (err) == GPG_ERR_CIPHER_ALGO) { log_info (_("cipher algorithm %d%s is unknown or disabled\n"), dek->algo, dek->algo == CIPHER_ALGO_IDEA ? " (IDEA)" : ""); if (dek->algo == CIPHER_ALGO_IDEA) idea_cipher_warn (0); } dek->algo = 0; goto leave; } if (dek->keylen != openpgp_cipher_get_algo_keylen (dek->algo)) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } /* Copy the key to DEK and compare the checksum. */ csum = frame[nframe - 2] << 8; csum |= frame[nframe - 1]; memcpy (dek->key, frame + n, dek->keylen); for (csum2 = 0, n = 0; n < dek->keylen; n++) csum2 += dek->key[n]; if (csum != csum2) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } if (DBG_CIPHER) log_printhex ("DEK is:", dek->key, dek->keylen); /* Check that the algo is in the preferences and whether it has expired. */ { PKT_public_key *pk = NULL; KBNODE pkb = get_pubkeyblock (keyid); if (!pkb) { err = -1; log_error ("oops: public key not found for preference check\n"); } else if (pkb->pkt->pkt.public_key->selfsigversion > 3 && dek->algo != CIPHER_ALGO_3DES && !opt.quiet && !is_algo_in_prefs (pkb, PREFTYPE_SYM, dek->algo)) log_info (_("WARNING: cipher algorithm %s not found in recipient" " preferences\n"), openpgp_cipher_algo_name (dek->algo)); if (!err) { KBNODE k; for (k = pkb; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { u32 aki[2]; keyid_from_pk (k->pkt->pkt.public_key, aki); if (aki[0] == keyid[0] && aki[1] == keyid[1]) { pk = k->pkt->pkt.public_key; break; } } } if (!pk) BUG (); if (pk->expiredate && pk->expiredate <= make_timestamp ()) { log_info (_("NOTE: secret key %s expired at %s\n"), keystr (keyid), asctimestamp (pk->expiredate)); } } if (pk && pk->flags.revoked) { log_info (_("NOTE: key has been revoked")); log_printf ("\n"); show_revocation_reason (pk, 1); } release_kbnode (pkb); err = 0; } leave: xfree (frame); xfree (keygrip); return err; }
int algo_available( preftype_t preftype, int algo, const union pref_hint *hint) { if( preftype == PREFTYPE_SYM ) { if(PGP6 && (algo != CIPHER_ALGO_IDEA && algo != CIPHER_ALGO_3DES && algo != CIPHER_ALGO_CAST5)) return 0; if(PGP7 && (algo != CIPHER_ALGO_IDEA && algo != CIPHER_ALGO_3DES && algo != CIPHER_ALGO_CAST5 && algo != CIPHER_ALGO_AES && algo != CIPHER_ALGO_AES192 && algo != CIPHER_ALGO_AES256 && algo != CIPHER_ALGO_TWOFISH)) return 0; /* PGP8 supports all the ciphers we do.. */ return algo && !openpgp_cipher_test_algo ( algo ); } else if( preftype == PREFTYPE_HASH ) { if (hint && hint->digest_length) { if (hint->digest_length!=20 || opt.flags.dsa2) { /* If --enable-dsa2 is set or the hash isn't 160 bits (which implies DSA2), then we'll accept a hash that is larger than we need. Otherwise we won't accept any hash that isn't exactly the right size. */ if (hint->digest_length > gcry_md_get_algo_dlen (algo)) return 0; } else if (hint->digest_length != gcry_md_get_algo_dlen (algo)) return 0; } if((PGP6 || PGP7) && (algo != DIGEST_ALGO_MD5 && algo != DIGEST_ALGO_SHA1 && algo != DIGEST_ALGO_RMD160)) return 0; if(PGP8 && (algo != DIGEST_ALGO_MD5 && algo != DIGEST_ALGO_SHA1 && algo != DIGEST_ALGO_RMD160 && algo != DIGEST_ALGO_SHA256)) return 0; return algo && !openpgp_md_test_algo (algo); } else if( preftype == PREFTYPE_ZIP ) { if((PGP6 || PGP7) && (algo != COMPRESS_ALGO_NONE && algo != COMPRESS_ALGO_ZIP)) return 0; /* PGP8 supports all the compression algos we do */ return !check_compress_algo( algo ); } else return 0; }
static gpg_error_t get_it (ctrl_t ctrl, PKT_pubkey_enc *enc, DEK *dek, PKT_public_key *sk, u32 *keyid) { gpg_error_t err; byte *frame = NULL; unsigned int n; size_t nframe; u16 csum, csum2; int padding; gcry_sexp_t s_data; char *desc; char *keygrip; byte fp[MAX_FINGERPRINT_LEN]; size_t fpn; if (DBG_CLOCK) log_clock ("decryption start"); /* Get the keygrip. */ err = hexkeygrip_from_pk (sk, &keygrip); if (err) goto leave; /* Convert the data to an S-expression. */ if (sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL || sk->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E) { if (!enc->data[0] || !enc->data[1]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(elg(a%m)(b%m)))", enc->data[0], enc->data[1]); } else if (sk->pubkey_algo == PUBKEY_ALGO_RSA || sk->pubkey_algo == PUBKEY_ALGO_RSA_E) { if (!enc->data[0]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(rsa(a%m)))", enc->data[0]); } else if (sk->pubkey_algo == PUBKEY_ALGO_ECDH) { if (!enc->data[0] || !enc->data[1]) err = gpg_error (GPG_ERR_BAD_MPI); else err = gcry_sexp_build (&s_data, NULL, "(enc-val(ecdh(s%m)(e%m)))", enc->data[1], enc->data[0]); } else err = gpg_error (GPG_ERR_BUG); if (err) goto leave; if (sk->pubkey_algo == PUBKEY_ALGO_ECDH) { fingerprint_from_pk (sk, fp, &fpn); log_assert (fpn == 20); } /* Decrypt. */ desc = gpg_format_keydesc (ctrl, sk, FORMAT_KEYDESC_NORMAL, 1); err = agent_pkdecrypt (NULL, keygrip, desc, sk->keyid, sk->main_keyid, sk->pubkey_algo, s_data, &frame, &nframe, &padding); xfree (desc); gcry_sexp_release (s_data); if (err) goto leave; /* Now get the DEK (data encryption key) from the frame * * Old versions encode the DEK in this format (msb is left): * * 0 1 DEK(16 bytes) CSUM(2 bytes) 0 RND(n bytes) 2 * * Later versions encode the DEK like this: * * 0 2 RND(n bytes) 0 A DEK(k bytes) CSUM(2 bytes) * * (mpi_get_buffer already removed the leading zero). * * RND are non-zero randow bytes. * A is the cipher algorithm * DEK is the encryption key (session key) with length k * CSUM */ if (DBG_CRYPTO) log_printhex (frame, nframe, "DEK frame:"); n = 0; if (sk->pubkey_algo == PUBKEY_ALGO_ECDH) { gcry_mpi_t shared_mpi; gcry_mpi_t decoded; /* At the beginning the frame are the bytes of shared point MPI. */ err = gcry_mpi_scan (&shared_mpi, GCRYMPI_FMT_USG, frame, nframe, NULL); if (err) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } err = pk_ecdh_decrypt (&decoded, fp, enc->data[1]/*encr data as an MPI*/, shared_mpi, sk->pkey); mpi_release (shared_mpi); if(err) goto leave; xfree (frame); err = gcry_mpi_aprint (GCRYMPI_FMT_USG, &frame, &nframe, decoded); mpi_release (decoded); if (err) goto leave; /* Now the frame are the bytes decrypted but padded session key. */ /* Allow double padding for the benefit of DEK size concealment. Higher than this is wasteful. */ if (!nframe || frame[nframe-1] > 8*2 || nframe <= 8 || frame[nframe-1] > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } nframe -= frame[nframe-1]; /* Remove padding. */ log_assert (!n); /* (used just below) */ } else { if (padding) { if (n + 7 > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } if (frame[n] == 1 && frame[nframe - 1] == 2) { log_info (_("old encoding of the DEK is not supported\n")); err = gpg_error (GPG_ERR_CIPHER_ALGO); goto leave; } if (frame[n] != 2) /* Something went wrong. */ { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } for (n++; n < nframe && frame[n]; n++) /* Skip the random bytes. */ ; n++; /* Skip the zero byte. */ } } if (n + 4 > nframe) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } dek->keylen = nframe - (n + 1) - 2; dek->algo = frame[n++]; err = openpgp_cipher_test_algo (dek->algo); if (err) { if (!opt.quiet && gpg_err_code (err) == GPG_ERR_CIPHER_ALGO) { log_info (_("cipher algorithm %d%s is unknown or disabled\n"), dek->algo, dek->algo == CIPHER_ALGO_IDEA ? " (IDEA)" : ""); } dek->algo = 0; goto leave; } if (dek->keylen != openpgp_cipher_get_algo_keylen (dek->algo)) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } /* Copy the key to DEK and compare the checksum. */ csum = buf16_to_u16 (frame+nframe-2); memcpy (dek->key, frame + n, dek->keylen); for (csum2 = 0, n = 0; n < dek->keylen; n++) csum2 += dek->key[n]; if (csum != csum2) { err = gpg_error (GPG_ERR_WRONG_SECKEY); goto leave; } if (DBG_CLOCK) log_clock ("decryption ready"); if (DBG_CRYPTO) log_printhex (dek->key, dek->keylen, "DEK is:"); /* Check that the algo is in the preferences and whether it has * expired. Also print a status line with the key's fingerprint. */ { PKT_public_key *pk = NULL; PKT_public_key *mainpk = NULL; KBNODE pkb = get_pubkeyblock (ctrl, keyid); if (!pkb) { err = -1; log_error ("oops: public key not found for preference check\n"); } else if (pkb->pkt->pkt.public_key->selfsigversion > 3 && dek->algo != CIPHER_ALGO_3DES && !opt.quiet && !is_algo_in_prefs (pkb, PREFTYPE_SYM, dek->algo)) log_info (_("WARNING: cipher algorithm %s not found in recipient" " preferences\n"), openpgp_cipher_algo_name (dek->algo)); if (!err) { kbnode_t k; int first = 1; for (k = pkb; k; k = k->next) { if (k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY) { u32 aki[2]; if (first) { first = 0; mainpk = k->pkt->pkt.public_key; } keyid_from_pk (k->pkt->pkt.public_key, aki); if (aki[0] == keyid[0] && aki[1] == keyid[1]) { pk = k->pkt->pkt.public_key; break; } } } if (!pk) BUG (); if (pk->expiredate && pk->expiredate <= make_timestamp ()) { log_info (_("Note: secret key %s expired at %s\n"), keystr (keyid), asctimestamp (pk->expiredate)); } } if (pk && pk->flags.revoked) { log_info (_("Note: key has been revoked")); log_printf ("\n"); show_revocation_reason (ctrl, pk, 1); } if (is_status_enabled () && pk && mainpk) { char pkhex[MAX_FINGERPRINT_LEN*2+1]; char mainpkhex[MAX_FINGERPRINT_LEN*2+1]; hexfingerprint (pk, pkhex, sizeof pkhex); hexfingerprint (mainpk, mainpkhex, sizeof mainpkhex); /* Note that we do not want to create a trustdb just for * getting the ownertrust: If there is no trustdb there can't * be ulitmately trusted key anyway and thus the ownertrust * value is irrelevant. */ write_status_printf (STATUS_DECRYPTION_KEY, "%s %s %c", pkhex, mainpkhex, get_ownertrust_info (ctrl, mainpk, 1)); } release_kbnode (pkb); err = 0; } leave: xfree (frame); xfree (keygrip); return err; }